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Introduction

• Profiling of metabolites (products of metabolic reactions) is important for
understanding biological systems. Metabolite levels are often correlated –
analyzing these associations provide information about metabolic
relationships and the physiological state of a system.

Urinary metabolic data

• Acquired using 1H NMR spectroscopy for 127 individuals
living close to a smelter in Bristol, UK, that produces
airborne cadmium (very toxic metal, acute exposure poses
health risks).

• Study correlation structure of 22 urinary metabolites in response to Cd
exposure using Gaussian graphical models (GGMs).

• Analysis of such metabolic association networks can point to differences
in the underlying biological reactions caused by Cd exposure.

2



Introduction (Gaussian graphical models)

• Gaussian graphical models (GGMs) provide an important tool for
studying the dependence structure among a set of random variables.

• Assuming the variables have a joint Gaussian distribution, a zero in the
precision matrix indicates conditional independence between associated
variables.
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Underlying graph

Nodes denote variables.
Edges denote conditional dependencies.

• To investigate effect of different experimental conditions on the
dependence relationships among variables, multiple GGMs (one for each
condition) have to be estimated. Joint inference encourage sharing of
information across graphs and allow for common structure.
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Contributions

• Bayesian inference for GGMs using G-Wishart prior (Roverato, 2002).
The G-Wishart is the family of conjugate distributions for the precision
matrix, where entries corresponding to missing edges in the underlying
graph are constrained to be zero.

• Consider the unrestricted graph space (allow non-decomposable graphs)
and propose using the multiplicative model (Chung and Lu, 2002) as a
prior on graphs for estimating GGMs. This prior is extended to multiple
GGMs via logistic regression.

• Develop a sequential Monte Carlo algorithm to obtain joint posterior
inference for multiple GGMs.

• Illustrate proposed methods using simulated data and the urinary
metabolic dataset.
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Priors for graphs

Given p nodes, there are 2r possible graphs, where r =
(
p
2

)
is the total

number of possible edges.

• Uniform prior: Each graph has equal
probability of arising.

• Erdős-Rényi model: Every edge has
probability α of being included.
P(graph with x edges) = αx(1−α)r−x.
Reduces to uniform prior when α = 0.5.

• Bernoulli prior (Jones et al. 2005):
α = 2

p−1 , expected no. of edges is p.
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• Place Beta(a, b) prior on α (Carvalho and Scott, 2009).

• Size-based prior (Armstrong et al. 2009): Every size 0, . . . , r, has equal
probability and every graph of the same size has equal probability.
P(graph with x edges) = 1

r+1

(
r
x

)−1
. Controls number of spurious edges.
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Multiplicative prior

• Let G = (V,E) be a simple graph with vertex set V = {1, 2, . . . , p} and
edge set E ⊆ {(i, j) ∈ V × V : i < j}. The adjacency matrix A = [Aij ]
of G is a symmetric binary matrix where Aij is 1 if an edge is present
between nodes i and j, and 0 otherwise.

• Chung and Lu (2002):

• Expected degree sequence: {d1, . . . , dp}, P(Aij = 1) ∝ didj .
• Capture more diverse degree distributions and real-world networks.

• Multiplicative model:

Aij
indep∼ Bernoulli(πiπj) for 1 ≤ i < j ≤ p, where 0 ≤ πi ≤ 1.

πi
indep∼ Beta(a, b) for i = 1, . . . , p, a, b > 0.

• πi reflects activity level (connectivity) of node i.
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Degree distributions of multiplicative prior
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We derive some degree and clustering properties for the multiplicative prior.

• Degree distributions of a variety of shapes (e.g. right-skewed, U-shaped)
can be obtained by varying a and b.

• The multiplicative model can accommodate greater variation in the
degree distribution than the Erdős-Rényi model by O(p2) given the same
mean degree.
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Investigating power-law
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Figure: Left: degree distributions. Right: relationship between logP (Di = d) and
log d should be a straight line if power-law is satisfied.

• Degree distributions of scale-free networks follow power-law:

P(Di = d) ∝ d−γ where γ > 0.

• The multiplicative prior comes close to but does not quite induce
power-law networks as the right tail is not sufficiently heavy. However,
the points are well fitted by a power law with an exponential cutoff,
P (Di = d) ∝ d−γe−τd.
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Multiple Gaussian graphical model

• Data: H observations of p variables which fall into K groups.

