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Bayesian latent variable models



Bayesian latent variable models

Θ

pr

X

Y

pΘ(X,Y )

The following abstraction applies to many relevant statistical models:

• Θ is a vector of (hyper)parameters

• X is a vector of latent variables

• Y is a vector of observations

Only Y = y∗ observed, both Θ and X are unknown.

The model is defined in terms of the following conditonal laws:

• Θ ∼ pr( · ).

• (X,Y ) | Θ ∼ pΘ( · )
(Often, pΘ(X,Y ) = fΘ(X)gΘ(Y |X), but this is not relevant here.)

We are interested in the posterior of (Θ,X) after observing Y = y∗:

π(θ,x) = p(x,θ | y∗) ∝ p(x,θ,y∗) = pr(θ)pθ(x,y∗).
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Example of pΘ(X,Y ): Stochastic volatility model

• Θ = (φ, σx, σy)

• X = (X(1), . . . , X(T ))

stationary Gaussian AR(1) with

parameters (φ, σ2x).

• The observations

Y = (Y (1), . . . , Y (T )) are

zero-mean Gaussian with

sd(Y (t)) = σy exp(X(t)),

One realisation of X and Y with

θ = (0.9, 1, 2) and T = 200.
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Challenges for inference

θ

pr

x

y∗

gθ( · | x)

Typical scenario in a latent variable model:

• The hyperparameters Θ are low-dimensional

• dim(Θ) = 3 in the SV-example.

• The latent variables X are high-dimensional

• Often, dim(X) ∝ dim(Y ).

• dim(X) = 200 in the SV-example.

Standard ‘out-of-the-box’ inference (e.g. using BUGS, Stan. . . ):

• Simulate MCMC chain Zk = (Θk,Xk), targetting π.

• High overall dimension & high correlations
=⇒ inefficient
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Some popular inference algorithms



Structure of the model & notation for inference

θ

x

y∗

πm

r( · | θ)

Consider the following factorisation of the posterior:

π(θ,x) = πm(θ)r(x | θ),

where the marginal posterior density and the corresponding conditional

are given as follows:

πm(θ) =

∫
π(θ,x)dx ∝ pr(θ)L(θ)

r(x | θ) =
pθ(x,y∗)

L(θ)

with the marginal likelihood L taking the form:

L(θ) =

∫
pθ(x,y∗)dx.
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Separate algorithms for parameters & latents?

• θ low-dimensional, but πm often non-standard

=⇒ Non-parametric approximation, such as MCMC

• Problems (unless pθ(x,y∗) is of specific form such as Gaussian):

• L(θ) is intractable.

• r(x | θ) is intractable.

• Two (succesful branches of) solutions:

• Approximate L(θ) and r(x | θ) analytically.

• Approximate L(θ) and r(x | θ) using a specialised Monte Carlo algorithm.
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Inference: Integrated nested Laplace approximation (INLA)

(Rue, Martino & Chopin, 2009, J. R. Stat. Soc. Ser. B. Stat. Methodol.)

• Suppose pθ(x,y) = fθ(x)gθ(y) where fθ( · ) is Gaussian (& gθ of certain form)

• For any given θ, use Gaussian (Laplace) approximation p̂θ(x,y∗) ≈ pθ(x,y∗)

=⇒ approximate likelihood La(θ) =
∫
p̂θ(x,y∗)dx

• Take a finite number of points (θ1, . . . ,θn) and approximate the full posterior as

(something like)

π̂(dθ, dx) =

∑n
k=1wkpr(θk)p̂θk

(x,y∗)δθk
(dθ)dx∑n

j=1wjpr(θj)La(θj)
.

where the weight wk depends on the strategy how (θi) chosen. . .

• (Further marginal corrections may be applied as well. . . )

• There is an approximation error (which does not vanish if n→∞)
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Inference: Particle Markov chain Monte Carlo (PMCMC) i

(Andrieu, Doucet & Holenstein, 2010, J. R. Stat. Soc. Ser. B. Stat. Methodol.)

• For any given θ, it is straightforward to generate random variables (V (i),X(i)),

with V (i) ≥ 0, using particle filter (PF), which satisfy

E
[ m∑

i=1

V (i)

]
= L(θ), and E

[ m∑
i=1

V (i)f(X(i))

]
=

∫
pθ(x,y∗)f(x)dx.

• The algorithm:

• Implement Metropolis-Hastings (Θk)k≥1 targetting πm,

using
∑m
i=1 V

(i) in place of L(θ).

