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Metrpolis-Hastings (MH): any Markov kernel @ ~ [N-reversible kernel P.
Q: Proposal kernel, TT: Target probability distribution.

[1-reversible: ,Cn(Xo, Xl, 000 ,X/\/l) = ,Cn(X/\/l, XM,1, 000 ,Xo).
Reversible proposal MH: M-reversible kernel @ ~ M-reversible kernel P.
RWM, pCN, Independent-MH € RMH.

We study RMH for heavy-tailed target distributions.
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Abstract

In this talk, we will discuss Markov chain Monte Carlo methods
for heavy-tailed target probability distributions, based on a
reversible proposal transition kernel. We will study the
dimensionality effect using the high-dimensional asymptotic
analysis of Roberts, Gelman and Gilks. We also study ergodic
properties for heavy-tailed target distributions.
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Abstract

In this talk, we will discuss Markov chain Monte Carlo methods
for heavy-tailed target probability distributions, based on a
reversible proposal transition kernel. We will study the
dimensionality effect using the high-dimensional asymptotic
analysis of Roberts, Gelman and Gilks. We also study ergodic
properties for heavy-tailed target distributions.

This talk is mainly from K. JAP 17 and K. Bernoulli 18.



High-dimensional asymptotics
HDA
Heavy-tail + HDA
pCN/MpCN
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xd(my = ] X(m) i Ug < a(X9(m = 1), X (m))
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where My(dx) = 74(x)dx is a prob meas on R? and

a(x,y) = min {1, ”d(y)}.
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Random-walk Metropolis (RWM) algorithm
X¥*(m) = X9(m—1) + W2 W2~ Ny(0, 042 Iy)

{ X% (m) if Ud < o(X9(m—1), X% (m))

X9(m) = X9(m—1) if Ud > a(XI(m—1),X%(m))

where My(dx) = 74(x)dx is a prob meas on R? and

a(x,y) = min {1, ”d(y)}.

Product target
Mg = F®9

where F(dx) = f(x)dx is a (regular) prob meas on R.

Time scaling / State space scaling / Proposal scaling
Y(t) = X{([dt]), 05 = PP/d, | €Ry.

Why there is a dimensionality effect? ~ How about o2 = I?/7/d?
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03 = 0(d't¢) = bigger jumps + small acceptance probability.

Notice

P(IX(0)[12 > IXU(1)I%) = B(IXI©O)I < [XIDWI?).
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The dimensionality is due to reversibility.
03 = 0(d't¢) = bigger jumps + small acceptance probability.

Notice
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03 = 0(d't¢) = bigger jumps + small acceptance probability.

Notice
P(IX?(0)117 > [IX(L)I1P) = PIXI@)I* < X))
However, when o2 = O(d~1+¢),
P(IX?0)]7 > [IX*(1)IIP) < BUXUO)]* < [X*(1)]?),
since
X2 = 1X9(0) + WH |2 = [IX9(0)]% + (X (0), Wr) + || Wy||”.

Thus, X9*(1) is likely to be rejected.
We can show that

P(X?(0) = X9(1) = --- = X9(d¥)) =1 - 0o(1)

for any k € N.
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Theo [Roberts, Gelman, Gilks 97] Y¢ — Y where
dY(t) = a(Y(t))dt + b dW,

with

aly) = LBV 4y w2 =

Hi) = 2P ¢<_$>, J_/(’:((j))ff(x)dx@o.

Convergence rate is d. / Efficient when h(/) is large. / h(/) is
maximized when the average acceptance probability is 0.234 - - -,

How about heavy-tail case?



Heavy-tail
Vs >0 / exp(s||x])Mq(dx) = +oc.
Rd
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Heavy-tail
Vs >0 / exp(s||x])Mq(dx) = +oc.
Rd

Mixed normal (MN)

My(dx) = /O " (2m0?) 92 exp (_&) Q(do?)dx.

202

MN D Student-t, Stable etc.
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Asymptotics: Fix Q, d — .

Assumption: Q(dy) = g(y)dy, g(y) > 0 continuously differentiable,
g, q’ vanishes at +0 and +o0.

