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Under two scenarios.....

1 Under correct specification of the data generating process
(DGP):

Frazier, Maneesoonthorn, Martin and McCabe, 2018

‘Approximate Bayesian Forecasting’(‘ABF’)

In Press: International Journal of Forecasting

2 Under misspecification of the DGP:

Frazier and Martin, 2018:

Very preliminary!!
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Exact Bayesian forecasting

Distribution of interest is:

pexact(yT+1|y) =
∫

θ
p(yT+1, θ|y)dθ

=
∫

θ
p(yT+1|y, θ)p(θ|y)dθ

= Eθ|y [p(yT+1|y, θ)]

Exact (marginal) predictive = expectation of the conditional
predictive

Conditional predictive reflects the assumed DGP

(on which p(θ|y) is also based)
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Exact Bayesian forecasting

Given M draws from p(θ|y) (via a Markov chain Monte Carlo
algorithm, say)

pexact(yT+1|y) can be estimated as
1 either:

p̂exact (yT+1|y) =
1
M

M

∑
i−1
p(yT+1|y, θ(i ))

2 or: p̂exact (yT+1|y) constructed from draws of y (i )T+1 simulated

from p(yT+1|y, θ(i ))

i.e. MCMC ⇒ exact Bayesian forecasting

(up to simulation error)
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Approximate Bayesian forecasting

How to conduct Bayesian forecasting when p(θ|y) is
inaccessible?

⇒ draws from it are unavailable

Either because the assumed DGP p(y|θ) is intractable

in the sense that (parts of) the DGP unavailable in closed form

Or when the dimension of θ so large

that exploration of p(θ|y) via exact methods is deemed to be
too computationally burdensome

Or there is insuffi cient expertise to structure an effi cient MCMC
algorithm
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Approximate Bayesian forecasting

Can/must resort to approximate Bayesian inference

⇒ goal then is to produce an approximation to p(θ|y)
⇒ an approximation to pexact(yT+1|y)
Approximations to p(θ|y)?

Variational Bayes

Integrated nested Laplace (INLA)

Synthetic likelihood

Approximate Bayesian computation (ABC)

All of which could be viewed as yielding ‘approximate
Bayesian forecasting’

Our focus is on ABC
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ABC (basic form) in a nut shell!

Aim is to produce draws from an approximation to p(θ|y)

and use draws to estimate that approximation

The simplest (accept/reject) form of the algorithm:

1 Simulate i = 1, 2, ...,N, i .i .d . draws of θi from p(θ)
2 Simulate pseudo-data zi , i = 1, 2, ...,N, from p(z|θi )
3 Select θi such that:

d{η(y), η(zi )} ≤ ε

η(.) is a (vector) summary statistic
d{.} is a distance criterion
the tolerance ε is arbitrarily small

4 Selected draws ⇒ simulation-based estimate of p(θ|η(y))
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Approximate Bayesian forecasting

Use draws from p(θ|η(y)) to estimate:

pABC (yT+1|y) =
∫
p(yT+1|y, θ)p(θ|η(y))dθ

= an ‘approximate Bayesian predictive’

What is pABC (yT+1|y) & how does it relate to pexact(yT+1|y)?

We show (in ‘ABF’, 2018) that:

pABC (yT+1|y) is a proper density function
pABC (yT+1|y) = pexact (yT+1|y) iff η(y) is suffi cient (!)

pABC (yT+1|y) ≈ pexact (yT+1|y) even when η(y) is not
suffi cient
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Furthermore......

Under Bayesian consistency of:

p(θ|y) (standard regularity) and
p(θ|η(y)) (Frazier, Martin, Robert and Rousseau, 2018)

the predictive distributions:

Pexact(·) and PABC (·)

‘merge’, in the sense that:

ρTV {Pexact ,PABC } = sup
B∈F
|Pexact(B)− PABC (B)| = oP(1)

Blackwell and Dubins (1962)

⇒ for large enough T exact and (consistent) ABC-based
predictives are equivalent!
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Furthermore......