• yh = (yh1, . . . , yhp) denotes the hth observation.
• Sk is a set containing indices of observations which belong to group k

with H =
∑K

k=1 |Sk|.

• Assume
yh|Ωk ∼ N(0,Ω−1k ) for h ∈ Sk,

where Ωk is a precision matrix.

• Let Gk = (V,Ek) be a simple graph with vertex set V = {1, 2, . . . , p}
and edge set Ek ⊆ {(i, j) ∈ V × V : i < j}. Node i ∈ V represents the
ith variable and each edge (i, j) ∈ Ek corresponds to Ωk,ij 6= 0.

yhi and yhj are conditionally independent

in Gk given the rest of the variables in yh
⇔

(i, j) /∈ Ek
(Ωk,ij = 0)
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G-Wishart prior

• Conjugate prior for Ωk is G-Wishart distribution, WGk(δk, Dk), which has
density,

p(Ωk|Gk) =
1

IGk(δk, Dk)
|Ωk|(δk−2)/2 exp

{
−1

2
tr(ΩkDk)

}
.

Ωk is constrained to the cone PGk of positive definite matrices with
entries equal to zero for all (i, j) /∈ Ek and IGk(δk, Dk) is a normalizing
constant.

• G-Wishart distribution reduces to Wishart distribution when Gk is
complete (normalizing constant can then be evaluated analytically).
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Priors over graphs: K = 1

• We use the multiplicative model to assign prior probabilities to graphs.
Let Ak = [Ak,ij ] be adjacency matrix of Gk.

Ak,ij |πk,iπk,j
indep∼ Bernoulli(πk,iπk,j),

where 0 ≤ πk,i ≤ 1.

• K = 1: G1 = G and let π1,i = πi ∼ Beta(a, b). Then

p(G|a, b) =

∫
p(G|π)p(π|a, b) dπ

=
1

B(a, b)p

∫ ∏
i,j: i<j

(1− πiπj)(1−Aij)
p∏
i=1

π
(a+di−1)
i (1− πi)(b−1) dπ,

where di is the degree of node i.
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Priors over graphs: K > 1

• Propose a joint prior for G1, . . . , GK , which may depend on graph
specific covariates. Let xk = (xk1, . . . , xkQ)T be a vector of covariates
for Gk, βi = (βi1, . . . , βiQ) be a vector of coefficients for node i and

πk,i =
exp(βTi xk)

1 + exp(βTi xk)
, βiq|σ2q

indep∼ N(0, σ2q ).

• Let x = (x1, . . . , xK), β = (βT1 , . . . , β
T
p )T and σ2 = (σ21, . . . , σ

2
Q). Then

p(G1, . . . , GK |x, σ2) =

∫
p(β|σ2)

K∏
k=1

p(Gk|xk, β)dβ

=

∫ p∏
i=1

Q∏
q=1

{
1√
2πσ2

q

e
−
β2iq

2σ2q

} K∏
k=1

{ p∏
i=1

π
dk,i
k,i

∏
i<j

(1−πk,iπk,j)1−Ak,ij
}
dβ,

where dk,i is the degree of node i in Gk.

• p(G|a, b) or p(G1, . . . , GK |x, σ2) are estimated efficiently using Laplace
approximation.
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Priors over graphs for urinary metabolic data

• Let xk include an intercept and an indicator for level of Cd exposure
(1 if above median, 0 otherwise).

G1 G2

xk (1, 0) (1, 1)
correlation structure of group
with Cd exposure ≤median

correlation structure of group
with Cd exposure >median

πk,i
1

1+exp(−βi1)
1

1+exp(−βi1−βi2)

• βi1 determines popularity of node i in G1 while βi2 controls the difference
in popularity of node i between G1 and G2. As |βi2| ↑, difference in
connectivity of node i between G1 and G2 ↑.

• We can also add a third covariate for gender (1 if male, 0 for female).
Then K = 4, x1 = (1, 0, 0), x2 = (1, 0, 1), x3 = (1, 1, 0) and
x4 = (1, 1, 1).
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Priors over graphs (illustration)

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

σ1
2 = σ2

2 = 0.1

Degree

P
ro

ba
bi

lit
y

G1
G2

0 10 20 30 40 50
0.

00
0.

05
0.

10
0.

15
0.