• Construct an approximation of full π(θ,x) using (V (i),X(i)) above.
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Inference: Particle Markov chain Monte Carlo (PMCMC) ii

Particle marginal Metropolis-Hastings (PMMH) algorithm:

• Draw a new proposal Θ̃k ∼ q(Θk−1, · )

• Run PF with θ = Θ̃k −→ (Ṽ
(i)
k , X̃

(i)
k ).

• Accept and set (Θk, V
(i)
k ,X

(i)
k )← (Θ̃k, Ṽ

(i)
k , X̃

(i)
k ) With probability

min

{
1,

pr(Θ̃k)
(∑m

i=1 Ṽ
(i)
k

)
q(Θ̃k,Θk−1)

pr(Θk−1)
(∑m

i=1 V
(i)
k−1
)
q(Θk−1, Θ̃k)

}
;

otherwise reject and set (Θk, V
(i)
k ,X

(i)
k )← (Θk−1, V

(i)
k−1,X

(i)
k−1)
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Inference: Particle Markov chain Monte Carlo (PMCMC) iii

What is nice about this is that:

• This is valid MCMC, in the sense that

1

n

n∑
k=1

∑m
i=1 V

(i)
k f(Θk,Xk)∑m
i=1 V

(i)
k

n→∞−−−→
∫
f(θ,x)π(θ,x)dθdx, (a.s.)

(under a minimal Harris recurrence assumption)

• =⇒ PMCMC provides (asymptotically) exact inference (as n→∞).

(NB: There is no asymptotic in ‘number of particles’ m. . .

. . . but m must be ‘large enough’ to make the MCMC mix sufficiently well. . . )
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Should I use INLA or PMCMC?

• (When applicable) INLA1 is fast, and often very accurate

• How accurate? How can you tell?

• PMCMC computationally demanding, but exact (asymptotically)

• Does not require ‘nearly Gaussian’ structure of pθ(x,y).

• Might need large m to work well =⇒ slow

• Might still be ‘sticky’ (slower than geometric if
∑m
i=1 V

(i) are unbounded. . . )

• How about combining ideas both from INLA and PMCMC:

→ Monte Carlo correction/diagnosis for INLA output, or

→ Laplace approximations to speed up PMCMC. . .

1The same arguments hold with any other approximate scheme in place of INLA’!
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Approximations for speeding up PMMH — delayed acceptance

(Christen & Fox, 2005, J. Comput. Graph. Statist.)

Trick to make MCMC faster by using an approximation-based ‘screening’.

• Draw a new proposal Θ̃k ∼ q(Θk−1, · )
• With probability

min

{
1,

pr(Θ̃k)La(Θ̃k)q(Θ̃k,Θk−1)

pr(Θk−1)La(Θk−1)q(Θk−1, Θ̃k)

}
continue to the next step, otherwise reject.

• Run PF with θ = Θ̃k −→ (Ṽ
(i)
k , X̃

(i)
k )

• With probability

min

{
1,

(∑m
i=1 Ṽ

(i)
k

)
/La(Θ̃k)(∑m

i=1 V
(i)
k−1
)
/La(Θk−1)

}
accept, otherwise reject.
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Importance sampling type estimator

based on marginal MCMC



Approximations for speeding up PMMH — importance sampling type

(Review, consistency and CLTs: V, Helske, Franks, arXiv:1609.02541)

Phase 1: MCMC which targets the approximate marginal πa(θ) ∝ pr(θLa(θ)

• Draw a new proposal Θ̃k ∼ q(Θk−1, · )
• With probability

min

{
1,

pr(Θ̃k)La(Θ̃k)q(Θ̃k,Θk−1)

pr(Θk−1)La(Θk−1)q(Θk−1, Θ̃k)

}
accept Θk = Θ̃k; otherwise reject Θk = Θk−1.

Phase 2: For k = 1, . . . , n, run PF with θ = Θk −→ (V
(i)
k , X

(i)
k ) and calculate

En =

∑n
k=1

∑m
i=1W

(i)
k f(Θk,X

(i)
k )∑n

j=1

∑m
`=1W

(`)
j

where W
(i)
k =

V
(i)
k

La(Θk)
.
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Why IS might be better than DA?

• Phase 2 corrections entirely independent (‘post-processing’)

=⇒ parallelisable =⇒ scalable.

• Allows for calculating the correction only for accepted states (‘jump chain’)

=⇒ less expensive than DA

• Allows for (further) thinning before (expensive) correction

=⇒ further savings

• The approximate marginal MCMC (Θk) need not rely on estimators

=⇒ safer & easier to implement efficiently (e.g. adaptive MCMC. . . )

• The MCMC (Θk) need not be reversible

=⇒ new exciting non-reversible samplers readily applicable!

