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Variable selection

Regulated linear regression

y = Xβ + ε

where y = (y1, · · · , yn)
′, and X denotes the n observations of p

regressors. β = (β1, · · · , βk )
′ is the k -dimensional regression

coefficients, and ε is n-dimensional i.i.d. normally distributed errors
with mean 0 and variance σ2.

Lasso: The penalized regression subject to the l1-norm regularization:

arg minβ ||y − Xβ||2l2
s.t . ||β||l1 ≤ t

Alternatively formulated as a Lagrangian problem:

arg minβ ||y − Xβ||2l2 + λ||β||l1
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Variable selection

Zero-norm: The penalized regression subject to the zero-norm
regularization:

arg minβ ||y − Xβ||2l2
s.t . ||β||l0 ≤ ps ≤ p

where || · ||l2 is the l2-norm and || · ||l0 is the zero-norm, which counts
the number of non-zero entries in β.

Alternatively formulated and targeted in this study:

arg max{U∈P(ps)} exp
{
−||y − XU β̂(U)||2l2

}
where U = (U1,U2, · · · ,Ups) ∈ P(ps) ≡
{U ∈ Pps&U1 6= U2 6= · · · 6= Ups}, Pps and P = {1,2, · · · ,p}; XU
denotes the sub-matrix of X whose columns correspond to U; and
β̂(U) = (X ′UXU)

−1X ′Uy , the optimal regression coefficients given U.
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Variable selection

Zero-norm vs. l1-norm penalty

Zero-norm is intuitive and natural to variable selection, but it’s
NP-hard. Lasso and its variants can be efficiently solved with
convex optimization.
Lasso (Tibshirani, 1996) doesn’t possess the oracle property. All
regression coefficients are biased toward zero due to the l1
penalty. (This can be fixed by, for example, adaptive Lasso of Zou
(2006).
The “Irrepresentable Condition” of Zhao and Yu (2006) states that
“Lasso selects the true model consistently if and (almost) only if
the predictors that are not in the true model are ‘irrepresentable’
by predictors that are in the true model. So, multicollinearity
creates problems for Lasso.
The l2 norm is invariant to rotations but the l1 penalty is not.
Practically speaking, correlated variables may not be selected
even though one of them is part of the true model.
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Methodological concept

What is sequential Monte Carlo (SMC)?

SMC involves generating a sequence of Monte Carlo samples so
that the final sample represents a target distribution.

Bayesian posterior distribution is a motivating example where the
posterior is known by the Bayes theorem to be proportional to the
product of the prior distribution and likelihood function.

The prior can be easily simulated by Monte Carlo, but the
posterior is not. Hence, a sequence of Monte Carlo samples is
needed to reach the posterior.

Density tempering proposed in Del Moral, et al (2006)1 is one of
the two ways to do so. The other is through expanding data, which
is a less robust procedure according to the Duan and Fulop
(2015)2.

1
Sequential monte carlo samplers, Del Moral, P., A. Doucet, and A. Jasra (2006), Journal of the Royal Statistical Society:

Series B 68(3), 411-436
2

Density-Tempered Marginalized Sequential Monte Carlo Samplers, J.C. Duan and A. Fulop (2015), Journal of Business
and Economic Statistics 33(2), 192-202
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Methodological concept

A primer on Monte Carlo sampling

Importance sampling
If one wants to sample according to a density f (x ; θ), it can
alternatively deploy an easy-to-sample density g(x ;ψ) where the
support of g(x ;ψ) must contain that of f (x ; θ) and apply the
importance weight w(x) = f (x ; θ)/g(x ;ψ). For a sample
{xi , i = 1,2 · · · ,n}, the following weighted sample can be used:

(x ,w) =


x1, w(x1)/

∑n
i=1 w(xi)

x2, w(x2)/
∑n

i=1 w(xi)
...

...
xn, w(xn)/

∑n
i=1 w(xi)


Example: generate a t-distributed random sample using a normal
distribution with the same mean and a larger variance.
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Methodological concept

Theoretical justification

Ef [H(X )] = Eg

[
H(X )

f (X , θ)
g(X ;ψ)

]
if the support of g(X ;ψ) contains the support of f (X , θ).

