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Sequential Monte Carlo Estimator

Assume {Xt}t≥1 is a latent Markov process, i.e. X1 ∼ µθ(·) and

Xt+1| (Xt = x) ∼ fθ ( ·| x) , Yt | (Xt = x) ∼ gθ ( ·| x) .

Observations {Yt}t≥1 are conditionally independent given {Xt}t≥0.
Likelihood of y1:T = (y1, ..., yT ) is

p(y1:T ; θ) =
∫

XT+1
p(x0:T , y1:T ; θ)dx0:T .
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Sequential Monte Carlo Estimator

SMC provides an unbiased estimator of relative variance O (T/N)
where N is the number of particles.

Whatever being N ≥ 1, the pseudo-marginal MH admits π (θ) as
invariant distribution.
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A directed acyclic graph (DAG) of the problem:
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SMC: Likelihood Estimation

Both g(yt |xt ), f (xt |xt−1) may be indexed by fixed parameters θ.

Filtering density
p(xt |y1:t ; θ).

As an important byproduct we also obtain the one step predictive
density

p(yt |y1:t−1; θ).

Yields the likelihood (KF)

p(y1:T |θ) = p(y1|θ)∏T−1
t=1 p(yt+1|y1:t ; θ).
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Particle Filter Estimation

Simulation based methods to perform filtering in nonlinear/
non-Gaussian state space models.

See Gordon, Salmond and Smith (1993) (GSS), Kitagawa (1996),
Pitt and Shephard (1999) and reviewed by Doucet et al. (2000).

We aim to have ‘particles’, x1t , ....., x
N
t with associated discrete

probability masses π1t , ....,π
N
t , drawn from the density f (xt |y1:t ) .
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Bootrap Filter: GSS (1993, IEE)

We start at t = 0 with samples from xk0 ∼ p(x0). For t=1,..,T:
We have samples xkt ∼ p(xt |y1:t ) for k = 1, ...,N.

1 For k = 1 : N, sample x̃kt+1 ∼ f (xt+1|xkt ).
2 For k = 1 : N,

πkt+1 =
g(yt+1|x̃kt+1)

∑N
i=1 g(yt+1|x̃ it+1)

.

3 For j = 1 : N, sample x jt+1 ∼ ∑N
k=1 πkt+1δ(x

j
t+1 − x̃kt+1).

Step 3 multinomial (or stratified) sampling (from the mixture).
This will yield an approximate sample the desired posterior density,
f (xt |y1:t ) as t varies.
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SMC Likelihood Estimation

Parameter estimation using likelihood function, via prediction
decomposition given by;

log L(θ) = log p(y1,....,.yT |θ) = ∑T
t=1 log p(yt+1|θ; y1:t ).

We need to estimate the function :

p̂(y1:T |θ) = p̂(y1|θ)
T−1
∏
t=1

p̂(yt+1|y1:t ; θ),

p̂(yt+1|θ; y1:t ) =
1
N

N

∑
i=1
p(yt+1|x̃ it+1).

where x̃ it+1 ∼ f (xt+1|y1:t ; θ), from step (2).

Remarkably (just like in IS) the lik estimator p̂(y1:T |θ) is unbiassed
for p(y1:T |θ) regardless of N, Del Moral (04).
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Bayesian Inference

Likelihood function p (y ; θ) where θ ∈ Θ ⊆ Rd .

Prior distribution of density p (θ) .

Bayesian inference relies on the posterior

π (θ) = p ( θ| y) = p (y ; θ) p (θ)∫
Θ p
(
y ; θ′

)
p
(
θ′
)
dθ′
.

For non-trivial models, inference relies typically on MCMC.
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Particle Metropolis: Intractable Likelihood Function

In numerous scenarios, p (y ; θ) cannot be evaluated pointwise; e.g.

p (y ; θ) =
∫
p (x , y ; θ) dx

where the integral cannot be evaluated.

A standard “solution”consists of using MCMC to sample from

p ( θ, x | y) = p (x , y ; θ) p (θ)
p (y)
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Standard MCMC Approaches

Standard MCMC schemes target

p ( θ, x1:T | y1:T ) ∝ p (θ) pθ (x1:T , y1:T )

using Gibbs type strategy; i.e. sample alternately X1:T ∼ pθ ( ·| y1:T )
and θ ∼ p ( ·| y1:T ,X1:T ) .

Problem 1: It can be diffi cult to sample pθ (x1:T | y1:T ); e.g.
non-Gaussian state-space models.

Problem 2: Even when it is implementable, Gibbs can converge very
slowly e.g. diffusions

Problem 3: It may only be possible to generate from f (xt |xt−1) not
to evaluate it, e.g. DSGE models.

