
BPS and Randomised HMC

George Deligiannidis,

With D. Paulin, A. Bouchard-Côté and A. Doucet

Department of Statistics, Oxford University

September 21, 2018



Set up

• Consider a probability distribution on Rd of density

π (x) =
exp (−U (x))

Z

where U : Rd → R and Z =
∫

exp (−U (x)) dx cannot be
computed in closed form.

• We are interested in computing expectations w.r.t. to π.

• Generic problem appearing in statistics, machine learning,
computational physics and chemistry and theoretical
computer science.

• MCMC is one of the most successful methods for doing
this and comes with many guarantees.
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Piecewise Deterministic Markov Processes

Piecewise deterministic Markov processes(PDMPs) allow for the
construction of generic non-reversible MCMC algorithms:

• these emerged recently in physics (Peters & De With,
2012; Krauth et al., 2009, 2015, 2016, 2017; Hukushima et
al., 2016):

• state-of-the-art performance for a wide range of
large scale physical models.

• they are generic enough to sample from any target in
continuous space.

• they go back to the telegraph process of the 50’s.
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Intro to PDMPs

A piecewise deterministic Markov process is defined from the
following ingredients:
(1) Deterministic dynamics: an ODE such that

dzt
dt = φ(zt), zt =

(
xt
vt

)
= Φt (z0) .

(2) Event rate λ : Z →R+ with λ (zt) ε+ o (ε) being the
probability of an event in [t, t+ ε] .

(3) Markov kernel Q such that at event time zt ∼ Q
(
zt−,·

)
.
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Examples of PDMPs

• The Bouncy Particle Sampler(BPS) introduced in Physics
by Peters and de With [2012] and in comp. statistics by
Bouchard-Côté, Vollmer, and Doucet [2015].

• The Zig-Zag Sampler : Fontbona et al. [2012]; Monmarché
[2016]; Fontbona et al. [2016], Bierkens and Roberts [2017]
and a general version for MCMC purposes appeared in
Bierkens, Fearnhead, and Roberts [2016].

• Also more recently
♣ the Stochastic BPS Pakman et al. [2016],
♣ Generalized BPS Wu and Robert [2017],
♣ Binary BPS Pakman [2017].
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Bouncy particle sampler: ingredients I

Consider an extended target on Z =Rd ×Rd

ρ (z) = π (x)ψ (v) , ψ (v) = N (v; 0, Id)

where v is the velocity.

a) Deterministic dynamics: an ODE such that

dzt
dt =

(
vt
0

)
, zt =

(
xt
vt

)
=

(
x0 + v0t
v0

)
.

b) Event rate λ : Z →R+ such that

λ (z) = max (0, 〈∇U (x) , v〉) := 〈∇U (x) , v〉+ .
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Bouncy particle sampler: ingredients II

c) Markov kernel Q such that at event time zt ∼ Q
(
zt−,·

)
:

Q (z, dz′) = δx (dx′) δRU (x)v (dv
′) ,

RU (x) v = v− 2〈∇U (x) , v〉
‖∇U (x)‖2

∇U (x) .

RU (x) v corresponds to a reflection on the hyperplane
orthogonal to the gradient of the potential.

• Possible to simulate exactly for a wide class of interesting
problems.
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Reducibility Issue
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Figure: The BPS trajectory for an isotropic normal, it never enters
the region around the mode if started tangent to a level set of the
potential. Reproduced from Bouchard-Côté et al. [2015].
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Refreshment and ergodicity

• To address reducibility: randomise the trajectory by
refreshing the velocity, at a location dependent rate.

• Event rate becomes

λ (z) = λ (z) + λref(x)

• Transition kernel becomes

Q (z, dz′) = δx (dx′)
{
λ (z)

λ (z)
δR(x)v (dv′) +

λref(x)

λ (z)
ψ (dv′)

}

• Similar to momentum refreshment in HMC. Randomized
bounces can alternatively be introduced, see Wu and
Robert [2017].
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Invariance and Ergodicity

• Generator

Lh (z) = 〈∇xh (z) , v〉+ λ (z)
∫ {

h (z′)− h (z)
}
Q (z, dz′)

• The BPS process is invariant w.r.t. ρ for any λref ≥ 0 as∫
ρ (dz)Lh(z) = 0

Proposition (Bouchard-Côté, Vollmer, and Doucet [2015])
BPS is ρ-invariant and ergodic.