Since Eg

[
f (X ,θ)
g(X ;ψ)

]
= Ef (1) = 1,

1
n

n∑
i=1

f (xi , θ)

g(xi ;ψ)
≈ 1 or

n∑
i=1

w(xi) ≈ n

Thus, importance sampling can be executed without the norming
constant in the density/distribution function.
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Methodological concept

Effective sample size

ESS =

(∑n
i=1 wi

)2∑n
i=1 w2

i
≤ n, and equals n only with a constant weight.

Resampling
Resample (x ,w) to generate an equally-weighted sample

(x∗,1) =


x∗1 , 1/n
x∗2 , 1/n
...

...
x∗n , 1/n


which won’t improve the sample quality because equal weights are
obtained at the expense of a reduced support, i.e., the number of
distinct sample points is less than n. But resampling is critical to SMC.
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Methodological concept

What is the density-tempered SMC?

Density-termpered SMC for Bayesian estimation in a most general
way3:

fγ(θ;y1:T ) ∝
(
L(θ;y1:T )p(θ)

I(θ)

)γ
× I(θ)

where y1:T is the data set, θ is the unknown model parameter,
L(θ;y1:T ) is the likelihood (or pseudo-likelihood) function, p(θ) is the
prior density/distribution, and I(θ) is the density/distribution of some
initialization sampler whose support contains that of L(θ;y1:T )p(θ).

Setting p(θ) = 1 gives rise to maximum likelihood estimation.

3
Estimating Distance-to-Default with a Sector-Specific Liability Adjustment via Sequential Monte Carlo, Duan, J.-C. and C.

W. T. Wang (2017), in Applied Quantitative Finance, eds. C. Chen, W.K. Hardle and L. Overbeck, Springer.
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Methodological concept

When γ = 0, then f0(θ;y1:T ) = I(θ).

When γ = 1, f1(θ;y1:T ) ∝ L(θ;y1:T )p(θ), i.e., the posterior
distribution under Bayesian or ∝ L(θ;y1:T ), i.e., the likelihood
function under frequentist.

For statistical analyses, the distribution of θ, i.e., f1(θ;y1:T ), is the
issue, one can apply importance sampling to generate θ

according to I(θ) and apply the importance weight: L(θ;y1:T )p(θ)
I(θ)

(Bayesian) or L(θ;y1:T )
I(θ) (frequentist).

One can use a Bayesian computation technique without being a
Bayesian statistician. In fact, The density-tempered SMC can
serve as an optimization method without any statistical inference
purpose.
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Methodological concept

However, the ESS is likely to be very small because importance
weights are highly variable. So, one must temper the importance
weight in a controlled fashion with a sequence of γ from 0 to 1;
that is a density-tempered SMC.

Controlling the ESS is an excellent way to perform
density-tempered SMC. This is done by looking for a γ value at
which the ESS is no less than, say, n/2. Sequentially, one in effect
applies the incremental weight (γj > γj−1):

fγj (θ;y1:T )

fγj−1(θ;y1:T )
∝
(
L(θ;y1:T )p(θ)

I(θ)

)γj−γj−1
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Key algorithmic ingredients

Critical steps in the density-tempered SMC

Step 1: Initial sampling
Find a reasonable initialization sampler whose density/distribution is
I(θ), i.e., γ0 = 0. Note that the support of I(θ) must be large enough,
and beyond which the initialization sampler is arbitrary except affecting
efficiency.
In a true Bayesian context, the prior distribution can in principle be the
initialization sampler, which will simplify the importance weight to the
likelihood value, i.e., L(θ;y1:T ). However, the prior is likely a poor
initialization sampler. Why?