Pseudo-marginal methods mimic an algorithm targetting directly
π(θ) = p ( θ| y1:T ) instead of p ( θ, x1:T | y1:T ).
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Pseudo Metropolis (PM)

Let p̂ (y ; θ,U) be an unbiased non-negative estimator of the
likelihood where U ∼ mθ (·); i.e.

p (y ; θ) =
∫

U
p̂ (y ; θ, u)mθ (u) du.

Introduce a target distribution on Θ×U of density

π (θ, u) = π (θ)
p̂ (y ; θ, u)
p (y ; θ)

mθ (u) =
p (θ) p̂ (y ; θ, u)mθ (u)

p (y)

Then unbiasedness yields∫
U

π (θ, u) du = π (θ)

Any MCMC algorithm sampling from π (θ, u) yields samples from π (θ).
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Pseudo-Marginal Metropolis-Hastings algorithm

Can form an unbiased estimator, based on N particles p̂ (y ; θ,U) .

Set
(

ϑ(0),U (0)
)
and iterate for j = 1, 2, ...

Sample ϑ ∼ q
(
·| ϑ(j−1)

)
, U ∼ mϑ (·) to obtain p̂ (y ; ϑ,U).

1 Compute

α = 1∧ p̂ (y ; ϑ,U)

p̂
(
y ; ϑ(j−1),U (j−1)

) p (ϑ)

p
(

ϑ(j−1)
) q
(

ϑ(j−1)
∣∣∣ ϑ
)

q
(

ϑ| ϑ(j−1)
)

2 With proba α, set
(

ϑ(j),U (j)
)

:= (ϑ,U) and stay where you are
otherwise.
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A Nonlinear State-Space Model

Standard non-linear model

Xt = 1
2Xt−1 + 25

Xt−1
1+X 2t−1

+ 8 cos(1.2t) + Vt , Vt
i.i.d.∼ N

(
0, σ2V

)
,

Yt = 1
20X

2
t +Wt , Wt

i.i.d.∼ N
(
0, σ2W

)
.

T = 200 data points with θ =
(
σ2V , σ

2
W

)
= (10, 10).

Diffi cult to perform standard MCMC as p (x1:T | y1:T , θ) is highly
multimodal.

We sample from p ( θ| y1:T ) using a random walk pseudo-marginal
MH where p (y1:T ; θ) is estimated using SMC with N particles.
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A Nonlinear State-Space Model
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of the MH sampler for various N.
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How to Select the Number of Samples

If N is too small, then the algorithm mixes poorly and will require
many MCMC iterations.

If N is too large, then each iteration is expensive due to estimating
the likelihood.

Equivalently we will examine σ2, the variance of the estimator of the
log-likelihood to trade off these two concerns.

Simple Guideline: We find the optimal value for σ around 1.
JoE (2012, Kohn, Giordani, Silva), Biometrika (2015, Doucet,
Deligiannidis, Kohn).
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Pseudo-Marginal Metropolis-Hastings algorithm

Consider the error in the log-likelihood estimator

Z = log p̂ (y ; θ,U)− log p(y ; θ) ∼ gθ(·)

In the (θ,Z ) parameterization, the target is

π (θ, u) = π(θ)
p̂ (y ; θ, u)
p (y ; θ)

mθ (u)⇒ π(θ, z) = π(θ) exp(z)gθ(z).
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How precise should the log-likelihood estimator be?

Aim: Minimize the “computational time”

CT (Q, h) = IACT (Q, h) /σ2

as σ2 ∝ 1/N and computational efforts proportional to N

where

IACT (Q, h) = Integrated Autocorrelation Time of {h (ϑi )}i≥1
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How precise should the log-likelihood estimator be?

The IACT is

IACT (Q, h) = 1+ 2
∞

∑
τ=1

corrπ,Q {h (θ0) , h (θτ)}

where Q is the pseudo-marginal kernel with acceptance criterion

min {1, r (θ, ϑ) exp (w − z)} .

where r (θ, ϑ) is exact Metropolis ratio,

and

z = log{p̂θ(y1:T )/pθ(y1:T )}, w = log{p̂ϑ(y1:T )/pϑ(y1:T )}.
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Aim of the Analysis

Simplifying Assumption: The noise Z is independent of θ and
Gaussian; i.e. g (z |σ) = N

(
z ;−σ2/2; σ2

)
:

π (θ, z) = π (θ) exp (z) g (z)︸ ︷︷ ︸
πZ (z |σ)

= π (θ)N
(
z ; σ2/2; σ2

)
.

