Forecasting with Approximate Bayesian Computation (ABC)

Gael Martin

Monash University, Melbourne

IMS Workshop

August, 2018

- Under correct specification of the data generating process (DGP):
 - Frazier, Maneesoonthorn, Martin and McCabe, 2018
 - 'Approximate Bayesian Forecasting' ('ABF')
 - In Press: International Journal of Forecasting
- Onder misspecification of the DGP:
 - Frazier and Martin, 2018:
 - Very preliminary!!

Exact Bayesian forecasting

• Distribution of interest is:

$$p_{exact}(y_{T+1}|\mathbf{y}) = \int_{\theta} p(y_{T+1}, \theta|\mathbf{y}) d\theta$$
$$= \int_{\theta} p(y_{T+1}|\mathbf{y}, \theta) p(\theta|\mathbf{y}) d\theta$$
$$= E_{\theta|\mathbf{y}} [p(y_{T+1}|\mathbf{y}, \theta)]$$

- Exact (marginal) predictive = expectation of the conditional predictive
- Conditional predictive reflects the assumed DGP
- (on which $p(\theta|\mathbf{y})$ is also based)

Exact Bayesian forecasting

- Given *M* draws from $p(\theta|\mathbf{y})$ (via a Markov chain Monte Carlo algorithm, say)
- $p_{exact}(y_{T+1}|\mathbf{y})$ can be **estimated** as

either:

$$\widehat{p_{exact}}(y_{T+1}|\mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} p(y_{T+1}|\mathbf{y}, \boldsymbol{\theta}^{(i)})$$

• or: $\widehat{p_{exact}}(y_{T+1}|\mathbf{y})$ constructed from draws of $y_{T+1}^{(i)}$ simulated from $p(y_{T+1}|\mathbf{y}, \boldsymbol{\theta}^{(i)})$

- i.e. MCMC \Rightarrow exact Bayesian forecasting
 - (up to simulation error)

Approximate Bayesian forecasting

- How to conduct Bayesian forecasting when $p(\theta|\mathbf{y})$ is inaccessible?
- \Rightarrow draws from it are unavailable
- Either because the assumed DGP $p(\mathbf{y}|\boldsymbol{\theta})$ is intractable
- in the sense that (parts of) the DGP unavailable in closed form
- **Or** when the dimension of heta so large
- that exploration of $p(\theta|\mathbf{y})$ via **exact** methods is deemed to be too computationally burdensome
- **Or** there is insufficient expertise to structure an efficient MCMC algorithm

Approximate Bayesian forecasting

- Can/must resort to approximate Bayesian inference
- \Rightarrow goal then is to produce an approximation to $p(\theta|\mathbf{y})$
- \Rightarrow an approximation to $p_{exact}(y_{T+1}|\mathbf{y})$
- Approximations to $p(\theta|\mathbf{y})$?
 - Variational Bayes
 - Integrated nested Laplace (INLA)
 - Synthetic likelihood
 - Approximate Bayesian computation (ABC)
- All of which could be viewed as yielding 'approximate Bayesian forecasting'
- Our focus is on ABC

ABC (basic form) in a nut shell!

- Aim is to produce draws from an approximation to $p(\theta|\mathbf{y})$
- and use draws to estimate that approximation
- The simplest (accept/reject) form of the algorithm:
 - Simulate i = 1, 2, ..., N, *i.i.d.* draws of θ^i from $p(\theta)$
 - 2 Simulate **pseudo-data z**^{*i*}, *i* = 1, 2, ..., *N*, from $p(\mathbf{z}|\boldsymbol{\theta}^{i})$
 - **3** Select θ^i such that:

$$d\{\pmb{\eta}(\mathbf{y}),\pmb{\eta}(\mathbf{z}^i)\}\leq arepsilon$$

- $\eta(.)$ is a (vector) summary statistic
- d{.} is a distance criterion
- the tolerance ε is arbitrarily small

• Selected draws \Rightarrow simulation-based estimate of $p(m{ heta}|m{\eta}(\mathbf{y}))$

Approximate Bayesian forecasting

• Use draws from $p(\boldsymbol{\theta}|\boldsymbol{\eta}(\mathbf{y}))$ to estimate:

$$p_{ABC}(y_{T+1}|\mathbf{y}) = \int p(y_{T+1}|\mathbf{y}, \theta) p(\theta|\boldsymbol{\eta}(\mathbf{y})) d\theta$$

