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Multi-level Monte Carlo

Principle
Giles 2008

Ingredients:

o Identify in the model some levels of accuracy O,..., L
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e Write the target distribution 7" as a telescopic sum

L
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Principle
Giles 2008
Ingredients:

o Identify in the model some levels of accuracy O,..., L

L

e Write the target distribution 7" as a telescopic sum

1 Ny L 1 N;
Thp) = 5 2 e(XD) + ) 5 D [e(XD) — e(Xi7)]
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Multi-level Monte Carlo

Principle
Giles 2008
Ingredients:

o Identify in the model some levels of accuracy O,..., L

L

e Write the target distribution 7" as a telescopic sum

e Could use the idea of Rhee and Glynn 2015
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Multi-level Monte Carlo

Bayesian inference

Hidden Markov model:

o Initial distribution pg

o Observations yg.7 at integer times
e Markov kernel Q(z,-)
Likelihood ¢(z, -)
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Multi-level Monte Carlo

Bayesian inference

Hidden Markov model:
o Initial distribution pg
o Observations yg.7 at integer times
e Markov kernel Q(z,-)

Likelihood #(x, )

Smoothing distribution:

T
p(zo.r | yor) o po(zo)l(zo, yo) H (@r—1, 2e) (K, Y)
k=1
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Multi-level Monte Carlo

Examples
Filtering and smoothing for SDEs

Diffusion process on R?

dX; = a(X)dt + b(X,)dW,,  te[0,T)
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Examples
Filtering and smoothing for SDEs

Diffusion process on R?

dX; = a(X)dt + b(X,)dW,,  te[0,T)

o Discretization with time step h; = 27!

Xion, = Xi + hia(Xy) + VIub(X) Uy

e Induced kernel:
Qlz,)=K'.. K'(x,"),
2! times

with K'(z,-) = ¢(-; 2 + ha(z), hib(z)b(z)")
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Multi-level Monte Carlo

Examples
Filtering and smoothing for SDEs

Diffusion process on R?
dXt = CL(Xt)dt + b(Xt)th, t e [0, T] J

o Discretization with time step h; = 27!

Xion, = Xi + hia(Xy) + VIub(X) Uy

e Induced kernel:
Qlz,)=K'.. K'(x,"),
2! times

with K'(z,-) = ¢(-; 2 + ha(z), hib(z)b(z)")

o Consider the extended distribution p'(z,xs,, ..., 27 | yo.r) based on K'
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Multi-level Monte Carlo

Examples
Filtering and smoothing for SDEs

Diffusion process on R?
dXt = CL(Xt)dt + b(Xt)th, t e [0, T] J

o Discretization with time step h; = 27!

Xion, = Xi + hia(Xy) + VIub(X) Uy

e Induced kernel:
Qlz,)=K'.. K'(x,"),
2! times

with K'(z,-) = ¢(-; 2 + ha(z), hib(z)b(z)")

o Consider the extended distribution p'(z,xs,, ..., 27 | yo.r) based on K'

— Can apply ML idea to different discretizations
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Multi-level Monte Carlo

Examples

Large-lag smoothing

Only interested in the marginal posterior distribution (on R%)

T
po(@o | yo:1) o po(xo)l(xo, o) / 1 Q@r—1,z1)(xk, yi)dzr.r
k=1
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Examples

Large-lag smoothing

Only interested in the marginal posterior distribution (on R%)

T
po(@o | yo:1) o po(xo)l(xo, o) / 1 Q@r—1,z1)(xk, yi)dzr.r
k=1

Introduce the progressive smoothing distribution:

I
po(@o | yo:) o po(xo)€(zo, yo) / 1 Q@r—1, 1)k, yi)dwr.r
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Multi-level Monte Carlo

Examples

Large-lag smoothing

Only interested in the marginal posterior distribution (on R%)

T
po(@o | yo:1) o po(xo)l(xo, o) / 1 Q@r—1,z1)(xk, yi)dzr.r
k=1

Introduce the progressive smoothing distribution:

I
po(@o | yo:) o po(xo)€(zo, yo) / 1 Q@r—1, 1)k, yi)dwr.r
k=1

— Can apply ML idea to different progressive smoothing distributions
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Multi-level Monte Carlo

Ok, but...