• In D., Bouchard-Côté & Doucet ’17 this was extended to
the case λref(·) is a function of location, inf λref(·) > 0.
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Theory for PDMPs

Is PDMCMC any good?
• We need guarantees of their convergence and CLTs for

approximate confidence intervals.
• Central Limit Theorem:

♣ non-reversible case more complicated than reversible;
♣ many results rely on symmetrised generator being

ergodic and satisfying some spectral condition: for
BPS symmetrised generator is degenerate;

♣ thus no spectral gap;
♣ geometric ergodicity is an “obvious” route to CLT.
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Geometric ergodicity

• we say {Xt} is said to be V -uniformly ergodic, where
V ≥ 1 is called the Lyapunov function, if

‖P t (x, ·)− ρ‖V ≤ DV (x)αt

for D <∞, α < 1, and t > 0, where
‖µ‖V = sup|f |≤V |µ (f)| is a norm on the space of signed
measures.
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Geometric Ergodicity

PMDPs have been around for some time but we have only
recently started to understand their properties.

Geometric ergodicity results until recently include
• Mesquita and Hespanha [2010] for exponentially decaying

targets;
• Monmarché [2016] for compact state spaces,
• Bierkens and Duncan [2017] for d = 1 under general

conditions.

BPS is geometrically ergodic under certain assumptions on the
tails and the curvature of the target in any dimension.

Zig-Zag was also recently shown to be irreducible and
geometrically ergodic under general conditions by Bierkens,
Roberts, and Zitt [2017]. See also Fétique [2017].
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Assumptions

We consider BPS with velocities living in Sd−1.

This simplifies calculations without modifying dynamics too
much.

We henceforth assume that U : Rd → [0,∞) satisfies

∂2U (x)

∂xi∂xj
is locally Lipschitz continuous for all i, j, (A0)∫

Rd
π̄(dx)|∇U(x)| <∞, (A1)

lim
|x|→∞

eU(x)/2√
|∇U(x)|

> 0. (A2)
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Regular tails

For targets with tails that decay at least like an exponential
and at most like a Gaussian:

Theorem ("Regular tails")

Let λref(·) = λref, and assume lim|x|→∞ ‖∆U(x)‖ ≤ α1 <∞. If

(a) lim|x|→∞ |∇U(x)| =∞ and λref > (2α1 + 1)2, OR

(b) lim|x|→∞ |∇U(x)| = 2α2 > 0 and λref ≤ α2/16
√
d

then BPS is V -uniformly ergodic with Lyapunov function

V (z) = λ (x,−v)−1/2 exp (U (x) /2) .
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A few words about the Lyapunov function

The choice

V (z) = λ (x,−v)−1/2 exp (U (x) /2) (1)

may appear random at first but is not.

Costa [1990], Costa and Dufour [2008] analyze the PDMP in
terms of the embedded Markov chain that tracks the process
just after event times.

This chain admits an invariant measure µ(dz) with density

µ(x, v) ∝ λ (x,−v) e−U(x).

Thus V (z) = µ(z)−1/2.
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"Thin tails"
If tails decay faster than a Gaussian: gradient grows too fast in
the tails.

Initialise tangent to the level-set.

Chance you refresh over next h
time units ∝ λrefh, ie small.

But if gradient grows too fast,
after h time units
〈∇U(x0 + vh), v0)〉 � 0.

Chance of refreshment is tiny.

hU(x0); v0i = 0

hU(Xh; v); vi ≫ 0

rU(x0)

rU(Xh)
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"Thin tails"

If tails decay faster than a Gaussian: gradient grows too fast in
the tails.
With non-zero refreshment this is not a
problem anymore.

But if gradient grows too fast, an easy
informal calculation shows that with any
constant refreshment rate will be domi-
nated in the tails.

Not irreducible but these excursions out-
side a large ball longer and longer.

Thin tails also problematic for RWM,
MALA and HMC.
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"Thin tails"

Solution: scale refreshment with potential.

Theorem

Suppose that Assumptions (A0)-(A2) hold. Let λref > 0 and
define for some ε > 0

λref(x) := λref +
|∇U(x)|

max{1, |x|ε} . (2)

Suppose that

lim
|x|→∞

|∇U(x)|
|x|

=∞, lim
|x|→∞

‖∆U(x)‖
|∇U(x)|

|x|ε = 0.

Then BPS is V -uniformly ergodic.
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Thick tails

For thick tailed targets, such as a multivariate t-distribution

π(x) ∝
[
1 + |x|

2

k

]− k+d2
,

or generalised Gaussians of the form

π(x) ∝ exp
{
−
(
1 + |x|2

)β
2

}
, β ∈ (0, 1),

the problem is the opposite to that for thin tails.

The vanishing gradient provides no information at the tails
allowing essentially random walk behaviour.
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Thick tails: transformation

In these cases we follow the approach of Johnson and Geyer
(AoS ’12):

• Apply a diffeomorphism h : Rd → Rd such that the
transformed target πh satisfies any of the conditions
above.

