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@ Under correct specification of the data generating process
(DGP):

o Frazier, Maneesoonthorn, Martin and McCabe, 2018

e ‘Approximate Bayesian Forecasting’ (‘ABF’)

o In Press: International Journal of Forecasting
@ Under misspecification of the DGP:

o Frazier and Martin, 2018:

e Very preliminary!!
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Exact Bayesian forecasting

@ Distribution of interest is:

pexact(}/T+1|Y) - /ep(yT+1:6|y)d6
= | plyrialy.0)p(6ly)do

Egly [P(yT+1ly, 0)]

e Exact (marginal) predictive = expectation of the conditional
predictive

e Conditional predictive reflects the assumed DGP

@ (on which p(8|y) is also based)
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Exact Bayesian forecasting

e Given M draws from p(6|y) (via a Markov chain Monte Carlo
algorithm, say)

® Pexact(¥T+1|y) can be estimated as
@ cither:

_— 1 M .
Pexact (YT+1ly) = p( YT+1|Y:6(I))
1

i—
@ or: Poxaci(y741ly) constructed from draws of y(T'ZLl simulated
from p(y71ly, 8)
@ i.e. MCMC = exact Bayesian forecasting

o (up to simulation error)
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Approximate Bayesian forecasting

@ How to conduct Bayesian forecasting when p(0ly) is
inaccessible?

@ = draws from it are unavailable

e Either because the assumed DGP p(y|6) is intractable

@ in the sense that (parts of) the DGP unavailable in closed form
@ Or when the dimension of 0 so large

@ that exploration of p(0]y) via exact methods is deemed to be
too computationally burdensome

@ Or there is insufficient expertise to structure an efficient MCMC
algorithm
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Approximate Bayesian forecasting

e Can/must resort to approximate Bayesian inference

e = goal then is to produce an approximation to p(6|y)
@ = an approximation to pexct(y7T11]y)

e Approximations to p(0]y)?

o Variational Bayes

o Integrated nested Laplace (INLA)

e Synthetic likelihood

e Approximate Bayesian computation (ABC)

@ All of which could be viewed as yielding ‘approximate
Bayesian forecasting’

@ Our focus is on ABC
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ABC (basic form) in a nut shell!

@ Aim is to produce draws from an approximation to p(0|y)
@ and use draws to estimate that approximation
@ The simplest (accept/reject) form of the algorithm:

© Simulate i =1,2,...,N, i.i.d. draws of ' from p(6) .
Q@ Simulate pseudo-data z', i = 1,2, ..., N, from p(z|6)
© Select 0’ such that:

d{n(y).n(z')} <e

e 7(.) is a (vector) summary statistic
e d{.} is a distance criterion
@ the tolerance ¢ is arbitrarily small

© Selected draws = simulation-based estimate of p(0|%(y))
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Approximate Bayesian forecasting

@ Use draws from p(0|5(y)) to estimate:

pagc(yT+1ly) = /P(YT—H y, 0)p(0|n(y))do

= an ‘approximate Bayesian predictive’

@ What is pagc(y7+1]y) & how does it relate to pexact (y7+1]Y)?

e We show (in ‘ABF’, 2018) that:

o pagc(yT+1]y) is a proper density function
o paBc(YT+1|Y) = Pexact (yT+1y) iff 51(y) is sufficient (1)

o paC(YT+1]Y) R Pexact (yT+1|y) even when #(y) is not
sufficient
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e Under Bayesian consistency of:

o p(0ly) (standard regularity) and
o p(0|y(y)) (Frazier, Martin, Robert and Rousseau, 2018)

@ the predictive distributions:

'Dexact(') and PABC(')

‘merge’, in the sense that:

pT\/{Pexacty PABC} = ;U%|Pexact(8) - 'DABC(B)| = 0]1’(1)
S

o Blackwell and Dubins (1962)

