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Motivation
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Want

flexible model for time-evolving distribution

data driven clustering

allow for covariates

prediction

feasible posterior inference

framework for automatic information sharing across time

possible easily generalizable tools for efficient sharing of information
across data dimension (e.g. space)



Nonparametric Mixture

At time t, data yi¢, ..., Ynt

iid
7 1) = [ KOy |0)Gi( df)
where G is the mixing distribution at time t.
Assign flexible prior to G, e.g. DP, PT, Pytman-Yor, ...

=



Dirichlet Process (DP)

Probability model on distributions G ~ DP(«, Gp), with measure
Go = E(G) and precision parameter a.

G is a.s. discrete




Sethuraman’s stick breaking representation

G = ZW},(S@h
h=1

& ~ Beta(l,a)
h—1

wh = & [J1-¢),

i=1

0, < Gy, h=1,2,...

where §(x) denotes a point mass at x, 1, are weights of point masses at
locations 6.



Dirichlet Process Mixtures (DPM)

In many data analysis applications the discreteness is inappropriate.

To remove discreteness: convolution with a continuous kernel

fly) = / ply | 0)dG(0)
G ~ DP(O&,G())



Dirichlet Process Mixtures (DPM)

...or with latent variables 9;

~ DP(«, Gp)
0, ~ G
fly) = p(y|0)

Nice feature: Mixture is discrete with probability one, and with small «,
there can be high probabilities of a finite mixture.

Often p(y | 0) = N(B,0%) — f(y) = >_p2y waN(Bh, 0?)



Comment

Under G : p(6; =6;) >0

e Observations share the same 6 = belong to the same cluster

= DPM induces a random partition of the observations {1,...,n}

Note: in the previous model the clustering of observations depends only on
the the distribution of y.



Models for collection of distributions

Observations are associated to different temporal coordinates

v 7 h(y) = / K(y | 0)Ge( d6)

Recent research focuses on developing models for a collection of random
distributions

{Gyte T}

T discrete set.
Goal: induce dependence.
Reason: properties of the distributions f; are thought to be similar in
some way; e.g. similar means, similar tail behaviour, distance between
them small.



Dependent Dirichlet Process

If G ~ DP(Gp, ), then using the constructive definition of the DP
(Sethuraman 1994)

where (64)?2; are iid from some Gg(6) and (wy) is a stick breaking
process

Wik =  Zik H(l — z4j)
J<k
z;j ~ Beta(l,ay)

Dependence has been introduced mostly in regression context,
conditioning on level of covariates x.



Dependence Structure

Introduce dependence

=» through the base distributions Gp; of conditionally independent
nonparametric priors Gy = Simple but restrictive

=» dependence only in the atoms of the G; = efficient computations but
not very flexible approach

=» dependence structure in the weights = complex and inefficient
computational algorithms, limiting the applicability of the models

=>» alternative is to assume

Gt = 7Tt5+ (1 — Wt)G:



Dependence through Weights

flexible strategy
random prob measures share the same atoms

under certain conditions we can approximate any density with any
atoms

varying the weights can provide prob measures very close (similar
weights) or far apart



Temporal Dependence

v Literature: Griffin and Steel (2006), Caron, Davy and Doucet
(2007), Rodriguez and ter Horst (2008), Rodriguez and Dunson
(2009), Griffin and Steel (2009), Mena and Walker (2009),
Nieto-Barajas et al. (2012), Di Lucca et al. (2013), Bassetti et al.
(2014), Xiao et al. (2015), Gutirrez, Mena and Ruggiero (2016) ...

v/ There exist many related constructions for dependent distributions
defined through Poisson-Dirichlet Process (e.g. Leisen and Lijoi
(2011) and Zhu and Leisen (2015)) or correlated normalized
completely random measures (e.g. Griffin et al. 2013, Lijoi et al.
2014)

v Related approach: Covariate Dependent Random Partion Models

v Idea: dynamic DP extension can be developed by introducing
temporal dependence in the weights through a transformation of the
Beta random variables and specifying common atoms across G;.



Related Approaches

k—1

Gt = Z WekOo,, Wik = ek H(l —&ti)s Een ~ Beta(l, @)
k=1

i=1

X BAR Stick—Breaking Process (Taddy 2010): defines evolution
equation for w;:

& = (ueve)ée—1+ (1 — uy) ~ Beta(l, o)
us ~ Beta(a,1 - p), vt ~ Beta(p,1 — p)
0 < p<1, up L vy

X DP marginal, corr(&:, & k) = [pa/(1 4+ a — p)]k >0

X Prior simulations show that number of clusters and number of
singletons at time t = 1 is different from other times.

X Very different clustering can corresponds to relatively similar
predictive distributions.



X Latent Gaussian time-series (DeYoreo and Kottas 2018):

2,2
& = exp {—C;m} ~ Beta(a, 1)
«

¢ ~ N(0,1)
el ne-1,6 ~ N(gne1,1-¢%),  [g] <1

k—1
wep = 1 —¢&, Wk = (1 - ftk) H fti
i=1
n: AR(1) process.

X a > 1 implies a 0.5 lower bound on corr(&;, &:—k). As a result, same
weights (For example, the first weight at time 1 and first weight at
time 2) always have correlation above 0.5.

X n (AR component) is squared so that the correlation between
different times is positive.

X These problems can be overcome by assuming time-varying locations.



Latent Autoregressive Process

Want: Autoregressive model for a collection of random function G;.

Goal: to obtain flexible time-dependent clustering.