• Use BPS to sample the transformed target.
• Map trajectory back to the original parameterisation: this

gives a geometrically ergodic scheme.
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CLT

In all of these cases we get a CLT, but hard to estimate
asymptotic variance.
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More recent progress

More recent results on geometric ergodicity:
• Durmus, Guillin, and Monmarché [2018] extends and

generalises geometric ergodicity for BPS; also introduces a
coupling for the minorisation.

• Bierkens, Roberts, and Zitt [2017] proves Zig-Zag is
ergodic without refreshment and geometrically ergodic
under fairly natural set of assumptions.

All of these results are based on drift and minorisation
arguments.

• The small set becomes too small in high-dimensions;
• Hard to control contraction in drift;
• Exponential rates deteriorate with dimension.
• Different methods are needed to understand the

performance of these methods in high-dimensions.
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Scaling with dimension

• Scaling limits introduced in MCMC by Roberts, Gelman,
and Gilks [1997] to study RWM and to derive a
theoretical "optimal" acceptance probability.

• this provides tuning guidelines.
• Extended in Roberts and Rosenthal [1998] to MALA and

in Beskos et al. [2013] to HMC.
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Scaling limits

• Let πd be a sequence of target distributions of increasing
dimension n.

• Common over-simplified scenario πd = π⊗d.

• Let {X(d)
t }t be the Markov chain(or process) generated by

the algorithm of interest.
• Let fd : Rd → Rk be an observable of interest.
• Very often fd(x1, . . . ,xd) = x1, the first component.
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Scaling limits

• We then say {Y (t) : t ≥ 0} is a scaling limit if{
fd
(
X

(d)
[cdt]

)
; t ≥ 0

}
⇒ {Y (t); t ≥ 0},

where time has been rescaled by the sequence cd.
• For RWM, MALA and HMC cd = d, the proposal

variance to get a non-trivial scaling limit is
d−1, d − 1/3, d − 1/4 respectively.

• For RWM and MALA the limiting process is a Langevin
(overdamped diffusion).

• This suggests that RWM, MALA and HMC scale like
d2, d 4/3 and d 5/4 respectively.
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Scaling limits

• What can we say about BPS?
• Empirical evidence suggests d 3/2

Figure: BPS on isotropic Gaussian, reproduced from Bouchard-Côté
et al. [2015].
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Scaling limits for PDMPs

• For a standard Gaussian target, several scaling limits for
the first coordinate, the angular momentum and the
log-density of BPS and Zig-Zag recently appeared in
Bierkens, Kamatani, and Roberts [2018].

• The BPS process studied uses velocities in Sd−1.
• For the first location component, with time rescaling
cd = d, scaling limit is Langevin diffusion.

• This suggests a cost of O(d2), since with unit speed
number of events per unit time is O(1).

• Zig-Zag, in terms of first-coordinate, is shown to scale like
O(d), which is not surprising as the algorithm factorises.

• We will focus on BPS but we will study a different
regime, ultimately getting a different scaling limit.
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Randomized HMC

Before stating our scaling limit let us introduce the process
known as Randomized HMC, first studied in Bou-Rabee and
Sanz-Serna [2017].

• Essentially a PDMP version of HMC.
• Let T1,T2, · · · be the arrival times of a homogeneous

Poisson process with rate λ.
• For 0 ≤ t < T1, Yt = (Xt,Vt) follows Hamiltonian

dynamics w.r.t. H(x, v) = U(x) + |v|2.
• Let ξ1, ξ2, · · · be i.i.d. Gaussians. At time T1 we refresh

the velocity by setting VT1 = ξ1 or

VT1 = αVT1− +
√

1− α2ξ1.
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Assumptions

We make the following assumptions to simplify calculations.

Assumption

The potential Ud : Rd 7→ R+ takes the form

Ud(x) = Ud(x1, . . . ,xd) =
d∑
i=1

U(xi). (3)

Assumption
We have U ∈ C2(R), |U(x)| → ∞ as |x| → ∞,
‖U ′′‖∞ ≤M <∞ and∫

e−U(x)|U ′(x)|2dx <∞.
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Scaling limit of BPS
We are looking at BPS with standard Gaussian velocities.

Theorem

Let the assumptions hold, 0 < α < 1 and Zd(0) ∼ πd. Then the
process {Z(1)

d (t) : t ≥ 0} corresponding to the first location
and velocity components of the BPS process converges
weakly to the RHMC process.

Important differences with Bierkens et al. [2018]:
• We consider standard Gaussian velocity (norm ∼ d1/2);
• we look at both location and velocity;
• we look at natural time scale.

Overall the effect of this is that the regime in Bierkens et al.
[2018] corresponds to the overdamped regime of the Langevin
equation.
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Assumptions

• The i.i.d. assumption can be weakened significantly.
• What you need is that if Xd ∼ πd ∝ e−U(·) and

Vd ∼ N (0,1d) are independent then

〈∇U(Xd), Vd〉
‖∇U(X)‖

∣∣∣∣∣X1,V1 ⇒ N (0, 1),

possible under weak dependence.
• Potential can grow polynomially.
• Can look at any finite number of coordinates.
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So what?