= an 'approximate Bayesian predictive'

- What is $p_{ABC}(y_{T+1}|\mathbf{y})$ & how does it relate to $p_{exact}(y_{T+1}|\mathbf{y})$?
- We show (in 'ABF', 2018) that:
 - $p_{ABC}(y_{T+1}|\mathbf{y})$ is a proper density function
 - $p_{ABC}(y_{T+1}|\mathbf{y}) = p_{exact}(y_{T+1}|\mathbf{y})$ iff $\eta(\mathbf{y})$ is sufficient (!)
 - $p_{ABC}(y_{T+1}|\mathbf{y}) \approx p_{exact}(y_{T+1}|\mathbf{y})$ even when $\eta(\mathbf{y})$ is not sufficient

- Under Bayesian consistency of:
 - $p(\boldsymbol{ heta}|\mathbf{y})$ (standard regularity) and
 - $p(\theta|\eta(\mathbf{y}))$ (Frazier, Martin, Robert and Rousseau, 2018)
- the predictive distributions:

$$P_{exact}(\cdot)$$
 and $P_{ABC}(\cdot)$

'merge', in the sense that:

$$ho_{TV}\{P_{exact}, P_{ABC}\} = \sup_{B \in \mathcal{F}} |P_{exact}(B) - P_{ABC}(B)| = o_{\mathbb{P}}(1)$$

• Blackwell and Dubins (1962)

 ⇒ for large enough *T* exact and (consistent) ABC-based predictives are equivalent!

Furthermore.....

• Under asymptotic normality of:

- $p(\boldsymbol{ heta}|\mathbf{y})$ (standard regularity) and
- $p(\theta|\eta(\mathbf{y}))$ (Frazier, Martin, Robert and Rousseau, 2018)
- \Rightarrow inequality result regarding the predictive accuracy of $p_{exact}(y_{T+1}|\mathbf{y})$ vs $p_{ABC}(y_{T+1}|\mathbf{y})$
- using a proper scoring rule: $S(p_{exact}, y_{T+1})$
- \Rightarrow for large (but finite) T :

$$E[S(p_{exact}, y_{T+1})] = \int_{y \in \Omega} S(p_{exact}, y_{T+1}) \underbrace{p(y_{T+1} | \mathbf{y}, \mathbf{\theta}_0)}_{p_{truth}} dy_{T+1}$$

$$\geq \int_{y \in \Omega} S(p_{ABC}, y_{T+1}) \underbrace{p(y_{T+1} | \mathbf{y}, \mathbf{\theta}_0)}_{p_{truth}} dy_{T+1}$$

$$= E[S(p_{ABC}, y_{T+1})]$$

Example: MA(2): T = 500

• Consider (simple) example:

$$y_t = e_t + \theta_1 e_{t-1} + \theta_2 e_{t-2}$$

- $e_t \sim i.i.d.N(0, \sigma_0)$ with true: $\theta_{10} = 0.8$; $\theta_{20} = 0.6$; $\sigma_0 = 1.0$
- Use sample autocovariances

$$\gamma_l = cov(y_t, y_{t-l})$$

• to construct (alternative vectors of) summary statistics:

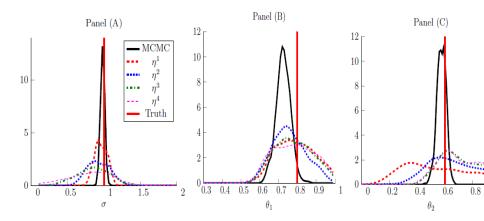
$$\begin{split} \eta^{(1)}(\mathbf{y}) &= (\gamma_0, \gamma_1)'; \ \eta^{(2)}(\mathbf{y}) = (\gamma_0, \gamma_1, \gamma_2)' \\ \eta^{(3)}(\mathbf{y}) &= (\gamma_0, \gamma_1, \gamma_2, \gamma_3)'; \ \eta^{(4)}(\mathbf{y}) = (\gamma_0, \gamma_1, \gamma_2, \gamma_3, \gamma_4)' \end{split}$$

• MA dependence \Rightarrow no reduction to sufficiency possible

•
$$\Rightarrow$$
 $p(heta|\eta^{(j)}(\mathbf{y})) \neq p(heta|\mathbf{y})$ for all $j =$ 1, 2, 3, 4

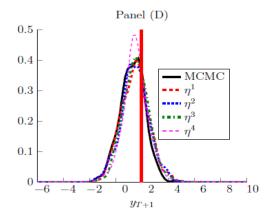
• What about $p_{ABC}(y_{T+1}|\mathbf{y})$ versus $p_{exact}(y_{T+1}|\mathbf{y})$?