Under asymptotic normality of:

p(θ|y) (standard regularity) and
p(θ|η(y)) (Frazier, Martin, Robert and Rousseau, 2018)
⇒ inequality result regarding the predictive accuracy of
pexact (yT+1|y) vs pABC (yT+1|y)
using a proper scoring rule: S(pexact , yT+1)

⇒ for large (but finite) T :

E [S(pexact , yT+1)] =
∫
y∈Ω

S(pexact , yT+1)p(yT+1|y, θ0)︸ ︷︷ ︸
ptruth

dyT+1

≥
∫
y∈Ω

S(pABC , yT+1)p(yT+1|y, θ0)︸ ︷︷ ︸
ptruth

dyT+1

= E [S(pABC , yT+1)]
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Example: MA(2): T = 500

Consider (simple) example:

yt = et + θ1et−1 + θ2et−2

et ∼ i .i .d .N(0, σ0) with true: θ10 = 0.8; θ20 = 0.6; σ0 = 1.0

Use sample autocovariances

γl = cov(yt , yt−l )

to construct (alternative vectors of) summary statistics:

η(1)(y) = (γ0,γ1)
′; η(2)(y) = (γ0,γ1,γ2)

′

η(3)(y) = (γ0,γ1,γ2,γ3)
′; η(4)(y) = (γ0,γ1,γ2,γ3,γ4)

′

MA dependence ⇒ no reduction to suffi ciency possible

⇒ p(θ|η(j)(y)) 6= p(θ|y) for all j = 1, 2, 3, 4
What about pABC (yT+1|y) versus pexact (yT+1|y)??
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Posterior densities: exact and ABC: T = 500

Remember: using only the most basic version of ABC
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Predictive densities: exact and ABC: T = 500

For large T : the exact and approximate predictives are very
similar - for all η(j)(y)!!
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Expected scores: exact and ABC: T = 500

Average predictive scores over 500 out-of-sample values:

ABC av. score Exact av. score
η(1)(y) η(2)(y) η(3)(y) η(4)(y)

LS -1.43 -1.42 -1.43 -1.43 -1.40
QS 0.28 0.28 0.28 0.28 0.29

CRPS -0.57 -0.56 -0.57 -0.57 -0.56

Loss is incurred (in a finite sample) by being approximate
But it is negligible
Computational gain?

pexact (yT+1|y) : 360 seconds
pABC (yT+1|y) : 3 seconds! (with parallel computing)
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ABC prediction in state space models?

How does one compute pABC (yT+1|y) in state space models?

Does one condition state inference only on η(y)?

Given a financial return, yt = lnPt − lnPt−1
Assume stochastic volatility:

yt =
√
Vt εt ; εt ∼ i .i .d .N(0, 1)

lnVt = θ1 lnVt−1 + ηt ; ηt ∼ i .i .d .N(0, θ2)

θ = (θ1, θ2)′
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ABC prediction in state space models?

Exact:

pexact(yT+1|y) =
∫
VT+1

∫
V

∫
θ
p(yT+1|VT+1)

× p(VT+1|VT , y, θ)p(V|θ, y)p(θ|y)︸ ︷︷ ︸
p(V,θ|y)

dθdVdVT+1

MCMC used to draw from p(V, θ|y)

⇒ independent draws from p(VT+1|VT , y, θ) and
p(yT+1|VT+1)⇒ y (i)T+1

⇒ p̂exact(yT+1|y)
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ABC prediction in state space models?

ABC:

pABC (yT+1|y) =
∫
VT+1

∫
V

∫
θ
p(yT+1|VT+1)

× p(VT+1|VT , y, θ)p(V|θ, y)p(θ|η(y))dθdVdVT+1

ABC used to draw from p(θ|η(y))

(with η(y) based on an approximating auxiliary GARCH model)

⇒ particle filtering used to integrate out V

⇒ yields full posterior inference (i.e. |y) on VT
Exact inference (MCMC) on V1:T−1 not required
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Nature of ABC inference on θ of little importance.....

⇒ all pABC (yT+1|y) ≈ pexact(yT+1|y)!
What if condition VT on η(y) only? i.e. omit the PF step?
⇒ the green curve (i.e. inaccuracy!)
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ABC prediction in state space models?