20

σ1
2 = σ2

2 = 1

Degree

P
ro

ba
bi

lit
y

G1
G2

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

σ1
2 = σ2

2 = 10

Degree

P
ro

ba
bi

lit
y

G1
G2

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

σ1
2 = 1 , σ2

2 = 10

Degree

P
ro

ba
bi

lit
y

G1
G2

Figure: Prior degree distributions of G1 and G2 for p = 50. Covariates for G1 and
G2 are (1,0) and (1,1) respectively.

• When σ21 = σ22 = 0.1, π1,i ≈ π2,i ≈ 0.5. Degree distribution resembles
that of Erdős-Rényi model where each edge is formed with probability
0.25.

• When σ21 is large, connectivity of each node tends to 0 or 1. Thus the
degree distribution resembles the case where each πi ∼ Beta(0.1, 0.1).

• Distinction between degree distribution of G1 and G2 becomes greater as
σ22 increases.
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Posterior distributions

• Let y = (y1, . . . , yH). For K > 1, the joint distribution of the model is

p(y,Ω1, . . . ,ΩK , G1, . . . , GK , β|x, σ2)

= p(β|σ2)
K∏
k=1

p(Gk|xk, β)p(Ωk|Gk)
∏
h∈Sk

p(yh|Ωk)

 .

Integrating out Ωk and β, p(G1, . . . , GK |y, x, σ2)

∝ p(G1, . . . , GK |x, σ2)
K∏
k=1

IGk(δk + |Sk|, Dk +
∑

h∈Sk yhy
T
h )

IGk(δk, Dk)
.

• When K = 1, the dependence on x and σ2 is replaced by a and b:

p(G|y, a, b) ∝ p(G|a, b)IG(δ +H,Dk +

H∑
h=1

yhy
T
h )/IG(δ,D).
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Posterior inference

• For any G, let (P1, . . . ,PL) be a perfect sequence of the prime
components of G and (S2, . . . ,SL) be the separators. Then

IG(δ,D) =

L∏
l=1

IGPl (δ,D)/

L∏
l=2

IGSl (δ,D),

where GPl and GSl denote subgraphs induced by Pl and Sl respectively.

• The separators are complete and IGSl (δ,D) can be evaluated exactly.

• IGPl (δ,D) can be evaluated exactly if Pl is complete. Otherwise,
estimate using

• δ is small: Monte Carlo method (Atay-Kayis and Massam, 2005)
• δ is large: Laplace approximation (Lenkoski and Massam, 2005)

• This procedure is feasible for small graphs (p ≤ 22). When p is large,
techniques that avoid evaluating prior normalizing constants (and jointly
explore the space of graphs and precision matrices) must be used.
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Sequential Monte Carlo (SMC) sampler

• Suppose we wish to sample from a complex target λ(x).

(Start) λ1︸︷︷︸
distribution easy
to sample from

, λ2, . . . , λT−1︸ ︷︷ ︸
intermediate
distributions

, λT = λ︸ ︷︷ ︸
target

distribution

(End)

• Let N denote the number of samples and N = 1, . . . , N .

• At any time t, maintain weighted samples {W (n)
t , X

(n)
t |n = 1, . . . N} and

use these particles to generate samples from the target distribution at the
next time point using sequential importance sampling.

• Motivation: It is easier to move the particles from one target to the next
if λt is close to λt+1.
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SMC sampler for GGMs

• Aim: sample from p(G1, . . . , GK |y) ∝ γ(G1, . . . , GK |y).

• Construct the sequence of target densities:

p(G1, . . . , GK |y)φ1 , p(G1, . . . , GK |y)φ2 , . . . , p(G1, . . . , GK |y)φT ,

where 0 < φ1 < φ2 < . . . φT = 1 are user-specified temperatures.

• At t, maintain samples {W (n)
t , (G1, . . . , GK)

(n)
t |n ∈ N} approximating

p(G1, . . . , GK |y)φt ∝ γ(G1, . . . , GK)φt .

• Initialization Sample each edge in Gk independently with probability 0.5
for k = 1, . . . ,K and repeat N times. The weight of each sample is

w
(n)
1 = γ((G1, . . . , GK)

(n)
1 )φ12rK ,

where r = p(p− 1)/2.
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SMC Algorithm for multiple GGMs

• Transition Increase the temperature from φt−1 to φt at time t ≥ 2,

w
(n)
t = w

(n)
(t−1)γ((G1, . . . , GK)

(n)
t−1)

φt−φt−1 .