: How to obtain correlated samples efficiently?
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Multi-level Monte Carlo

Ok, but...

: How to obtain correlated samples efficiently?

Giles 2013 suggests:
e Obtain samples Z¢ and Z, in a way which minimises E(|Z; — Z.|P)

@ Corresponds to the Wasserstein metric, expressed in 1D as

(/01 o) - ‘I’cl(u)!pdu> "

Zy = o, 1(U) and Z.= o HU)

e Leads to
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Transport maps

Transport maps and multilevel

In principle:
@ Say we have two target distributions 7 and 7’
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Transport maps and multilevel
In principle:
@ Say we have two target distributions 7 and 7’
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for some base distribution 7
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Transport maps

Transport maps and multilevel

In principle:
@ Say we have two target distributions 7 and 7’

o If we can find maps G and G’ such that

m(dz) = Gyn(dz) = (G~ (dz)) and 7'(dx) = Glyn(dx)

for some base distribution 7
@ Then correlated samples (z,2’) can be obtained as
z~, x = G(z), ' =G'(z)
Remarks:
e With densities:
Gyn(z) =n(G™ ()| det VG~ ()]
@ On R: increasing rearrangement

qu);loq)n
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Transport maps

Representing and approximating transport maps

General approach:
o Knothe-Rosenblatt rearrangement:
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Transport maps

Representing and approximating transport maps

General approach:
o Knothe-Rosenblatt rearrangement:

Gn(zla < '7Zn)

e Parametrise each (monotone increasing) component (Ramsay 1998):

Gi(217~-~72i)Zai(Z1,-~-,Zi—1)+/ bi(z1,. .., zi—1,t)%dt
0
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Transport maps

Representing and approximating transport maps

General approach:
o Knothe-Rosenblatt rearrangement:

Gn(zla < '7Zn)

e Parametrise each (monotone increasing) component (Ramsay 1998):

Gi(217~-~72i)Zai(Z1,-~-,Zi—1)+/ bi(z1,. .., zi—1,t)%dt
0

e Find the map minimising the KL divergence (Moselhy and Marzouk
2012):

G* = argcr;nin ]E<log m(G(Z)) + Zlog‘ 9,G"(Z) — log TI(Z)>

=1
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September 19, 2018



sport maps

Limitation

Limitation
Finding the map G* is difficult if n is large! J
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Limitation

Limitation

Finding the map G* is difficult if n is large! J

Even if d = 1:
(SDE) p!(-|yo.r) is a distribution on R 7+1
(Smoothing) po(-|yo:) is a distribution on R but cannot be computed directly
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Transport maps

Limitation

Limitation

Finding the map G* is difficult if n is large! J

Even if d = 1:
(SDE) p!(-|yo.r) is a distribution on R 7+1
(Smoothing) po(-|yo:) is a distribution on R but cannot be computed directly

Idea: Use conditional independence in the HMM to break down the problem
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Transport maps

Limitation

Limitation

Finding the map G* is difficult if n is large! J

Even if d = 1:
(SDE) p!(-|yo.r) is a distribution on R 7+1
(Smoothing) po(-|yo:) is a distribution on R but cannot be computed directly

Idea: Use conditional independence in the HMM to break down the problem

—Spantini, Bigoni, and Marzouk 2017
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Transport maps

Principle

3= , =£4(x0,Y0)
N (03, I3) = p(zo:2 | Yo:2) X po(x0)Q(z0, 1) Lo(xo) €1(21)Q(x1, x2)l2(2)