Justified empirically and theoretically (a CLT and concentration).
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Pseudo-proof:

IID data, fixed θ (IS)

Z = log p̂(y |θ)− log p(y |θ) =
T

∑
t=1
log
{
1+

γt√
N

εt

}
,

where εt white noise, variance 1 and N = βT ,

'
T

∑
t=1

γt√
βT

εt −
1
2

γ2t
βT

ε2t −→ N
(
−1
2

γ2

β
,

γ2

β

)
,

where γ2 = T−1 ∑T
t=1 γ2t .

More detail (and more generality, PFs) in Bérard, Del Moral, Doucet
(EJP, 2014).

Need concentration (in θ as T −→ ∞), unproven.
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Simulation:

SSF (from JoE(2012, Kohn, Giordani, Silva))
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Figure: AR(1) plus noise model with fixed parameters. replications is 10, 000. SIR
likelihood estimator (divided by the true likelihood) on LEFT and for the error in
the log of the SIR likelihood estimator on RIGHT. Both N and T vary
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Special cases

When q(ϑ|θ) = π (ϑ), σopt = 0.92 (Pitt et al., JoE 2012). The acf
simply reduces to:

φn(θ,Q) =
∫
Pr(R | z ; σ)nπZ (z |σ) dz

IACT (σ) =
∫ 1+ Pr(R | z ; σ)

1− Pr(R | z ; σ)πZ (z |σ) dz .

Pr(R | z ; σ) analytically available.
Sherlock, Thiery, Roberts and Rosenthal, (Annals 2015) consider the
(joint) optimisation for a limiting target in the important case of
RWM. Again anytically available and exact. Similar results.
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Sketch of the Analysis

For general proposals and targets, direct minimization of
CTQh (σ) = IF

Q
h (σ) /σ2 impossible so minimize an upper bound over

it.

We introduce an auxiliary π(θ, z)−reversible kernel

Q∗ {(θ, z) , (dϑ, dw)} = q(ϑ|θ)g(w)αEX (θ, ϑ) αZ (z ,w) dϑdw

+ {1− $EX (θ) $Z (z)} δ(θ,z ) (dϑ, dw) ,

where we have a product acceptance criterion:

αEX (θ, ϑ) = min {1, r (θ, ϑ)} , αZ (z ,w) = min {1, exp (w − z)} .

Peskun’s theorem (1973) guarantees that IFQh (σ) ≤ IF
Q ∗
h (σ) so that

CTQh (σ) ≤ CT
Q ∗
h (σ).
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pseudo-proof: Jump chain

IACT: Eπ[x ] = 0, on J.C.s Douc and Robert (Annals, 2011)

π̃(x) =
π(x)p(x)
PA

(IACT + 1)Eπ[x2o ] =2∑∞
t=0 Eπ[xoxt ]

= 2∑∞
τ=0 Eπ,π̃[xoτx̃τ]

= 2∑∞
τ=0 Eπ,π̃

[
xo

x̃τ

p(x̃τ)

]
because sojourns Geometric

= 2PA ∑∞
τ=0 Eπ̃

[
x̃o
p(x̃0)

x̃τ

p(x̃τ)

]
change of measure for initial point

= 2PA
(
ĨACT + 1

)
Eπ̃

[
x̃2o

p(x̃0)2

]
.
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Simpler Bounds on the Relative Ineffi ciency

We obtain an explicit expression for IFQ
∗

h (σ).

If IF Q̃
EX

h/$EX
≥ 1, e.g. Q̃EX is a positive kernel, then

IFQh (σ)

IF EXh
≤ IFQ

∗

h (σ)

IF EXh
≤ 1
2

(
1+

1
IF EXh

)
πσ
Z (1/$σ

Z)−
1

IF EXh

and the bound is tight as IF EXh → 1 or σ→ 0.

As IF EXJ ,h/$EX
→ ∞,

IFQ
∗

h (σ)

IF EXh
→ 1

πσ
Z ($

σ
Z)
=

1
PA(σ)

.