Step 2: Finding next γ
Evaluate the tempered incremental importance weight:(

L(θ;y1:T )p(θ)
I(θ)

)γ−γj−1

to find some γ∗ at which the ESS is greater than a threshold value.
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Key algorithmic ingredients

Step 3: Resampling and support boosting
Resample according to the incremental weights to equalize weights. It
is essential to boost the support before moving forward because the
empirical support will shrink due to resampling. Support boosting can
be accomplished by applying several Metropolis-Hastings moves to
randomly sampled sub-blocks to achieve, say, an average cumulative
acceptance rate of at least 500%.

LetMθ denote some statistics of the sample for θ and θ∗ the
proposed new parameter value based on some independent proposal
density/distribution, h(θ∗ |Mθ ). Then, the MH acceptance probability is

αγj{θ ⇒ θ∗} = min

(
1,

fγj (θ
∗;y1:T )

fγj (θ;y1:T )

h(θ |Mθ )

h(θ∗ |Mθ )

)
Note: The proposal sampler is independent, becauseMθ reflects the
whole sample instead of any individual element.

Step 4: Set γj = γ∗, and return to Step 2 to advance to next γ∗
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Comparison with other methods

Advantages of SMC over MCMC

The target distribution (intermediate or final) is the stationary
solution to the Markov kernel defined by the acceptance
probability. The MH move is only used to boost the support, which
contrasts with its usage in MCMC where burn-in is required to
ensure a “correctly” distributed sample by convergence of the
Markov process defined by the kernel.
A natural independent proposal can be constructed from the SMC
sample, and a high acceptance rate is expected. This is in sharp
contrast to the MH move used in MCMC where a natural proposal
with a high acceptance probability is lacking.
By design, the SMC sample representing the target distribution
has independent elements whereas the MCMC sample after
burn-in often has highly dependent elements. An independent
sample naturally delivers a better statistical result than a
dependent sample of equal size.
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Comparison with other methods

Advantages of SMC over gradient-based methods

SMC can handle models with many parameters, say, several
hundred.

The likelihood function may be discontinuous in parameters; for
example, the likelihood function can only be evaluated with a
particle filter.

Real-time updating parameter values to time T +1 is
straightforward and highly efficient by assigning the following
incremental weight to the SMC sample obtained up to time T :(

L(θ;y1:T+1)p(θ)
L(θ;y1:T )p(θ)

)γ
=

(
L(θ;y1:T+1)

L(θ;y1:T )

)γ
Tempering this incremental weight is usually not needed because
one extra data point unlikely reduces the ESS significantly.

Resampling and support boosting are needed to raise the ESS.
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Accelerating SMC

Accelerating SMC

k -fold duplication4

1 After reaching γ = 1 with the target sample of size n, duplicate the
sample k times to obtain a sample of size kn. Note that this
sample’s ESS remains unchanged.

2 Run the MH move to boost the empirical support from n to kn.

3 k -fold duplication is much more efficient than running the regular
SMC directly with a sample size of kn, because tempering steps
can be completely skipped.

4
Non-Gaussian Bridge Sampling with an Application, J.C. Duan and C. Zhang (2016), National University of Singapore

working paper
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Application: proxy CDS curves

Example: CDS usage and availability

Corporate CDS are widely used in benchmarking for accounting
and credit risk management purposes.

Availability of liquid CDS is rather limited, and arguably no more
than 500 corporate names worldwide. Out of necessity, users
either confine themselves to this limited set of CDS or simply
resort to aggregates derived from those liquid ones in different
industry/rating combinations produced by, say, Markit.
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Application: proxy CDS curves

Bond yield spread to predict CDS?

CDS and corresponding bond yield spreads obey a parity relationship in a long run,
i.e., co-integrated (Blanco, Brennan and Marsh, 2005, J of Finance; Zhu, 2006, J of
Fin Serv Research). Their difference has been shown to be mostly negative with an
average of 40 bps for individual corporate (Kim, Li and Zhang, 2017, J of Futures
Markets). This parity relationship cannot be used to predict CDS for firms without
traded bonds.