@ = for large enough T exact and (consistent) ABC-based
predictives are equivalent!
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e Under asymptotic normality of:

o p(0ly) (standard regularity) and
e p(0|y(y)) (Frazier, Martin, Robert and Rousseau, 2018)

e = inequality result regarding the predictive accuracy of
Pexact (YT +1|y) Vs pasc(yT+1ly)
o using a proper scoring rule: S(pexact, Y7+1)

e = for large (but finite) T :

E[S(Pexact: yT+1)] = / S(Pexact: yT+1)p(yT41]Y, 00)dyT41
yeQ ~——

——
Ptruth

> / S(pac yT+1)p(yT+1ly. 8)dyT41
yeQ —_—

Ptruth

= E[S(paBc.yT+1)]
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Example: MA(2): T = 500

e Consider (simple) example:

Yt = e+ 0161+ 6rer
@ e ~ i.i.d.N(O, 0'0) with true: 019 = 0.8; 050 = 0.6; 09 = 1.0

@ Use sample autocovariances

Y= COV(Yt, J/t—/)

@ to construct (alternative vectors of) summary statistics:
1Y) = (o) 1P = (0.1 72)"
190) = (o2 1)s 1Y) = (o1 7273 78)’

@ MA dependence = no reduction to sufficiency possible
o = p(8]nY)(y)) # p(Bly) forall j =1,2,3,4

o What about pagc(y1+1ly) versus pexact(y7+1]y)??
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Posterior densities: exact and ABC: T = 500
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e Remember: using only the most basic version of ABC
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Predictive densities: exact and ABC: T = 500

Panel (D)
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o Forlarge T : the exact and approximate predictives are very
similar - for all #U) (y)!l
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Expected scores: exact and ABC: T = 500

o Average predictive scores over 500 out-of-sample values:

ABC av. score Exact av. score
1W(y) 190y) #%(0y) 1W(y)
LS -1.43 -1.42 -1.43 -1.43 -1.40
QS 0.28 0.28 0.28 0.28 0.29
CRPS -0.57 -0.56 -0.57 -0.57 -0.56

@ Loss is incurred (in a finite sample) by being approximate
e But it is negligible
o Computational gain?

® Pexact(yT+1]y) : 360 seconds
o pagc(yr+1]y) : 3 seconds! (with parallel computing)
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ABC prediction in state space models?

@ How does one compute pagc(y7+1|y) in state space models?
o Does one condition state inference only on #(y)?

@ Given a financial return, yy = In Py — In Py

@ Assume stochastic volatility:

e = VVier, &~ i.id.N(0,1)

InV;y = 61InVi_4 + 14 e~ i.i.d.N(O, 92)

e 0= (01,6,
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ABC prediction in state space models?

o Exact:

pexact()/T+1|Y) :/ //P(YT+1|VT+1)
Vi JV JO
x p(Vr41|Vr,y.0)p(V[0.y)p(6]y)d0dVdVT

[\ v

p(V.6ly)

e MCMC used to draw from p(V, 0y)

e = independent draws from p(V711|V7,y,0) and
p(yT+1|VT41) = y(T'Zrl

° = l9/®<a\ct(YT+1|Y)
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ABC prediction in state space models?

e ABC:

pasc(yT+1ly) :/ //P(YT+1|VT+1)
Vo v e
X p(Vr41|Vr.y, 0)p(V|6,y)p(0]n(y))d0dVdVT 4

e ABC used to draw from p(8|%(y))

o (with 7(y) based on an approximating auxiliary GARCH model)
@ = particle filtering used to integrate out V

@ = yields full posterior inference (i.e. |y) on V1

e Exact inference (MCMC) on V7.7 not required
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Predictive density of yr.;
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@ Nature of ABC inference on 0 of little importance.....
o = all pagc(y7+11Y) = Pexact (yT+1y)!
e What if condition V7 on #(y) only? i.e. omit the PF step?
@ = the green curve (i.e. inaccuracy!)
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ABC prediction in state space models?

o Need to get the predictive model: p(y7i1|V741) and
p(Vr+41|Vr,y, 0) right!