Need to get the predictive model: p(yT+1|VT+1) and
p(VT+1|VT , y, θ) right!

But only need particle filtering to do that

⇒ ABC prediction still based on independent sampling

⇒ parallel computing can still be exploited
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Empirical setting??

Thus far? Have assumed:

1 That the DGP: p(yT+1, y|θ) = p(yT+1|y, θ)p(y|θ) is
correctly specified

(whether latent states are playing a role or not.....)

2 That we have access to p(θ|y)⇒ pexact (yT+1|y)
for assessment of p(θ|η(y))⇒ pABC (yT+1 |y)

In a realistic empirical setting:
1 The assumed DGP will be misspecified
2 We are accessing pABC (yT+1|y) because we cannot (or it is too
computationally burdensome) to access pexact (yT+1|y)

⇒ no benchmark for pABC (yT+1 |y)
3 Critically.....the sense in which pexact (yT+1|y) remains the gold
standard is no longer clear
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Empirical setting??

Two routes:
1 Choose a range of different η(y) (and, hence, p(θ|η(y)))

⇒ a range of different pABC (yT+1 |y)
select that pABC (yT+1 |y) (and hence p(θ|η(y))) according to
predictive performance in a hold-out sample
(‘ABF’, 2018)
η(y) still chosen to be informative about θ

2 Choose η(y) according to a predictive criterion

⇒ η(y) = f n(S(p, yT+1))
How to choose S?
How to specify f n(.)?
How to assess the resulting approximate predictives?
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Example of route 2

True DGP (for log of asset price, pt = lnPt):

Jump diffusion with (square root) stochastic volatility:

dpt =
√
VtdB

p
t + ZtdNt︸ ︷︷ ︸

= g (θ0,4,θ0,5....)

dVt = (θ0,1 − θ0,2Vt) dt + θ0,3
√
VtdBvt

θ0 = (θ0,1, θ0,2, θ0,3, ...)′ = true parameter (vector)

Assume:

dpt =
√
VtdB

p
t

dVt = (θ1 − θ2Vt) dt + θ3
√
VtdBvt
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Example of route 2

⇒ implies a model for yt = lnPt − lnPt−1 (return at time t):

which is mis-specified

p(θ|y) (under regularity) concentrates onto pseudo-true θ, θ∗

where θ∗ is close to θ0 (in KL-based sense)
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Example of route 2

⇒
lim
T→∞

pexact(yT+1|y) = p(yT+1|y, θ∗) = what??

p is misspecified

θ∗ 6= θ0

And we have nowhere else to go.....

With an ABC-type approach we have more room to move.....
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Apply ABC-type principles: Option 1

1. Simulate i = 1, 2, ...,N, i .i .d . draws of θi from p(θ)
2. Produce:

p(yT+1|y, θi ) (using particle filter)

3. For each θi , evaluate score at observed y0T+1 :

S(p(yT+1|y, θi ), y0T+1)
4. Over ne observations in an evaluation period, compute:

ηi (.) =
1
ne

ne
∑

τ=0
S(p(yT+1+τ|y1;T+τ, θ

i ), y0T+1+τ)

5. Select θi such that:

ηi (.) > the highest (α%, say) quantile
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Apply ABC-type principles: Option 1

⇒ produces a range of plausible p(yT+1+ne |y1:T+ne , θ
i )

that match the y0T+1 well in terms of S(p, y
0
T+1)

Can be used to provide a simulation-based estimate of:

pABC (yT+1+ne |y1:T+ne ) =
∫
p(yT+1+ne |y1:T+ne , θ)p(θ|η(.))dθ

By computing (over Na ‘accepted’θi ):

pav (yT+1+ne |y1:T+ne ) =
1
Na

Na
∑
i=1
p(yT+1+ne |y1:T+ne , θ

i )
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Apply ABC-type principles: Option 2

Adopt the flavour of auxiliary-model based ABC

Drovandi et al., 2011, 2015, 2018; Creel and Kristensen,
2015; Drovandi, 2018
Martin, McCabe, Frazier, Maneesoonth. & Robert, 2018

Specify a tractable q(yT+1, y, β) that approximates
p(yT+1, y, θ)

β̂MLE ⇒ η(y)

Aim in auxiliary-model based ABC for inference?