Posterior densities: exact and ABC: T = 500



• Remember: using only the most basic version of ABC

Predictive densities: exact and ABC: T = 500



 For large T : the exact and approximate predictives are very similar - for all η^(j)(y)!!

Expected scores: exact and ABC: T = 500

• Average predictive scores over 500 out-of-sample values:

	ABC av. score				Exact av. score
	$\eta^{(1)}(\mathbf{y})$	$\eta^{(2)}(\mathbf{y})$	$\eta^{(3)}(\mathbf{y})$	$\eta^{(4)}(\mathbf{y})$	
LS	-1.43	-1.42	-1.43	-1.43	-1.40
QS	0.28	0.28	0.28	0.28	0.29
CRPS	-0.57	-0.56	-0.57	-0.57	-0.56

- Loss is incurred (in a finite sample) by being approximate
- But it is negligible
- Computational gain?
 - $p_{exact}(y_{T+1}|\mathbf{y})$: 360 seconds
 - $p_{ABC}(y_{T+1}|\mathbf{y})$: 3 seconds! (with parallel computing)

ABC prediction in state space models?

- How does one compute $p_{ABC}(y_{T+1}|\mathbf{y})$ in state space models?
 - Does one condition state inference only on $\eta(\mathbf{y})$?
- Given a financial return, $y_t = \ln P_t \ln P_{t-1}$
- Assume stochastic volatility:

$$y_t = \sqrt{V_t}\varepsilon_t; \qquad \varepsilon_t \sim i.i.d.N(0,1)$$

$$\ln V_t = \theta_1 \ln V_{t-1} + \eta_t; \qquad \eta_t \sim i.i.d.N(0,\theta_2)$$

• $\theta = (\theta_1, \theta_2)'$

ABC prediction in state space models?

• Exact:

$$p_{exact}(y_{T+1}|\mathbf{y}) = \int_{V_{T+1}} \int_{\mathbf{V}} \int_{\theta} p(y_{T+1}|V_{T+1})$$
$$\times p(V_{T+1}|V_T, \mathbf{y}, \theta) \underbrace{p(\mathbf{V}|\theta, \mathbf{y})p(\theta|\mathbf{y})}_{p(\mathbf{V}, \theta|\mathbf{y})} d\theta d\mathbf{V} dV_{T+1}$$

- MCMC used to draw from $p(\mathbf{V}, \boldsymbol{\theta} | \mathbf{y})$
- \Rightarrow independent draws from $p(V_{T+1}|V_T, \mathbf{y}, \boldsymbol{\theta})$ and $p(y_{T+1}|V_{T+1}) \Rightarrow y_{T+1}^{(i)}$
- $\Rightarrow \widehat{p_{exact}}(y_{T+1}|\mathbf{y})$

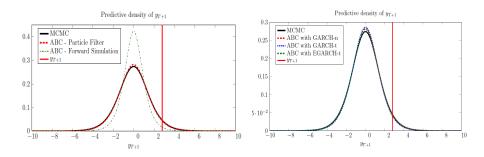
ABC prediction in state space models?

• ABC:

$$p_{ABC}(y_{T+1}|\mathbf{y}) = \int_{V_{T+1}} \int_{\mathbf{V}} \int_{\boldsymbol{\theta}} p(y_{T+1}|V_{T+1})$$

× $p(V_{T+1}|V_T, \mathbf{y}, \boldsymbol{\theta}) p(\mathbf{V}|\boldsymbol{\theta}, \mathbf{y}) p(\boldsymbol{\theta}|\boldsymbol{\eta}(\mathbf{y})) d\boldsymbol{\theta} d\mathbf{V} dV_{T+1}$

- ABC used to draw from $p(\theta|\eta(\mathbf{y}))$
- (with $\eta(\mathbf{y})$ based on an approximating **auxiliary** GARCH model)
- ullet \Rightarrow particle filtering used to integrate out V
- \Rightarrow yields full posterior inference (i.e. $|\mathbf{y}\rangle$ on V_T
- Exact inference (MCMC) on $V_{1:T-1}$ not required



- Nature of ABC inference on θ of little importance.....
- \Rightarrow all $p_{ABC}(y_{T+1}|\mathbf{y}) \approx p_{exact}(y_{T+1}|\mathbf{y})!$
- What if condition V_T on $\eta(\mathbf{y})$ only? i.e. omit the **PF** step?
- \Rightarrow the green curve (i.e. inaccuracy!)