Time scaling / State space scaling / Proposal scaling

Y4(t) = X¢([d 1)), Z%(t) = log (IX“(1a e])[|/d?) , 0F = F2/d, I €Ry.
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Theo K.
Faster rate: Y¢ — Y where

dY(t) = a(Y(t), Zo)dt + b(Zy) AW,
with Zy ~ Q: Q(dy) = §(y)dy is the log transform of @ and

aly,z) = —e Zuo(e?)y/2, b*(z) = po(e?).
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Theo K.
Faster rate: Y¢ — Y where

dY(t) = a(Y(t), Zo)dt + b(Zy) AW,
with Zy ~ Q: Q(dy) = §(y)dy is the log transform of @ and
a(y,z) = —e *uo(e ?)y/2, b*(z) = po(e™?).
Here,
ni(o) = E[|F|*e"], F ~ N(o?/2,0%)
Slower rate: Z9 — Z where
dZ(t) = a(Z(t))dt + B(Z(t)) dB,

with

a(z) = (log§) (2)ua(e™)/2— e "up(e™)/2, B*(2) = pa(e™).
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characteristics convergence) + Stein’'s method
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where Nh = [ h(x)¢(x)dx.
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Y is not ergodic, but Z is ergodic. Convergence rate is d?.

LLN:

Key technique: (Classical Stroock-Varadhan's semimartingale
characteristics convergence) + Stein’'s method

h(x) m'ble s.t. N|h| < co = 3f s.t. h(x) — Nh = f'(x) — xf(x)

where Nh = [ h(x)¢(x)dx. For example, we have a bound

1£(F) = N(O, 1)[|lrv < igglE[f’(F)] —E[F f(F)]I

where F = {f;||f|lcc < \/7/2, ||f']|so < 2}.

Better MCMC?



pCN/MpCN

Pre-conditioned Crank-Nicolson (pCN) Neal 99, Beskos et al 08
X (m)=p XI(m—1) + /1—po W2 W2~ Nyg(0, l4)

Acceptance probability:

7Td(Y)exp(—l><|2/2<72)} .

a(x,y) = min {1’ mq(x) exp(—|ly[]*/202)
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pCN/MpCN

Pre-conditioned Crank-Nicolson (pCN) Neal 99, Beskos et al 08
X (m)=p XI(m—1) + /1—po W2 W2~ Nyg(0, l4)

Acceptance probability:

7Td(Y)exp(—l><|2/2<72)} .

a(x,y) = min {1’ mq(x) exp(—|ly[]*/202)

Works well only for light-tail target since the proposal is reversible to
|:| = N[/(O.(Tz/d).

2

~+ We can put prior on 0 ~» How about Jeffreys/Haar prior?

~» MpCN algorithm.  ~» 1 = ||x||~9dx.
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Mixed pre-conditioned Crank-Nicolson (MpCN) K. 18 Bernoulli

HW"H

Acceptance probability:

a(x,y):min{l,w}.

ma ()|l =¢

13/26
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Mixed pre-conditioned Crank-Nicolson (MpCN) K. 18 Bernoulli

d mi

Acceptance probability:

)= min {1 T
Hea) = {l’m(x)nynd}'

Time scaling / State space scaling / Proposal scaling
Y(t) = X¢([8]), Z°(t) = log (1X“((d )II/d*2).

Y? 5 Y and Z9 — Z for some diffusions Y and Z.



The convergence rate is d.

Key technique : Malliavin calculus and Stein's method such as

E[f'(F)] = E[F F(F)Il < [If'llo Ell1 ~ (DF,~DL™*F)l.
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The convergence rate is d.

Key technique : Malliavin calculus and Stein's method such as
E[f'(F)] — E[F f(F)]| < [If'lloc E[I1 — (DF, =DL™F)nl]-
Recall that Hermite Polynomials are

x2 -1

Ho(x) =1, Hi(x) = x, Ha(x) = I

Then the Malliavin derivative D operates
DH,(W(e)) = H,—1(W(e))e, e € H, |le|ln=1

and w1 vy
L Hy(W(e)) = - LD,
How about light-tail case?  For light-tail case, the convergence rate is 1

(no time scaling).