• Non-negativity of the estimator Wk not required

=⇒ allows for direct ‘debiasing’ tricks (or ‘randomised multi-level Monte Carlo’)

(cf. Rhee & Glynn, Oper. Res. 2015; V, Oper. Res., 2018)
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General setup & assumptions

General setup for IS type estimators based on approximate marginal MCMC:

• π(θ,x) = πm(θ)r(x | θ).

• πm � πa

• (Θk)k≥1 MCMC Harris ergodic wrt πa

•
(
ξk
)
k≥1 conditionally independent finite

random signed measures given (Θk)k≥1,

which form “proper weighting”:

General The LVM example

πm(θ) ∝ pr(θ)L(θ)

πa(θ) ∝ pr(θ)La(θ)

ξk(f)
∑m

i=1W
(i)
k f(Θk,X

(i)
k )

E[ξk(1) | Θk = θ] = wu(θ), where wu(θ) = cw
πm(θ)

πa(θ)
, cw > 0

E[ξk(f) | Θk = θ] = wu(θ)

∫
r(x | θ)f(θ,x)dx
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Consistency & CLT

• If πa(m(1)) <∞ where m(1)(θ) = E
[
|ξk(1)|+ |ξk(f)|

∣∣ Θk = θ
]
, then

En =

∑n
k=1 ξk(f)∑n
j=1 ξj(1)

n→∞−−−→
a.s.

π(f) =

∫
f(θ,x)π(θ,x)dθdx.

• Suppose further that (for instance):

• πa(m(2)) <∞ with m(2) = E
[
ξk(f̄)2

∣∣ Θk = θ
]

where f̄(θ,x) = f(θ,x)− π(f),

• (Θk)k≥1 follows P which is aperiodic and reversible, with asymptotic variance

Var(wuf̄
∗, P ) <∞, where f̄∗(θ,x) =

∫
f̄(θ,x′)r(x′ | θ)dx′,

Then,

√
n
[
En − π(f)

] n→∞−−−→
d

N

(
0,

MCMC︷ ︸︸ ︷
Var(wuf̄

∗, P )

c2w
+

IS corr︷ ︸︸ ︷
πa(v)

c2w

)
,

where v(θ) = Var
(
ξk(f̄)

∣∣ Θk = θ
)
.
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Pseudo-marginal approximate chain

• The IS-type correction may be applied also when (Θk, Uk)k≥1 is a

pseudo-marginal chain arising from estimators Ũθ satisfying E[Ũθ] = La(θ).

In the pseudo-marginal case, consistency is more delicate:

• If Ũθ > 0 a.s., then then we may always use W
(i)
k = V

(i)
k /Uk.

• When P(Ũθ = 0) depends on θ, this must be accounted for.

• For instance, V
(i)
k is constructed independent of Uk, then we must compensate for

an extra factor p(θ) = P(Uθ > 0). . .  lazy ABC
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Examples



State space model with linear-Gaussian state dynamics

• State dynamics linear-Gaussian.

• Family of non-linear/non-Gaussian observation models.

• Approximate inference based on Laplace approximation (Durbin & Koopman,

Biometrika, 1997).

• Proper weighting based on:

(i) Bootstrap particle filter (BSF).

(ii) Simple importance sampling & antithetic variables (SPDK, Shephard & Pitt,

Biometrika, 1997; Durbin & Koopman, Biometrika, 1997)

(iii) ψ-auxiliary particle filter (ψ-APF: bootstrap PF for ‘Laplace twisted model;’ see

Guarniero, Johansen & Lee, JASA, 2017)

• Simple IS-corrected estimator (IS1) or estimator based on jump chain (IS2).

• Compare against direct pseudo-marginal (PM) and delayed acceptance (DA).
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State space model with linear-Gaussian state dynamics: empirical results

(Stochastic volatility model with T = 5473 observations, S&P index data. The

numbers are ‘inverse relative efficiencies’ (avg. time (h) × MSE) — lower is better.)