Choose q(yT+1, y, θ) to capture features of p(yT+1, y, θ)

If q(yT+1, y, θ) ‘nests’(a correctly specified) p(yT+1, y, θ)

⇒ η(y) = β̂MLE is asymptotically suffi cient for θ
⇒ p(θ|η(y)) = p(θ|y) (for large T )
⇒ ‘ideal’q(yT+1, y, θ) is highly parameterized
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Apply ABC-type principles: Option 2

But that do we know about forecasting??

Simple parsimoneous models often forecast better than
complex, highly parameterized (but incorrect) models....

⇒ Approach in auxiliary-model based ABC for forecasting?

Pick a simple parsimoneous ‘auxiliary predictive’:

q(yT+1|y1:T , β)

And select θi (and, hence, p(yT+1|y, θi ))
such that the predictive performance of p(yT+1|y, θi ) matches
that of q(yT+1|y1:T , β)

⇒ Replace Steps 4. and 5. above with:
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4. Over ne observations in an evaluation period, compute:

ηi (.) =
1
ne

ne
∑

τ=0

∣∣∣p(y0T+1+τ|y1:T+τ, θ
i )− q(y0T+1+τ|y1:T+τ, β̂)

∣∣∣
5. Select θi such that:

ηi (.) < the lowest (α%, say) quantile

Produces a simulation-based estimate of a different:

pABC (yT+1+ne |y1:T+ne ) =
∫
p(yT+1+ne |y1:T+ne , θ)p(θ|η(.))dθ

in which η(.) reflects a different measure of predictive
perfomance
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(Very!) preliminary results

Choose q(yT+1|y1:T , β) to be a generalized autoregressive
conditionally heteroscedastic (GARCH) model with Student
t errors:

Work-horse of empirical finance

Often hard to beat in prediction of returns!

Display (for T + 1+ ne)

1 Plots of accepted predictives (Options 1 and 2)

2 Averaged predictives (Options 1 and 2)

i.e. estimates of pABC (yT+1+ne |y1:T+ne )

Roll the whole process forward:

Compute log scores for 25 one-step-ahead predictions for both
estimates of pABC (yT+1+ne |y1:T+ne )
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Plots of accepted conditional predictives

0

1

2

3

4

5

1 0 1
x

fu
n

0

1

2

1 0 1
x

fu
n

Draws from the posterior dist. of: p(yT+1+ne |y1:T+ne , θ)
With uncertainty about θ conditioned on η(.)
Could extract distributions at the 5th and 95th percentiles
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Averaged accepted predictives

Or average: to produce estimates of pABC (yT+1+ne |y1:T+ne ):

Median scores (over 25 one-step-ahead periods):
Option 1: -0.262; Option 2: -0.114
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Change the auxiliary predictive?

Choose q(yT+1+τ|y1:T+τ, β) as GARCH with normal errors:
Expected to be a poorer ‘benchmark’(given the jumps in the
true DGP):

Median scores: Option 1: -0.262; Option 2: -0.131
Still helps - but less so
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To come.....

Comparison with forecasting performance with exact but
mis-specified predictive:

What would we expect?

Given that:

lim
T→∞

pexact(yT+1|y) = p(yT+1|y, θ∗)

where θ∗ minimizes the KL divergence of the assumed model
from the true DGP

Will pexact(yT+1|y) still ‘win’in terms of log score?

But pABC (yT+1|y) ‘win’in terms of alternative performance
criteria (that have informed η(.))?
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To come....

If so

⇒ Ideas may have relevance beyond usual ABC scenario

⇒ May prompt some thinking about the use of different
conditioning information in Bayesian forecasting per se

Including the use of q as a regularization technique of sorts

Also:

Can we produce asymptotic results in ne (⇒ η(.)) and α%?

to mimic those in T and ε in:

Frazier, Martin, Robert and Rousseau, 2018

· · · · · · all in good time.....
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