First step:
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Transport maps

Principle

7735

—
N (03, I3) = p(xo2 | yo:2) < po(r0)Q (w0, x1)lo(x0)l1(x1)Q (21, 29)lo (1)

First step:

Jérémie Hou au (NUS) MLMC and transport maps September 19, 2018 14 /32



Transport maps

Principle

7735

—
N (03, I3) = p(xo2 | yo:2) < po(r0)Q (w0, x1)lo(x0)l1(x1)Q (21, 29)lo (1)

First step: (Go)#xn2(xo.1) = p(zo:1 | Yo1)
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Transport maps

Principle

7735

—
N (03, I3) = p(xo2 | yo:2) < po(r0)Q (w0, x1)lo(x0)l1(x1)Q (21, 29)lo (1)

First step: (Go)#xn2(xo.1) = p(zo:1 | Yo1)

. G} (2o, .
Wlth G()(Z(), Zl) = |: [)g%(iig] and (Gé)#"fh = p([l?l |y();1)
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Transport maps

Principle

7735

—
N (03, I3) = p(xo2 | yo:2) < po(r0)Q (w0, x1)lo(x0)l1(x1)Q (21, 29)lo (1)

First step: (Go)xn2(x0:1) = p(xo:1 | Yo:1)
. Gl (20, .
with Go(z0,21) = 0(23’ “1) and (Gé)#ﬁl = p(z1 | yo:1)
Gi(21)

Second step: 7(z1,22) = C 1 (21)Q(GE(21), o)l (20)

1eau (NUS) MLMC and transport maps September 19, 2018 14 /32



Transport maps

Principle

7735

—
N (03, I3) = p(xo2 | yo:2) < po(r0)Q (w0, x1)lo(x0)l1(x1)Q (21, 29)lo (1)

First step: (Go)42(¢01) = P01 | yo:1)
. Gy (20, .
with Golea, ) = [ D0 and (@pm =t )
Second step: 7(z1,22) = C 1 (21)Q(GE(21), o)l (20)

st. C = /p(a:l | Y0:1)Q (1, 22) 0o (20)dzrdas
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Transport maps

Principle

7735

—
N (03, I3) = p(xo2 | yo:2) < po(r0)Q (w0, x1)lo(x0)l1(x1)Q (21, 29)lo (1)

First step: (Go)xn2(o.1) = p(zo.1 [Yo:1)
. Gl (20, .
with Go(z0,21) = 0(23’ “1) and (Gé)#ﬁl = p(z1 | yo:1)
Gi(21)

Second step: 7(z1,22) = C 1 (21)Q(GE(21), o)l (20)

st. C = /p(a:l | Y0:1)Q (1, 22) 0o (20)dzrdas

Third step: (G1)xn2(21,22) = T(21,T2)
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Transport maps

Principle

7735

—
N (03, I3) = p(xo2 | yo:2) < po(r0)Q (w0, x1)lo(x0)l1(x1)Q (21, 29)lo (1)

First step: (Go)xn2(w0.1) = p(0:1 [ Yo:1)
. G (2, .
with Golea, ) = [ D0 and (@pm =t )
Second step: 7(z1,22) = C 1 (21)Q(GE(21), o)l (20)
st. C = /p(a:l | Y0:1)Q (1, 22) 0o (20)dzrdas

Thi : = 7 i _ [Gilz1,22)
ird step: (G1)gn2(21,22) = 7(21,22) with G1(z1, 22) = G2 (2,)
1
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Principle
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1-lag smoothing: (z1,292) — [ G2 (=)
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Transport maps

Principle

1-lag smoothing: (z1,292) —

(otl] « ([
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Transport maps

Principle

1-lag smoothing: (z1,292) —

(otl] « ([

Full smoothing: G = | G3(z1) | o [Gl(z1. )
2 G3 (=

)
~—
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Transport maps

Principle

1-lag smoothing: (z1,292) —

[GiClaa] o [0 G, )