We borrows ideas from copula literature, in particular from Marginal Beta
regression (Guolo & Varin 2014)

Recall Probability Integral Transformation:

If € ~ N(0,1) and F is the cdf of a Beta distribution then
Y = F71(d(e); a, b)

is marginally distributed as a Beta with parameters (a, b).



v AR process:
€1

€t

Nt

v/ Stick-breaking construction

{ew}
Etk
Wik

Ok

Gt

iid
~Y

iid
~Y

iid

~

ARDP

N(0,1)
@DEtf]_ ‘I— nt, t > 1
N(0,1 —%?)

AR(1), k=1,...,00
FoH(®(ew); ar, br)
u [ (1 — &)

1<k
Go

o0
E Wi Og,
k=1



Comments

Easy to generate {G;, t =1,...}.

The marginal distribution of ¢; is N(0,1) and therefore the marginal
distribution of &; is Beta with desired parameters.

If a; = 1, by = «, then marginally each G; is DP(«, Gp).

The {&:} inherit the same Markov structure (AR(1)) of the {e:}
process, and therefore also the {G;,t =1,2,...} is AR(1).

Easy to derive the k—step predictive densities G;4x as it is easy to
derive the weights.



Evolution of the weights through time

We can derive:

v The conditional distribution of &; | &:—1:

|

L(&e | &e-1) 1—(1—®(2)Y
Z o~ N (- (1)) 1 - )

v/ The conditional law of &, given €;_1:

L{& | e} = L{F7Y(P(er);a,b) | €1}
€t | €t—1 ~ N(¢€t—1, 1- ¢2)

OH1 — (1 — %)) — e
P& < x|€e-1) = c]>< N 1)




25

2.0

15

1.0

§1 =05 & =09

« = 1. Ability of accommodate a variety of distributional shapes over the
unit interval.



Posterior Inference

MCMC based on truncation of DP to L component.

Blocked Gibbs sampler (Ishwaran and James 2001) is extended to
include a Particle MCMC update (Andrieu et al. 2010) for the
weights of the DP.

Let s; and w; be the allocation and the weight vector at time t,
respectively. We need to sample from

P(W17~~-7WT‘51---;5T;w)

Standard algorithm such as the FFBS are not applicable since 1-step
predictive distributions, py(w; | w;—1), cannot be derived analytically.
Employ PMCMC , using the prior to generate samples €;. We exploit

Ly(we | we—1) = Ly(€r | €-1)
SMC approximations:

R
ﬁd,(wl, ., WT | S1... ,ST) = E w}&ew
r=1



Simulations
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T = 4, n = 100, independent time points, y;z ~ N.

T = 4,n = 100. At t = 1 data generated from 2 clusters of equal size. For t = 2, 3, 4, individuals remain in the same
cluster and the distribution of cluster will remain same over time.

T =4,n=100. At t = 1 data generated from 2 clusters of equal size. For t = 2, 3, 4, individuals remain in the same
cluster with probability 50% as t = i — 1, and with probability 50% , people will switch to the other cluster. Note that

the distribution of each cluster will change over time.



Disease Mapping

Disease incidence or mortality data are typically available as rates or
counts for specified regions, collected over time.

Data: breast cancer incidence data of 100 MSA (Metropolitan
Statistical Area) from United States Cancer Statistics: 1999-2014
Incidence, WONDER Online Database.
We use the data from year 2004 to year 2014.
Population data of year 2000 and year 2010 is obtained from U.S.
Census Bureau, Population Division. The population data of the
remaining years are estimated by linear regression.
Primary goal of the analysis:

=» identification of spatial and spatio-temporal patterns of disease (disease

mapping)
=» spatial smoothing and temporal prediction (forecasting) of disease risk.



Space-Time Clustering

=» Yj; = breast cancer incidence counts (number of cases), in region
MSA; at time t

=» N;; = the number of individuals at risk
=» Rj; = disease rate
=» Model:

Yit | Nit, Rir ~ Poisson(NjtR;), i=1,...,100; t=1,...11
In(Rit) = it + @i

,Uit|Gt ~ Gt
{G,t>1} ~ ARDP(1)
Go = N(0,10)

$1Cr2p ~ N(0,72[pC+(1—p)l,] ")



Spatial Component
1C.7%p~N(0.72[0C+ (1 p)ls] ")

— variance parameter 72 controls the amount of variation between the
random effect.

— the weight parameter p controls the strength of the spatial correlation
between the random effects

— the elements of C are equal to

ne, ifj=k
k=14 -1, ifj~k
0, otherwise.

where j ~ k denotes area (j, k) are neighbours and ny denotes the
number of neighbours of area (k).

2~ U(0,10), p ~ discrete uniform(0,0.05,0.10,0.15, ...,0.95)



Posterior Inference on Clustering
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Counts
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Dose-escalation Study

e Data: wbc over time for n = 52
patients receiving high doses of cancer

chemotherapy ‘

e CTX: anticancer agent, known to lower ;- \/
a person’s wbc i ‘

e GM-CSF: drugs given to mitigate some . SE

of the side-effects of chemotherapy

— initial baseline
— sudden decline when chemotherapy starts
— slow S-shaped recovery back to =~ baseline after end of treatment

— interest in understanding the effect of dose on wbc in order to protect
patients against severe toxicity



Model

log(Yie) | pie; e ~  N(pie, (A7) ™)
Kie = M+ XieBt
Mg, Tit | G ~ G
{G;,t >1} ~ ARDP(1)
Go ~ NormalGamma(uo, A, @, )



0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

Posterior Inference on v




Posterior Inference on Clustering
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Density

Posterior Density Estimation
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Conclusions

Dependent process for time-evolving distributions based on the DP —
could be generalised to GDP

Introduce temporal dependence through latent stochastic process —
Normal variables.

Advantage — more general process on ¢, e.g ARMA
flexible — can accommodate different correlation pattern
dependent clustering

borrowing of information across time-periods

general applicability

allows for prediction of Gyy1

posterior computations through PMCMC