BSF SPDK ψ-APF

AI AIG IS2 IS28 PM DA IS1 IS2 PM DA IS1 IS2

Time 1.3 0.2 25.2 4.6 4.4 1.9 2.8 1.5 2.4 1.4 1.5 1.3

φ 0.083 0.062 0.304 0.050 1.015 0.696 0.684 0.483 0.021 0.024 0.009 0.017

ση 0.726 0.298 0.483 0.096 3.090 3.307 0.603 0.710 0.044 0.055 0.016 0.028

ν 0.008 0.747 0.287 0.042 1.208 2.544 0.228 0.404 0.026 0.027 0.010 0.020

X1 0.133 0.035 0.321 0.071 3.054 1.883 0.346 0.373 0.029 0.026 0.007 0.018

X5473 1.887 0.417 0.540 0.112 6.574 1.871 0.444 0.810 0.057 0.064 0.012 0.039
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Discretely observed (time-discretised) diffusion

• ‘Ideal’ state dynamics follows a stochastic differential equation (SDE).

• Cannot simulate exactly from the ideal transition.

• Easy to simulate from time-discretised model (Euler, Milstein, . . . ).

• The denser discretisation, the more simulation costs.

• Conditionally independent observations at discrete times.

• Approximate inference: particle marginal Metropolis-Hastings (PMMH) with

‘coarse’ (and cheap) time-discretisation.

• Correction with particle filter using ‘fine’ time-discretisation.
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Discretely observed (time-discretised) diffusion: empirical results

(Geometric Brownian motion observed at integer times, linear-Gaussian observations of
log-state, Milstein discretisation. Parallel implementation with 48 cores, time mins.)

Mean IRE

Init. Prior mean Prior sample Prior mean Prior sample

GT DA IS2 IS2t DA IS2 DA IS2 IS2t DA IS2

Time — 12.3 3.4 1.9 14.0 3.3 12.3 3.4 1.9 14.0 3.3

ν 0.053 0.061 0.053 0.053 0.064 0.053 0.069 0.004 0.002 0.135 0.004

σx 0.253 0.278 0.253 0.253 0.251 0.252 0.576 0.029 0.019 0.336 0.022

σy 1.058 1.054 1.058 1.058 1.083 1.058 0.088 0.020 0.014 1.010 0.022

X1 1.254 1.273 1.254 1.246 1.243 1.252 0.670 0.109 0.119 0.805 0.103

X50 2.960 2.953 2.966 2.935 20.773 2.971 12.605 1.880 2.074 4×106 2.308
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Discretely observed diffusion: Ideal diffusion inference with randomised MLMC

• Instead of correcting with ‘fine’ dynamics, it is possible to do IS correction for

ideal SDE dynamics (Franks, Jasra, Law & V, arXiv:1807.10259, 2018).

• The correction is based on

• Debiasing trick/randomised MLMC (Rhee & Glynn, Oper. Res., 2015) with

• ‘∆-PF’ (Jasra, Kamatani, Law & Zhou. SIAM J. Sci. Comp., 2018).

• Detailed presentation in the closing workshop!
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Discussion



Is IS correction always better than DA (with same n)?

No.

More details Wed 12 Sep at 4pm. . .
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DA can be much better than IS

(Franks, V: arXiv:1706.09873)

πa

πm

q

DA better than IS: πm and πa are uniform, q uniform random walk. Approximate chain

spends a lot of time outside the support of πm.
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But DA can also be much worse than IS. . .

(Franks, V: arXiv:1706.09873)

πa

πmπm

q

IS better than DA chain, which is reducible (cannot switch mode of πm).
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Can we say something about IS vs DA?

• In practice, we have πa ≈ πm, which is clearly not the case in the examples above.

• Empirical results suggest that IS often improves on DA slightly

(Franks, V: arXiv:1706.09873):

• If c−1w Wk ≤ C a.s., then

Var(IS) ≤ CVar(DA) + π̄(ξ2[C − c−1w W ])

where π̄ corresponds to the stationary distribution of the DA chain.

 With parallelisation, IS might be a better choice. . .

• NB: In the LVM setting we may modify the likelihood approximation:

• La(θ)→ La(θ) + ε

This leads to bounded weights if the likelihood estimators are bounded.
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Concluding remarks

• If there is an approximation available, use it!

• IS type correction is a natural way to use the approximation

• May be a useful alternative to DA pseudo-marginal algorithm (because of the several

possible advantages). . .

• . . . but not guaranteed to be uniformly better

• Our contributions:

• arXiv:1609.02541: Review, consistency/CLT results; application in the state-space

context, using Laplace approximation and coarse discretisation of diffusion model

• arXiv:1706.09873: Theoretical bounds relating the efficiencies of IS/DA

• arXiv:1807.10259: Full inference of SDE driven HMM based on randomised MLMC.

• Ongoing work:

• Application beyond the state-space context.

• Some insights for ABC-MCMC. . .
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