Equally-weighted investment grade CDS-bond basis, taken from Figure 2 of Kim, Li
and Zhang, 2017, Journal of Futures Markets
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Application: proxy CDS curves

Duan (2017) “Proxy CDS Curves for Individual
Corporates Globally”

Develop a robust predictive regression that can generate proxy
CDS curves for all exchange-traded corporates globally. The
predictive regression has an R2 over 80% for a large set of
USD-denominated CDS spanning over 15 years.

Use Actuarial Spread, a quantity closest to CDS spread, as a key
predictor. Daily updated Actuarial Spreads on all exchange-traded
firms (around 35,000) are computed by the Credit Research
Initiative (CRI) at the National University of Singapore, and made
freely available on its website. So, the proxy CDS curves can be
operational on a real time basis.

A large set of potential regressors is considered. Regressor
selection utilizes a proprietary zero-norm penalty regression
software developed by CriAT.
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Application: proxy CDS curves

The CDS data

The USD-denominated CDS market prices are the Bloomberg
computed CDS averages with end-of-day set to 6:00pm EST (New
York time) on a monthly frequency starting in August 2001 all the
way to February 2017.

405 corporate names include 309 US firms and others from 21
economies. The sample covers all 10 industries according the
Bloomberg Industry Classification System with Financial being the
largest containing 73 firms and Diversified being the smallest
having 4 firms.

The five CDS tenors are fairly equally distributed where 354 firms
with 1-year, 319 with 2-year, 356 with 3-year, 314 with 4-year and
404 with 5-year.
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Application: proxy CDS curves

The post-crisis sample (the 2008 global financial crisis defined as
September end of 2008 and afterwards) contains 395 firms,
whereas the pre-crisis sample has 244 firms.

The post CDS Big Bang (April 2009) sample has 374 firms
whereas the pre CDS Big Bang sample covers 372 firms.

The CDS sample contains 141,918 observations in total with
118,559 being investment-grade and the rest being the high-yield.

The sample contains 92 data points on CDS referencing
subordinated debt, and all are 5-year tenor with Shinshei Bank, a
Japanese financial institution, as the reference entity.
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Application: proxy CDS curves

The 29 explanatory variables and their
single-regressor R2

R2 Mean Std Max Min
CDS(bps) 150.0377 328.3817 9592.2010 1.2350
logCDS 4.2253 1.1715 9.1687 0.2111
Regressor
logAS 0.4860 2.1944 1.8994 9.6152 -11.9240
logASlevel 0.4718 2.3773 1.7463 8.3655 -10.2444
DTDlevel 0.3819 5.5199 3.0600 20.1084 -1.1757
SIGMA 0.3769 0.0794 0.0555 0.9492 0.0233
logIndustryCCI 0.3023 2.8066 0.4200 3.8135 1.1936
logCountryCCI 0.2894 2.8950 0.6612 5.1790 -0.8228
isHY 0.2745 0.1646 0.3708 1 0
SIZElevel 0.2616 3.5422 1.4390 8.1375 -2.2648
VIX 0.1589 21.6953 9.6061 59.8900 10.4200
NI/TAlevel 0.1566 0.0038 0.0059 0.0761 -0.0603
Tenor-1y 0.0800 0.1800 0.3842 1 0
3mRateUS 0.0556 0.6785 1.3026 5.1239 -0.0203
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Application: proxy CDS curves

R2 Mean Std Max Min
TL/TA 0.0534 0.6690 0.1789 2.0325 0.1206
postCrisis 0.0404 0.7871 0.4093 1 0
logAStrend 0.0333 -0.1830 0.6830 2.4696 -8.1830
DTDtrend 0.0268 0.1090 1.3557 6.1350 -7.0466
SIZEtrend 0.0216 -0.0037 0.1794 1.6448 -1.8962
3mRateEcon 0.0155 0.9587 1.7389 23.7700 -0.0800
Tenor-4y 0.0116 0.1462 0.3533 1 0
SwapSpread5vs1 0.0113 1.1097 0.6374 2.7300 -0.3562
isFinancial 0.0092 0.1467 0.3538 1 0
Tenor-2y 0.0038 0.1440 0.3511 1 0
NI/TAtrend 0.0016 0.0000 0.0066 0.1044 -0.1459
isSub 0.0012 0.0006 0.0255 1 0
Tenor-3y 0.0011 0.1884 0.3910 1 0
CASH/TAlevel 0.0011 0.0910 0.1092 0.9785 0.0000
postBigBang 0.0008 0.7144 0.4517 1 0
CASH/TAtrend 0.0003 0.0011 0.0294 0.4829 -0.3337
isUS 0.0000 0.8585 0.3485 1 0
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Application: proxy CDS curves