- Need to get the predictive model: $p(y_{T+1}|V_{T+1})$ and $p(V_{T+1}|V_T, \mathbf{y}, \theta)$ right!
- But only need particle filtering to do that
- $\bullet \Rightarrow ABC$ prediction still based on independent sampling
- \Rightarrow parallel computing can still be exploited

- Thus far? Have assumed:
 - That the DGP: $p(y_{T+1}, \mathbf{y}|\theta) = p(y_{T+1}|\mathbf{y}, \theta)p(\mathbf{y}|\theta)$ is correctly specified
 - (whether latent states are playing a role or not.....)
 - **②** That we have access to $p(\theta|\mathbf{y}) \Rightarrow p_{exact}(y_{T+1}|\mathbf{y})$
 - for assessment of $p(\boldsymbol{\theta}|\boldsymbol{\eta}(\mathbf{y})) \Rightarrow p_{ABC}(\mathbf{y}_{T+1}|\mathbf{y})$
- In a realistic empirical setting:
 - The assumed DGP will be misspecified
 - 2 We are accessing $p_{ABC}(y_{T+1}|\mathbf{y})$ because we cannot (or it is too computationally burdensome) to access $p_{exact}(y_{T+1}|\mathbf{y})$
 - \Rightarrow no benchmark for $p_{ABC}(y_{T+1}|\mathbf{y})$
 - Oritically.....the sense in which p_{exact}(y_{T+1}|y) remains the gold standard is no longer clear

• Two routes:

① Choose a range of different $\eta(\mathbf{y})$ (and, hence, $p(\theta|\eta(\mathbf{y}))$)

- \Rightarrow a range of different $p_{ABC}(y_{T+1}|\mathbf{y})$
- select that $p_{ABC}(y_{T+1}|\mathbf{y})$ (and hence $p(\theta|\eta(\mathbf{y}))$) according to predictive performance in a hold-out sample
- ('ABF', 2018)
- $\eta(\mathbf{y})$ still chosen to be informative about $oldsymbol{ heta}$
- 2 Choose $\eta(\mathbf{y})$ according to a predictive criterion

•
$$\Rightarrow \eta(\mathbf{y}) = f^n(S(p, y_{T+1}))$$

- How to choose S?
- How to specify $f^n(.)$?
- How to assess the resulting approximate predictives?

Example of route 2

- True DGP (for log of asset price, $p_t = \ln P_t$):
- Jump diffusion with (square root) stochastic volatility:

$$dp_{t} = \sqrt{V_{t}} dB_{t}^{p} + \underbrace{Z_{t} dN_{t}}_{= g(\theta_{0,4}, \theta_{0,5}...)}$$
$$dV_{t} = (\theta_{0,1} - \theta_{0,2}V_{t}) dt + \theta_{0,3}\sqrt{V_{t}} dB_{t}^{v}$$

• $\boldsymbol{\theta}_0 = (\theta_{0,1}, \theta_{0,2}, \theta_{0,3}, ...)' =$ true parameter (vector)

Assume:

$$egin{aligned} dp_t &= \sqrt{V_t} dB_t^p \ dV_t &= (heta_1 - heta_2 V_t) \, dt + heta_3 \sqrt{V_t} dB_t^v \end{aligned}$$

- \Rightarrow implies a model for $y_t = \ln P_t \ln P_{t-1}$ (**return** at time t):
- which is **mis-specified**
- $p(\theta|\mathbf{y})$ (under regularity) concentrates onto **pseudo-true** θ , θ^*
- where θ^* is close to θ_0 (in KL-based sense)

$\bullet \Rightarrow$

$$\lim_{T \to \infty} p_{exact}(y_{T+1} | \mathbf{y}) = p(y_{T+1} | \mathbf{y}, \boldsymbol{\theta}^*) = what??$$

- p is misspecified
- $\theta^* \neq \theta_0$
- And we have nowhere else to go.....
- With an ABC-type approach we have more room to move.....