• Resampling To prevent degeneracy of the particle approximation,

resample when effective sample size, ESS = {
∑N

n=1(W
(n)
t )2}−1 < N/3.

• MCMC steps Perform a small number of MCMC steps with invariant
distribution pt(G1, . . . , GK |y) to improve mixing. Generate candidates
for each sample by flipping a small number, M , of randomly selected
edges for each Gk.

• The SMC algorithm is easily parallelizable as computation of weights and
the MCMC steps can be performed independently for the N samples.
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SMC Algorithm for multiple GGMs

At t = 1,

• Draw (G1, . . . , GK)
(n)
1 uniformly at random from the joint graphical

space for n ∈ N .

• Compute weights {w(n)
1 } and normalized weights {W (n)

1 }.
For t = 2, . . . , T ,

• Update weights {w(n)
t } and normalized weights {W (n)

t }.

• If ESS < Nthreshold, resample particles and set W
(n)
t = 1/N for n ∈ N .

• For n ∈ N ,

• Randomly select M edges from the set of all possible edges..

• Set (G1, . . . , GK)
(n)
t = (G1, . . . , GK)

(n)
t−1.

• For m = 1, . . . ,M , k = 1, . . . ,K, let (G1, . . . , GK)
(n)
c be sample

candidate obtained from (G1, . . . , GK)
(n)
t by flipping the mth selected

edge in Gk. Accept sample candidate with probability

min
[
{γ((G1, . . . , GK)

(n)
c )/γ((G1, . . . , GK)

(n)
t )}φt , 1

]
.
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Simulations

• Compare multiplicative prior with uniform and size-based prior.

• Set K = 1, p = 20 nodes. Generate data from three types of networks:

1. Multiplicative model: Generate πi
i.i.d.∼ Beta(0.1, 0.1), Ai,j ∼ Bern(πiπj).

2. Scale-free network: Generate using Barabási-Albert (BA) model.
3. Community network: Divide p nodes into two equal-size groups.

Assume within and across group interaction rates of 0.6 and 0.02.
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Simulations

• Ten datasets are simulated from the GGM by setting H = 100. The
underlying network is regarded as the “true” graph.

• For multiplicative prior, consider (1) a = b = 1, (2) find a, b such that
shape of prior degree distribution resembles that of true graph.

• SMC sampler: set N = 500, M = 3, {φt} = (0.01, 0.02, . . . , 1),
T = 100. Average CPU time for each experiment is (6.4± 0.5) hours.

• Using the weighted samples, we compute the posterior probability of
occurrence of each edge and summarize results using the area under ROC
curves (AUC).
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Simulations
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Figure: Boxplots of AUC values.

• The multiplicative priors performed better than the uniform and
size-based priors for data simulated from the multiplicative model.

• For data simulated from scale-free and community networks, performance
of different priors are quite similar. For these networks, the multiplicative
prior performed better if hyperparameters were tuned to match the
degree distribution of the true graph.
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Simulations

• Investigate ability of multiplicative prior to borrow information across
graphs when the nodes have similar connectivity.

• Simulate 10 datasets each with H = 100 observations, p = 20 variables,
K = 2 groups, x1 = (1, 0) and x2 = (1, 1).

• Assume 50 observations in each
group. The graphs are generated
from the multiplicative model
setting σ21 = 10 and σ22 = 0.01.

• Connectivity of nodes in G1 may
vary over a wide range while
connectivity of each node in G1

and G2 are similar.
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Simulations

Compare

1. uniform prior (equal prior probability for each pair of graphs).
2. joint multiplicative prior with σ21 = 10, σ22 = 0.01
3. independent multiplicative priors for G1 and G2 with hyperparameters

matched to degree distributions of true graphs.

• Using SMC algorithm (same settings), average
CPU time for joint prior (K = 2) is (12.4± 0.5)
hours and for the independent multiplicative
priors (K = 1) is (6.5± 0.4) hours.

• The joint multiplicative prior performs better
than the uniform prior and independent
multiplicative priors indicating the ability of the
multiplicative prior to encourage similarity in
connectivity of nodes across graphs.
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Urinary metabolic data

• Investigate correlation structure of p = 22 urinary metabolites in response
to Cd exposure. Two analyses:

1. Consider the individuals as a homogeneous group.
2. Divide into two groups: S1 (control group, Cd exposure ≤median)

and S2 (diseased group, Cd exposure >median).