G2 () 548 M1
G(l)(i(,. Zl) 20
Full smoothing: G = | G3(z1) | o [Gl(z1. %)
29 C;%(:l)
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Transport maps

Principle

1-lag smoothing: (z1,292) —

[GiClaa] o [0 G, )

G2 () 2 GP(22)
G§(z0, 1) 20 _
Full smoothing: G = | G2(2)) | o |Gi(z1.20)] =GooGy
29 C;%(:l)
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Transport maps

Principle

21 2. 1.
1-lag smoothing: (z1,22) — [GU(GI(Zl’z2)>] or {GO(')] o [Gl(* l

7‘%(22) <2
G(l)(iu- '«1) 20 B B
Full smoothing: G = | G2(2)) | o |Gi(z1.20)] =GooGy
Z9 C;%(:l)

Sketch of proof: (reminder: 7(z1,22) = C71ny(21)Q(GE(21), w2) 2 (22))

G#p(zo:2 | yo:2) = G# (Go#p(ZOQ | y0:2))
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Transport maps

Principle

- lag smoothing. (Zl’ZQ)H[Gg(G%(zl,zg))] o {G%(:J)]O[G%(:J.zj)]

G2 () 2 GP(22)
G§(z0, 1) 20 _
Full smoothing: G = | G2(2)) | o |Gi(z1.20)] =GooGy
29 C;%(:l)

Sketch of proof: (reminder: 7(z1,22) = C71ny(21)Q(GE(21), w2) 2 (22))

G#P(Zo:2 | yo:2) = G? (Go#p(ZOQ | y0:2))
=G7 (é#(cflp(%:l | 90:1)Q (21, 22)02(22)))
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Transport maps

Principle

- lag smoothing. (Zl’ZQ)H[Gg(G%(zl,zg))] o {G%(:J)]O[G%(:J.zj)]

G2 () 2 GP(22)
G(l)(i(,. Zl) 20
Full smoothing: G = | G2(2)) | o |Gi(z1.20)] =GooGy
29 (;f(,_))

Sketch of proof: (reminder: 7(z1,22) = C71ny(21)Q(GE(21), w2) 2 (22))

G#P(Zo:2 | yo:2) = G? (Go#p(ZOQ | y0:2))

é# (éo#(cflp(zo:l | 90:1)Q (21, 7«2)(’/’2(7«2)))
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Principle

1-lag smoothing: (zl,ZQ)H[Gg(G%(%@))] or {Gﬁ(:])] [Gl(

Full smoothing: G =

Sketch of proof:

G* (z02|y02

Jérémie Houssineau (NUS)

(reminder: 7(z1,z2)

Transport maps

G%(ZZ) 22 G?(
G(l)({iu- '«1) 20
G(Z](1|) e} G%(,\ )) _GOOGl
22 Gi(z2)

= 0_1771 (ZI)Q(G(%(ZL) 9 )lo(x2))

?(G P2’02|y02))
GT (GF(C™'p(20:1 | y0:1) Q (21, 22) Lo (22)))
GF (GF P01 | 90:1) O Q(CE(21), 22)la(22))
GT (m1(20)7(21, 22))
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Transport maps

Principle

1-lag smoothing: (zl,ZQ)H[Gg(G%(%@))] or {Gﬁ(:])] [Gl(

G2 () Sl et
G(l)(i(,. Zl) 20
Full smoothing: G = | G2(2)) | o |Gi(z1.20)] =GooGy
29 C;%(:l)

Sketch of proof: (reminder: 7(z1,22) = C71ny(21)Q(GE(21), w2) 2 (22))

G*p(202 | yo2) = G (G

= GHEH O Pleoa | 90) Qo1 22)0(2)
(G P20 |901) 0 Q(GE (= ) Z_))/g(z
fﬁ(ﬂl 20)7 (21, 22))

= 11(20)GT #(21, 22) = n3(20:2)
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Transport maps

Back to MLMC

In general:

1 X Lo
™ (p) ~ No Z P(Go(Z7)) + Z
=1 =1

where Z! ~nl i€ {1,....N;}, 1 €{0,...,L}

N,
Z (Gi(Z})) = p(Gi-1(2)))]

N
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Transport maps

Back to MLMC

In general:

Ny L
T~ 3 D PGUZ) + Y 1 D [P(GU(ZD) ~ w(Groa(ZD)]

where Z! ~nl i€ {1,....N;}, 1 €{0,...,L}

Particularities:
(SDE) Distributions at different level have different dimensions

— “thinning”

(Smoothing) Several options to obtain samples:

@ Propagate the smoothing distribution
o Consider X as a parameter (see Spantini, Bigoni, and
Marzouk 2017)

Jérémie Hou au (NUS) MLMC and transport maps September 19, 2018 16 /32



Outline

© Applications

MLMC and transport maps September 19, 2018 17 /32



Applications

SDE

H., Jasra, and Singh 2018a

MSE as variance +

with
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Applications

SDE

H., Jasra, and Singh 2018a

MSE as variance +

L
E((# —m)(9)?) =D Vi+ 2
=0

with

V= E([]\lfl f: (p(XD) —o(X]7)) — (x' - wl‘l)(w)] )

To obtain a MSE of order €2
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Applications

SDE

H., Jasra, and Singh 2018a

MSE as variance +

with

V= E({Nl Z (X)) —p(X]7)) — (=" — ﬂl‘l)(w)] )

To obtain a MSE of order €2
o If in O(h}) then L oc —L log,(e)
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Applications

SDE

H., Jasra, and Singh 2018a

MSE as variance +

with

V= E({Nl Z (X)) —p(X]7)) — (=" — ﬂl‘l)(w)] )

To obtain a MSE of order €2
o If in O(h}) then L oc —L log,(e)

e If V, in (’)(hf) cost C; in (’)(hl_c)
N, = N12*(x3+f)(l*1)/27

with Ny oc €72 Zlel 2(C=A)/2
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Applications

SDE

Verification in the linear-Gaussian case

Variance at time k € {1,...,T} for the filtering problem:

1 &
Vi, = Var (Nl Z (‘P(ch(zl)) - SD(Ggﬂ_l(Zi))))

Theorem

In the case of a 1-dimensional diffusion process with linear drift and constant
diffusion coefficient and with a linear-Gaussian likelihood, the variance V
obtained at level | for FEuler’s method verifies

Vix = O(h})
forany ke {1,...,T}.
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SDE

Models:

o Linear-Gaussian

e Langevin

MLMC and transport maps
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Applications

SDE

Models:

e Linear-Gaussian:
dX; = aX,dt + bdW4, te0,T]
with a = —0.1 and b = 1, observed via
Vi | X ~ N (Xp, 7°)

with 7 = 0.25

e Langevin
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Applications

SDE

Models:

o Linear-Gaussian
e Langevin:
1
dXt = §V10g3y(Xt)dt+det7 te [OaT]

with S, the Student’s t distribution with v = 10 and with b = 1, observed
via
Vi | X ~ N (0,72 exp(Xy,))

with 7 =1
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SDE

Orders

le—4
® Order 4 (exp)
—=- Order 4 (fit)
A Order 3 (exp) 4
''''' Order 3 (fit)
r3
@
<]
o
r2
rl
ro
0.0 0.2 0.4 0.6 0.8 1.0

hy

Linear-Gaussian
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SDE

Orders

Langevin
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SDE

Performance

107°
—— Multi-level
—— Highest level
10*6 4
(L}J) -7
2 1077 4
10—3 4
107° ™ T ™ ™ T
0 20 40 60 80 100

Cost (s)

Linear-Gaussian ¢(zo.1) = 1
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Applications