Selection of 24 regressors (out of 442) based on the
subsample of 3,000 observations and then applied to
the whole sample

Subsample Whole Sample
Regressor Estimate t-Stat Estimate t-Stat
Intercept 1.7731 12.71 1.4930 72.69
logAS*logASlevel 0.0109 5.81 0.0125 42.39
logAS*logIindustryCCI 0.0748 22.10 0.0705 137.96
logAStrend*SwapSpread5vs1 -0.1079 -8.51 -0.1158 -62.79
DTDtrend*isHY 0.1741 6.91 0.0580 16.21
SIGMA 2.0830 8.11 2.1699 56.24
SIGMA*isSub 5.6355 11.07 5.7308 13.37
SIZElevel -0.1532 -16.50 -0.1466 -110.27
SIZElevel*isUS -0.0676 -8.98 -0.0637 -59.28
SIZElevel*Tenor2y -0.0481 -6.25 -0.0523 -46.82
TL/TA*isHY 0.5957 14.27 0.6614 106.67
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Application: proxy CDS curves

Subsample Whole Sample
Estimate t-Stat Estimate t-Stat

logCountryCCI 1.0672 11.72 1.2269 90.83
logCountryCCI2 -0.1503 -8.48 -0.1770 -66.67
logCountryCCI*SIZEtrend -0.1644 -8.96 -0.1514 -56.96
logIindustryCCI*postCrisis 0.2376 7.56 0.2371 51.10
3mRateUS -0.2393 -12.44 -0.2242 -78.22
3mRateUS*isFinancial -0.1220 -6.98 -0.1147 -43.11
3mRateUS*isHY 0.1468 6.30 0.1228 36.94
3mRateEcon*DTDlevel 0.0120 7.14 0.0109 43.36
3mRateEcon*postBigBang 0.0792 7.15 0.0762 43.34
SwapSpread5vs12 -0.1354 -16.81 -0.1238 -104.09
VIX 0.0487 13.91 0.0486 92.31
VIX*postCrisis -0.0364 -9.70 -0.0369 -65.60
Tenor3y -0.1616 -6.41 -0.1457 -40.38
R2 81.96% 80.89%
Sample Size 3,000 141,918
BIC -3,889.73 -189,642.28
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Application: proxy CDS curves

Performance of the proxy CDS model in predicting
market price of CDS in different subcategories
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Application: proxy CDS curves
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Application: proxy CDS curves

Duan, 09/2018 (NUS & CriAT) Variable Selection ... 28 / 30



Application: proxy CDS curves
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Application: proxy CDS curves

R2 of the proxy CDS model for different subcategories

R2 # of Corporates # of Data
Whole sample 80.89% 405 141,918
US 81.41% 309 121,840
Non-US 77.29% 96 20,078
Financial 81.36% 73 20,818
Non-Financial 80.48% 332 121,100
Investment grade 74.02% 370 118,559
High yield 71.38% 138 23,359
Senior debt 80.79% 404 141,826
Subordinated debt 93.49% 1 92
Pre-financial crisis 75.14% 244 17,696
Post-financial crisis 81.25% 395 124,222
Pre-CDS Big Bang 81.20% 372 40,529
Post-CDS Big Bang 80.60% 374 101,389
Tenor(1 year) 78.72% 354 25,548
Tenor(2 years) 79.93% 319 20,432
Tenor(3 years) 78.54% 356 26,740
Tenor(4 years) 77.17% 314 20,750
Tenor(5 years) 77.78% 404 48,448
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