• Need to think about what this says about BPS.
• We have not rescaled time.
• It can be shown that when the target has weak

dependence the number of events for a unit of time scales
like d1/2, whereas each event roughly costs d to simulate.

• What about the limiting process?
• Usually scaling limit is Langevin diffusion, well

understood, and serves as a benchmark.
• RHMC is actually a very natural PDMP, so it could

potentially serve as a benchmark, but we need to
understand its mixing properties.
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Geometric ergodicity of RHMC

• Bou-Rabee and Sanz-Serna [2017] showed that RHMC is
geometrically ergodic using drift and minorisation.

• Rates obtained in this fashion are usually not sharp in the
dimension.

• Although geometrically ergodic, RHMC has no spectral
gap as the symmetric part of its generator is degenerate.

• We opt instead for hypo-coercivity.

PDMCMC Ergodicity of BPS Geometric Ergodicity 34 / 49



Hypocoercivity I

• Approach originates in Nier and Helffer [2005].
• Work with modified norm, e.g. Sobolev norm

‖f‖2H1 := ‖f‖2 + ‖∇xf‖2 + ‖∇vf‖2.

• One then aims to obtain convergence rates of the form

‖P tf‖H1 ≤ Ce−µt‖f‖H1 .

• Nier and Helffer [2005] and Villani [2009]study the
Fokker-Planck equation.

• Regularisation results lead to L2 bounds

‖P tf‖ ≤ Ce−µt‖f‖. (4)
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Hypocoercivity II

‖P tf‖ ≤ Ce−µt‖f‖. (5)

• Notice that C > 1, since C = 1 would imply a spectral
gap.

• This possibility is unique to non-reversible processes.
• In reversible case (5) with C > 0 automatically implies

(5) with C = 1, see Hairer, Stuart, Vollmer, et al. [2014].
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Hypocoercivity for RHMC I

Let a, c > 0, b2 < ac so that

〈〈h,h〉〉 := a‖∇vh‖2 − 2b〈∇xh,∇vh〉+ c‖∇xh‖2, (6)

defines a norm equivalent to ‖ · ‖H1 and let

Bf(x, v) := 〈∇xf , v〉 − 〈∇vf ,∇U〉.

The following is our main result which obtains dimension free
convergence rates under the following common assumption

m〈v, v〉 ≤ 〈v,∇2U(x)v〉 ≤M〈v, v〉. (7)
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Hypocoercivity for RHMC

Theorem

Let f ∈ D(B) ⊂ H1(π) ⊂ L2
0(π) and

λref =
1

1− α2

(
2
√
M +m− (1− α)m√

M +m

)
,

µ =
(1 + α)m√
M +m

− αm3/2

2(M +m)
.

Then there are constants a, b, c such that a > 0, c > 0, b2 < ac,

d
dt〈〈P

tf ,P tf〉〉 ≤ −µ〈〈P tf ,P tf〉〉. (8)

In particular we have

‖P tf‖2 ≤

(
1 + |b|√

ac

)
max(a, c)(

1− |b|√
ac

)
min(a, cm)

· ‖f‖2H1(π)e
−µt. (9)
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• Hypocoercivity has been used in this context before.
• Actually Dolbeault et al. [2015] treats RHMC and related

processes using a different metric.
• Very recently the approach in Dolbeault, Mouhot, and

Schmeiser [2015] was adapted to cover most known
PDMCMC algorithms in Andrieu, Durmus, Nüsken, and
Roussel [2018a].
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Wasserstein distance I

We also have mixing in terms of the following Wasserstein
distance:

d2
A(Z1(t),Z2(t)) := a‖X(2)(t)−X(1)(t)‖2

+ 2b
〈
X(2)(t)−X(1)(t),V (2)(t)− V (1)(t)

〉
+ c‖V (2)(t)−V (1)(t)‖2

where Zi = (X(i),V (i)) for i = 1, 2 are two copies of RHMC
coupled with identical refreshment events.

The parameters a, b, c are chosen to make this a proper
distance. Then
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Wasserstein distance II

Theorem

Suppose that 0 ≤ α < 1, our assumptions hold and let

λref =
1

1− α2

(
2
√
M +m− (1− α)m√

M +m

)
,

µ =
(1 + α)m√
M +m

− αm3/2

2(M +m)
.

Then there exist constants a, c > 0 and b2 < ac such that

L1,2 d
2
A(Z1(t),Z2(t)) ≤ −µ · d2

A(Z1(t),Z2(t)). (10)
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