Smoothing

H., Jasra, and Singh 2018b

(A1) There exists 0 < C < C < +o0 such that

inff(x, yo)po(x) A ]?;ﬁ lnf; E(:C/7yk)Q(x7

sup £(z, yo)po(x) V sup sup £(’, y) Q(x,

k>1 x,x’

1eau (NUS) MLMC and transport maps
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Applications

Smoothing

H., Jasra, and Singh 2018b
(A1) There exists 0 < C < C < +o0 such that
inf £(z, yo)po(x) A inf ;Ig o' yr)Qx, ") > C
sup £(x, yo)po(x) Vsupsup £(z', y)Q(z,2") < C.

k>1 x,x’

Theorem (on R, can be generalised to RY)

Under (A1), there exists p € (0,1), C < 400 such that for any bounded
measurable Lipschitz ¢ with Lipschitz constant K, any N; > 1 and any l > 1
we have

- 2 1—1
Var (- Y le(@ () — ple ) < S

with ®; is the cdf of po(-|yo.) and {U'}; S U(o,1)).

o
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Applications

Smoothing

Consequence of the theorem

To achieve an MSE of O(€?)
o Change the final time: T* = [|log(e)/log(p)|]

MLMC and transport maps
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Applications

Smoothing

Consequence of the theorem

To achieve an MSE of O(€?)
o Change the final time: T* = [|log(e)/log(p)|]

o Number of samples: N; = e 2(I +1)717 for any § > 0
o Cost: O(e7?)

Without ML: cost in O(Te~?)
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Applications

Smoothing

Models

Models:

o Linear-Gaussian

e Stochastic volatility
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Smoothing

Models

Models:
o Linear-Gaussian:
Xi| X1 ~ N(aXp-1,b%)

with Xo ~ N (x¢,0?), where g = 1, 0 = 2 and with a = b = 1, observed
via

Yk|Xk NN(Xk,TQ)
with 7 =1

@ Stochastic volatility
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Applications

Smoothing

Models

Models:

o Linear-Gaussian

e Stochastic volatility:
X =p+ ¢(Xp—1—p) + Vi XONN(M #)
b Y 1 _ ¢2
with Vi ~ N(0,8%), u = —0.5, = 0.95 and 3 = 0.25, observed via

1
Yi = W, exp (an)

with W,, ~ N(0,1)
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Smoothing

Cost

® Gaussian - experimental
14 A —— Gaussian - fitting
@® Stochastic volatility - experimental
—— Stochastic volatility - fitting
12 A
@ 10 A
@
o
o
8 -
6 -
4 -

T T
1073 1072
&

The fitted curves are based on a function of the form € — —ae™? — Blog(e)
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Applications

Smoothing

Result in the linear-Gaussian case

Theorem

Assuming that Var(Xy | yo.x) ~ 2 for all k large enough, it holds that

Var (J\l,l %{@ﬂ((ﬂ) - @;g(Ui)]) = O( j.l (a+ bQ)QZ).

2
a
i=1 v
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Applications

Smoothing

Result in the linear-Gaussian case

Theorem

Assuming that Var(Xy | yo.x) ~ v2 for all k large enough, it holds that

Var (Alfl i[@;l((ﬂ) - @;11(Ui)]> _ o(ii_l (a+ ;’;)zl).

@ Assumption justified in terms of reachability and observability

o Beneficial if b is large and ~ is small

1eau (NUS) MLMC and transport maps September 19, 2018 27 /32



Smoothing

Performance in the linear-Gaussian case

107!
128 —— Multilevel (—log(e))
——— PaRIS (N)
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Smoothing

Performance in the stochastic volatility model

128 —— Multilevel (~log(g))
—— PaRIS (N)
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Cost (s)
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Applications

Summary

e Transport maps are well-suited to the multilevel idea
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Applications

Summary

e Transport maps are well-suited to the multilevel idea
o Full smoothing distributions can be approximated

@ Quantifying the approximation error for finite order would help
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Applications
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Thank you!

houssineau.j@gmail.com
jeremiehoussineau.com
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