Simulate i = 1, 2, ..., Ν, i.i.d. draws of θⁱ from p(θ)
 Produce:

 $p(y_{T+1}|\mathbf{y}, \boldsymbol{\theta}^i)$ (using particle filter)

3. For each θ^i , evaluate score at observed y_{T+1}^0 :

$$S(p(y_{T+1}|\mathbf{y}, \boldsymbol{\theta}^i), y_{T+1}^0)$$

4. Over n_e observations in an evaluation period, compute:

$$\eta^{i}(.) = \frac{1}{n_{e}} \sum_{\tau=0}^{n_{e}} S(p(y_{T+1+\tau} | \mathbf{y}_{1;T+\tau}, \boldsymbol{\theta}^{i}), y_{T+1+\tau}^{0})$$

5. Select θ^i such that:

$$\eta^i(.) >$$
 the **highest** ($lpha$ %, say) quantile

- \Rightarrow produces a range of **plausible** $p(y_{T+1+n_e}|\mathbf{y}_{1:T+n_e}, \boldsymbol{\theta}^i)$
- that match the y_{T+1}^0 well in terms of $S(p, y_{T+1}^0)$
- Can be used to provide a simulation-based estimate of:

$$p_{ABC}(y_{T+1+n_e}|\mathbf{y}_{1:T+n_e}) = \int p(y_{T+1+n_e}|\mathbf{y}_{1:T+n_e}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\boldsymbol{\eta}(.)) d\boldsymbol{\theta}$$

• By computing (over N_a 'accepted' θ^i):

$$p_{av}(y_{T+1+n_e}|\mathbf{y}_{1:T+n_e}) = rac{1}{N_a}\sum_{i=1}^{N_a} p(y_{T+1+n_e}|\mathbf{y}_{1:T+n_e}, m{ heta}^i)$$

- Adopt the flavour of auxiliary-model based ABC
 - Drovandi et al., 2011, 2015, 2018; Creel and Kristensen, 2015; Drovandi, 2018
 - Martin, McCabe, Frazier, Maneesoonth. & Robert, 2018
- Specify a tractable $q(y_{T+1}, \mathbf{y}, \beta)$ that approximates $p(y_{T+1}, \mathbf{y}, \theta)$
- $\widehat{\boldsymbol{\beta}}_{MLE} \Rightarrow \boldsymbol{\eta}(\mathbf{y})$
- Aim in auxiliary-model based ABC for inference?
- Choose $q(y_{T+1}, \mathbf{y}, \boldsymbol{\theta})$ to capture features of $p(y_{T+1}, \mathbf{y}, \boldsymbol{\theta})$
- If $q(y_{T+1}, \mathbf{y}, \boldsymbol{\theta})$ 'nests' (a correctly specified) $p(y_{T+1}, \mathbf{y}, \boldsymbol{\theta})$

•
$$\Rightarrow \eta(\mathbf{y}) = \widehat{\boldsymbol{\beta}}_{MLE}$$
 is asymptotically sufficient for $\boldsymbol{\theta}$
• $\Rightarrow p(\boldsymbol{\theta}|\boldsymbol{\eta}(\mathbf{y})) = p(\boldsymbol{\theta}|\mathbf{y})$ (for large T)
• \Rightarrow 'ideal' $q(y_{T+1}, \mathbf{y}, \boldsymbol{\theta})$ is highly parameterized

- But that do we know about forecasting??
- Simple parsimoneous models often forecast better than complex, highly parameterized (but incorrect) models....
- \Rightarrow Approach in auxiliary-model based ABC for **forecasting**?
- Pick a simple parsimoneous 'auxiliary predictive':

$$q(y_{\mathcal{T}+1}|\mathbf{y}_{1:\mathcal{T}},oldsymbol{eta})$$

- And select θ^i (and, hence, $p(y_{T+1}|\mathbf{y}, \theta^i)$)
- such that the predictive performance of $p(y_{T+1}|\mathbf{y}, \boldsymbol{\theta}^i)$ matches that of $q(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\beta})$
- \Rightarrow Replace Steps 4. and 5. above with:

4. Over n_e observations in an evaluation period, compute:

$$\eta^{i}(.) = \frac{1}{n_{e}} \sum_{\tau=0}^{n_{e}} \left| p(y_{T+1+\tau}^{0} | \mathbf{y}_{1:T+\tau}, \boldsymbol{\theta}^{i}) - q(y_{T+1+\tau}^{0} | \mathbf{y}_{1:T+\tau}, \widehat{\boldsymbol{\beta}}) \right|$$