@ But only need particle filtering to do that
e = ABC prediction still based on independent sampling

@ => parallel computing can still be exploited
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Empirical setting??

@ Thus far? Have assumed:

© That the DGP: p(y7+1,y(0) = p(y7+1ly. 0)p(y|0) is
correctly specified

o (whether latent states are playing a role or not.....)

@ That we have access to p(0]y) = Pexact (YT+1]Y)
o for assessment of p(8|5(y)) = pasc(yT+1ly)

@ In a realistic empirical setting:

@ The assumed DGP will be misspecified
@ We are accessing pagc(y7+1]y) because we cannot (or it is too
computationally burdensome) to access pexact (Y1+1|Y)

e = no benchmark for pagc(y711]y)

@ Critically.....the sense in which pexact (y741]y) remains the gold
standard is no longer clear
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Empirical setting??

@ Two routes:

@ Choose a range of different 5(y) (and, hence, p(0|%(y)))

e = a range of different pagc(y711ly)

o select that pagc(y711]y) (and hence p(6]#(y))) according to
predictive performance in a hold-out sample

e (‘ABF’, 2018)
e 7(y) still chosen to be informative about 6

@ Choose #(y) according to a predictive criterion

= n(y) = f"(S(p,y7+1))
How to choose 5?

How to specify f"(.)?
How to assess the resulting approximate predictives?
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Example of route 2

@ True DGP (for log of asset price, pr = In P;):
e Jump diffusion with (square root) stochastic volatility:
dpt V thBp thNt
——
= g(00,4.605....)
dV; = (901 —902Vt) dt + 6003V thBV
o 0g = (001,002,603,...) = true parameter (vector)
@ Assume:

dpt vV thBp
th - (0]_ - 92 Vt) dt + 63 V thBgl

Gael Martin, Monash University, Melbourne Forecasting with Approximate Bayesian Comp



Example of route 2

e = implies a model for y; = In Py — In P;_1 (return at time t):
@ which is mis-specified
@ p(6]y) (under regularity) concentrates onto pseudo-true 6, 6*

@ where 0% is close to 6y (in KL-based sense)
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Example of route 2

_,_Ii_r>noopexact(}/T+1|Y) = p(yT+1ly, 0%) = what??

@ p is misspecified
0" # 6o

@ And we have nowhere else to go.....

With an ABC-type approach we have more room to move.....
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Apply ABC-type principles: Option 1

1. Simulate i = 1,2, ..., N, i.i.d. draws of 8 from p(6)
2. Produce:

p(yr11ly. 09) (using particle filter)

3. For each @', evaluate score at observed y(%ﬂ :

S(p(yr+1ly. 07, 5%.1)

4. Qver n, observations in an evaluation period, compute:

i 1 I i
n'()=— 20 S(P(yT414cy1: 7470 ¥T 111 0)

Ne 7=
5. Select 0" such that:

n'(.) > the highest (¢%, say) quantile
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Apply ABC-type principles: Option 1

o = produces a range of plausible p(y7.1n.|y1.74n..0")
e that match the y?-H well in terms of S(p,y% ;)

@ Can be used to provide a simulation-based estimate of:

PABC(YT+1+ne|YI:T+ne) = /P(YT+1+ne|Y1:T+nevB)P(9|’7(-))d9

@ By computing (over N, ‘accepted’ 6'):

1 N .
Pav(YT+14ne[Y1:T+n.) = m .le()/T+1+ne|y1:T+ney 6')
a |I=
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Apply ABC-type principles: Option 2

@ Adopt the flavour of auxiliary-model based ABC

o Drovandi et al., 2011, 2015, 2018; Creel and Kristensen,
2015; Drovandi, 2018
o Martin, McCabe, Frazier, Maneesoonth. & Robert, 2018

Specify a tractable g(y741,y, B) that approximates
p(y7+1.y.0)

Bue = n(y)
@ Aim in auxiliary-model based ABC for inference?