Summary

Method Light-tail Heavy-tail

RW d d?
pCN 1 400
MpCN 1 d
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Ergodicity
Regular variation
Ergodicity + Heavy-tail
Ergodicity + Light-tail
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Regular variation

Def h:RY — R, is regularly varying if

h(rx)
h(rl)

—r—oco /\(X)

locally uniformly on R?\{0}, where A(x) > 0 is a continuous function
and 1=(1,0,0,...,0).
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Def h:RY — R, is regularly varying if

h(rx)
h(rl)

—r—oco /\(X)

locally uniformly on R?\{0}, where A(x) > 0 is a continuous function
and 1=(1,0,0,...,0).

his RV = Ja € R (exponent of variation), A(x) = ||x||~*A(x/||x|])-
m pdf is RV = a > d, N is heavy-tail (Karamata).

See Monographs such as Resnick 08 Springer, Bingham et al 89
Cambridge U. press.



Examples/Counter examples
RV D Student-t, Stable, polynomial target [Jarner and Roberts 07]

RV ; HXH—d—2—sin(||><H).
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Heavy-tail 1 [Jarner, Tweedie 03]
7 RV = RWM is not geometrically ergodic (GE).

Heavy-tail 2 [Fort, Moulines 03, Jarner, Roberts 07]
7 RV + some additional conditions = RWM is polynomially ergodic.

Note [Johnson and Geyer 12]:
Heavy-tail = RWM + variable transform is GE.
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Theo [K 17 JAP] 7 RV. Then

MpCN is GE <= 35 > 0, / [Ix]]°M(dx) < oo.
Rd
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Proof is standard: Drift condition V/(x) = (m(x)]|x||¢) /2 for symmetric
A + Compare spectral gaps by Dirichlet form E(f, g) = (f, (I — P)g).

Key property: The proposal kernel is a (logarithmic squared root)
random-walk kernel under

x = log ||x||2.
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Ergodicity + Light-tail

Def h: RY — R, is rapidly varying if

h(rsx) 0 if s>1
h(rx) TP 4o ifs< 1.
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Ergodicity + Light-tail

Def h: RY — R, is rapidly varying if

h(rsx) 0 if s>1
h(rx) TP 4o ifs< 1.

Rapidly varying D Super exponential [Jarner, Hansen 00], exponential
[Fort, Moulines 00].
Note: (Heavy-tail) () (Rapidly varying) # 0. Ex. exp(—|x[|?), 8 < 1.

Def r satisfies the curvature condition [CC] if

, x  Vlegm(x) >
I|msup<—,7 < 0.
Ixl=oo \ [IXII " [V log m(x)]|
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Theo [K 17 JAP] 7 rapidly varying + CC = MpCN is GE.

Note: If 7 is rapidly varying, then MpCN is GE <= sup P(x, {x}) = 1.
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Theo [K 17 JAP] 7 rapidly varying + CC = MpCN is GE.
Note: If 7 is rapidly varying, then MpCN is GE <= sup P(x, {x}) = 1.

As a linear operator in [2
The Markov kernel P is a self-adjoint positive operator. Thus,

GE <= Variance bounding.
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Summary

E-Rapid Rapid Regular
Method e X" a>1 e Xl a e (0,1) |x||~9%6>0
RWM OK NO NO
pCN Conditional NO NO
MpCN OK OK OK

Application of MpCN: K. Uchida 2016, K. Nogita and Uchida 2016.
Implemented in Yuima package.
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Future works
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Adaptive MpCN [ K. + Chimisov, tatuszynski]

General version of MpCN

1/2 21/2W
x* <—,Uz+\/_ X —H + \/1— ||Z X— )HW

w, W~ Nd(O, Id)-
Parameter 0 = (p, u, X).
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Adaptive MpCN [ K. + Chimisov, tatuszynski]
General version of MpCN

1/2 21/2W
x* <—,Uz+\/_ X —H + \/1— ||Z X— )HW

w, W~ Nd(O, Id)-
Parameter 0 = (p, u, X).

Choose 6 (apart from p) so that

[Z7Y2(x — p)||~9(det £)"H2dx ~ M.

Matrix MpCN [ K. 4 Beskos |
Gradient MpCN
PDMP + MpCN

Analysis of MpCN: Non-asymptotic / Sub-geometric ergodicity
25/26
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In high-dimension, an MCMC may have several convergence rates.

The (slower) convergence rate of RWWM is d for a light-tail target
and d? for a heavy-tail target.

On the other hand, the convergence rate of MpCN is 1 for a
light-tail target and d for a heavy-tail target.

MpCN has a good ergodic property.
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