5. Select θ^i such that:

$$\eta^i(.)~<$$
 the **lowest** ($lpha\%$, say) quantile

• Produces a simulation-based estimate of a different:

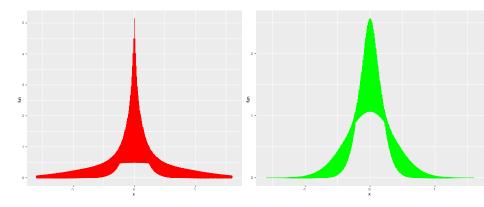
$$p_{ABC}(y_{T+1+n_e}|\mathbf{y}_{1:T+n_e}) = \int p(y_{T+1+n_e}|\mathbf{y}_{1:T+n_e}, \boldsymbol{ heta}) p(\boldsymbol{ heta}|\eta(.)) d\boldsymbol{ heta}$$

• in which $\eta(.)$ reflects **a different** measure of predictive perfomance

(Very!) preliminary results

- Choose q(y_{T+1}|y_{1:T}, β) to be a generalized autoregressive conditionally heteroscedastic (GARCH) model with Student t errors:
- Work-horse of empirical finance
- Often hard to beat in prediction of returns!
- Display (for $T + 1 + n_e$)
 - Plots of accepted predictives (Options 1 and 2)
 - Averaged predictives (Options 1 and 2)
 - i.e. estimates of $p_{ABC}(y_{T+1+n_e}|\mathbf{y}_{1:T+n_e})$
- Roll the whole process forward:
 - Compute **log scores** for 25 one-step-ahead predictions for both estimates of $p_{ABC}(y_{T+1+n_e}|\mathbf{y}_{1:T+n_e})$

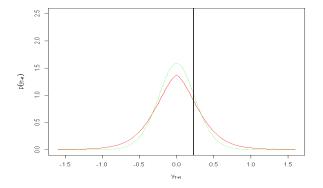
Plots of accepted conditional predictives



- Draws from the posterior dist. of: $p(y_{T+1+n_e}|\mathbf{y}_{1:T+n_e}, \boldsymbol{\theta})$
- With uncertainty about $\boldsymbol{\theta}$ conditioned on $\eta(.)$
- Could extract distributions at the 5th and 95th percentiles

Averaged accepted predictives

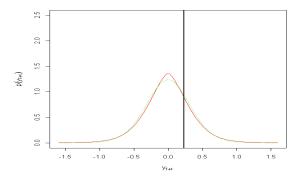
• Or **average**: to produce estimates of $p_{ABC}(y_{T+1+n_e}|\mathbf{y}_{1:T+n_e})$:



Median scores (over 25 one-step-ahead periods):
Option 1: -0.262; Option 2: -0.114

Change the auxiliary predictive?

- Choose $q(y_{T+1+\tau}|\mathbf{y}_{1:T+\tau}, \boldsymbol{\beta})$ as **GARCH** with **normal** errors:
 - Expected to be a poorer 'benchmark' (given the **jumps** in the **true DGP**):



Median scores: Option 1: -0.262; Option 2: -0.131
Still helps - but less so

- Comparison with forecasting performance with **exact** but **mis-specified** predictive:
- What would we expect?
- Given that:

$$\lim_{T\to\infty}p_{exact}(y_{T+1}|\mathbf{y}) = p(y_{T+1}|\mathbf{y}, \boldsymbol{\theta}^*)$$

- where θ^* minimizes the KL divergence of the assumed model from the **true DGP**
- Will $p_{exact}(y_{T+1}|\mathbf{y})$ still 'win' in terms of log score?
- But p_{ABC}(y_{T+1}|y) 'win' in terms of alternative performance criteria (that have informed η(.))?

To come....

- If so
- ullet \Rightarrow Ideas may have relevance **beyond** usual ABC scenario
- → May prompt some thinking about the use of different conditioning information in Bayesian forecasting per se
- Including the use of q as a regularization technique of sorts
- Also:
 - Can we produce asymptotic results in $n_e \ (\Rightarrow \eta(.))$ and $\alpha\%$?
 - to mimic those in T and ε in:
 - Frazier, Martin, Robert and Rousseau, 2018
- · · · · · all in good time.....