Choose q(yT141,Y,0) to capture features of p(y741,y,0)
If g(y741,Y,0) ‘nests’ (a correctly specified) p(yr11,y,0)

o = 1q(y) = BMLE is asymptotically sufficient for 6

o = p(Oly(y)) = p(Bly) (forlarge T)
o = ‘ideal’ g(y711,y,0) is highly parameterized
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Apply ABC-type principles: Option 2

@ But that do we know about forecasting??

@ Simple parsimoneous models often forecast better than
complex, highly parameterized (but incorrect) models....

@ = Approach in auxiliary-model based ABC for forecasting?

Pick a simple parsimoneous ‘auxiliary predictive’:

q(yr+1lyr1. B)

And select 0’ (and, hence, p(y741ly.0"))

@ such that the predictive performance of p(y71]y, 8') matches
that of q(y7y1|y1.7. B)

@ = Replace Steps 4. and 5. above with:
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4. Qver n, observations in an evaluation period, compute:

n'()== Z P(YY 1ielyrTie, 0') — CI()/(%+1+TIY1:T+T,,IA3)

Ne 7=0
5. Select 0 such that:

17'(.) < the lowest («%, say) quantile

@ Produces a simulation-based estimate of a different:

PABC(}/T+1+ne|y1:T+ne) = /P(YT+1—|—ne|y1:T—|—nevB)P(BM('))dB

@ in which #(.) reflects a different measure of predictive
perfomance
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(Very!) preliminary results

o Choose g(y7+1|y1:7. B) to be a generalized autoregressive
conditionally heteroscedastic (GARCH) model with Student
t errors:

@ Work-horse of empirical finance
@ Often hard to beat in prediction of returns!
e Display (for T + 1+ ne)
@ Plots of accepted predictives (Options 1 and 2)
© Averaged predictives (Options 1 and 2)
o i.e. estimates of pagc(yT+11n.|¥Y1:T+n.)
@ Roll the whole process forward:

e Compute log scores for 25 one-step-ahead predictions for both
estimates of pagc (Y7+1+n.|Y1:T+n.)
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Plots of accepted conditional predictives
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o Draws from the posterior dist. of: p(yT41+n,|Y1:7+n,., 0)
o With uncertainty about 6 conditioned on #(.)
e Could extract distributions at the 5th and 95th percentiles
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Averaged accepted predictives

e Or average: to produce estimates of pagc(YT+1+n,|Y1:T+n, )

plyra)

@ Median scores (over 25 one-step-ahead periods):
e Option 1: -0.262; Option 2: -0.114
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Change the auxiliary predictive?

@ Choose q(y7+1+7|Y1:7+v, B) as GARCH with normal errors:

o Expected to be a poorer ‘benchmark’ (given the jumps in the
true DGP):

ply)

T T T T T
-15 -10 -05 0.0 05 1.0 15

Vi

e Median scores: Option 1: -0.262; Option 2: -0.131
o Still helps - but less so
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@ Comparison with forecasting performance with exact but
mis-specified predictive:

@ What would we expect?

@ Given that:

#Inoopexact()’THW) = p(yT41ly. 0%)

@ where 0" minimizes the KL divergence of the assumed model
from the true DGP

® Will pexact(y7+1]y) still ‘win’ in terms of log score?

@ But pagc(y741|y) ‘win' in terms of alternative performance
criteria (that have informed 7(.))?
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To come....

e If so
@ = ldeas may have relevance beyond usual ABC scenario

@ = May prompt some thinking about the use of different
conditioning information in Bayesian forecasting per se

Including the use of g as a regularization technique of sorts

o Also:

o Can we produce asymptotic results in n. (= 7(.)) and a%?
e to mimic those in T and ¢ in:

o Frazier, Martin, Robert and Rousseau, 2018
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