• Use R package GeneNet to obtain fast shrinkage estimators of partial
correlation in the network. The degree distributions provide a basis for
determining appropriate hyperparameters for the multiplicative prior.

• The observations of each variable are first standardized. For SMC
sampler, set N = 500, M = 5, {φt} = (0.005, 0.01, . . . , 1), T = 200.
Average CPU time for each experiment is (24.7± 3.0) hours for K = 1
and (48.0± 7.5) hours for K = 2.

26



Case: K = 1

• Compare multiplicative prior (a = b = 1 and a = b = 0.1), size-based
prior and uniform prior.

• Fit GGM and compute posterior probability of occurrence of each edge.
The graphs obtained under multiplicative and size-based priors are similar
and much sparser than that of the uniform prior.
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each edge is proportional to its posterior probability.
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Case: K = 1

• For the multiplicative prior, we can obtain uncertainty measures of the
tendency of each node to form connections with other nodes.

• a = b = 0.1 places too much prior weight at 0 and 1. a = b = 1 provides
a better fit.
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Figure: Posterior distribution of πi of each metabolite under multiplicative prior
with a = b = 1 (first 3 rows) and a = b = 0.1 (last 3 rows).
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Case: K = 2

• Difference in graphical structure between G1 (Cd exposure ≤medium)
and G2 (Cd exposure >medium) is of interest.

• Consider four priors: multiplicative model with

1. σ21 = σ22 = 1 (suggested by degree distributions from GeneNet)
2. σ21 = 1 and σ22 = 10 (allow structure of G2 to vary more from G1)
3. σ21 = σ22 = 10 (assumes connectivities are closer to 0 or 1)

and the uniform prior.

• To compare G1 and G2, we construct differential networks which display
only edges likely to appear in one graph but not the other. Let ρkij be the
posterior marginal probability of inclusion of edge (i, j) in Gk. We
estimate ρkij as the proportion of SMC samples for which (i, j) was

included in Gk and consider an edge as differential if |ρ1ij − ρ2ij | > κ.
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Differential network for different priors

• Here we set κ = 0.5.

• Edges in blue are
likely to appear in
G1 but not in G2

and pink edges are
likely to appear in
G2 but not in G1.
The labels indicate
the estimate of
|ρ1ij − ρ2ij | for each
edge.
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Case: K = 2

• The full network (K = 1) and the differential network (K = 2) show
similar topological characteristics corresponding to subgraphs of
metabolites.

• K = 2: different prior hyperparameters lead to different levels of
shrinkage, but there is similarity in biological interpretation – both figures
show three different sub-graphs linking metabolites with shared origin.

• A group of organic acids (Suc, Pyr, AcO, PCS) are connected,
sometimes also with PAG.

• The second group contains TMA and TMAO (part of choline
metabolism), plus 3-HV and 4-DEA (products of amino acid
catabolism). Choline is an essential nutrient metabolised in the liver.
Due to its long biological half-life, Cd accumulates in human tissues,
especially the liver and kidney, so this observation may point towards
a possible mechanistic connection.
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Case: K = 2

• The third group links Cit and Gly (closely associated in central carbon
metabolism). A strong correlation between Cd and Cit was found by
Ellis et al. (2012), while Valcarcel et al. (2011) found a significant
deregulation of the dependency network associated with
dimethylglycine, a biproduct of the synthesis of Gly from choline.

• It is plausible that several of the metabolites found in the full and
differential networks are involved in pathways disregulated due to Cd
exposure.

• Interpretation of dependency networks is difficult as metabolite
associations derive from a variety of factors but they give us a novel view
of the data not exposed in conventional analyses, and may help to
generate new hypotheses to be investigated by future biochemical
experiments.
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Conclusion

• We propose using the multiplicative random graph model as a prior on
the graphical space of GGMs.

• Encourage sparsity or particular degree structures, when such prior
knowledge is available.

• Accommodate a wider range of degree structures than the
Erdős-Rényi model, e.g. right-skewed or U-shaped degree
distributions, by varying the hyperparameters.

• Illustrate how this prior can be applied to both single and multiple GGMs

• Develop SMC sampler for posterior inference (stable and parallelizable).

• Multiplicative prior yields rich posterior inference, enabling a study of the
connectivity of each node and how the propensity to connect varies
across different experimental conditions.
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