Results used to minimize w.r.t σ upper bounds on
CTQh (σ) = IF

Q
h (σ) /σ2.
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Bounds on Relative Computational Time
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Left: upper bound on CTQ
∗

h (σ) as a function of σ for IF EXh = 1 (square),
4 (crosses), 20 (circles), 80 (triangles). Right: upper bounds on CTQ

∗

h (σ)
as a function of σ for IF EXJ ,h//$EX

= 1 for IF EXJ ,h//$EX
= 1, 4, 20, 80 and lower

bound (solid line).
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Application: Stochastic Volatility Model

Chernov et al., J. Econometrics (2003) and Huang & Tauchen, J.
Financial Econometrics (2005):

dv1 (t) = −k1 {v1 (t)− µ1} dt + σ1dW1 (t) ,

dv2 (t) = −k2v2 (t) + {1+ β12v2 (t)} dW2 (t) ,

d logP (t) = µydt + s-exp [{v1 (t) + β2v2 (t)} /2] dB (t) ,

with φ1 =corr{B (t) ,W1 (t)} and φ2 =corr{B (t) ,W2 (t)}.
Euler discretization of the volatilities v1 (t) and v2 (t) provides closed
form expression for Y (s) = logP (τs+1)− logP (τs ) .
Straightforward to estimate the likelihood and simulate forward.
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Application: Stochastic Volatility Model

Daily returns y = (y1, ..., yT ) of the S&P 500 index.

Bayesian Inference on θ =
(
k1, µ1, σ1, k2, β12, β2, µy , φ1, φ2

)
.

Performance of the pseudo-marginal for RW proposal w.r.t σ,
standard deviation of log p̂θ (y) at posterior mean θ.
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Empirical vs Assumed Distributions of Z for SV model:
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Figure: Empirical distributions (dashed) vs assumed Gaussians (solid) of Z
.T = 300 and T = 2700 at θ (left) and marginalized over π (θ).
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Integrated Autocorrelation Time of Pseudo-Marginal MH
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Figure: Average over the 9 parameter components of the log-integrated
autocorrelation time of pseudo-marginal chain as a function of σ for T = 300.
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Computational time for the SV model
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Figure: Computational time as a function of σ
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Guideline and Discussion

Guideline: Optimal σ depends on effi ciency of the ideal MH
algorithm but σ ≈ 1.2− 1.3 is a sweet spot.

Pseudo-marginal scales in O
(
T 2
)
at each iteration as we require

N ∝ T .
For i.i.d. data, simulated ML estimator is effi cient as long as N
increases at a rate faster than

√
T ; e.g. Lee, Econometric Theory,

1999.

Problem: the ratio pϑ (y1:T ) /pθ (y1:T ) is estimated by estimating
independently the numerator and denominator in pseudo-marginal.
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Problem: the ratio pϑ (y1:T ) /pθ (y1:T ) is estimated by estimating
independently the numerator and denominator in pseudo-marginal.
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Correlated Pseudo-Marginal Algorithm

Previously, we consider the likelihood estimator p̂θ (y1:T ;U) where
U ∼ mθ (·).
Reparameterize the likelihood estimator so that U ∼ N (0, I ).
Correlate estimators of pθ (y1:T ) and pϑ (y1:T ) by setting

p̂ϑ (y1:T ) = p̂ϑ (y1:T ;V )

where
V = ρU +

√
1− ρ2ε, ε ∼ N (0, I ) .

In practice, ρ will be selected close to 1.

The invariance of the PMH unaffected.

Can be seen as a solution of a standard O-U over [0, δ], ρ = exp(−δ).
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Correlated Pseudo-Marginal Algorithm

Correlated pseudo-marginal simulates a Markov chain {ϑi ,Ui}i≥1 of
limiting distribution π(θ, u).

At iteration i

Sample ϑ ∼ q ( ·| ϑi−1) and U = ρUi−1 +
√
1− ρ2ε, ε ∼ N (0, I ) .

Compute the estimate p̂ϑ (y1:T ;U) of pϑ (y1:T ) .

With probability

min{1, p̂ϑ (y1:T ;U)
p̂ϑi−1 (y1:T ;Ui−1)

p (ϑ)
p (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)

}

set ϑi = ϑ, Ui = U, otherwise set ϑi = ϑi−1, Ui = Ui−1.
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Likelihood estimation for state-space models

If the likelihood is computed using standard SMC, (θ, u) 7−→ p̂θ(y;u)
is not continuous and displays large variations for moderate N.

Discontinuities arise from the resampling step: you can end up
picking resampling particles very far from each other even with small
variations in (θ, u).

For n = 1, (Pitt et al, 2012) propose sorting particles

X σt (1)
t ≤ . . . ≤ X σt (N )

t .

For n ≥ 2, (Gerber & Chopin, 2015) use Hilbert curve; e.g. map
particles to [0, 1]n using ψ : Rn → [0, 1]n (e.g. logistic) and
h : [0, 1]n → [0, 1] (pseudo-inverse Hilbert curve) and sort projected
particles on [0, 1] .

Alternative coupling ideas have been used to mitigate these
fluctuations (Jacob et al., arXiv 2016).
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Large sample analysis of the correlated pseudo-marginal

Assumption 1 - Asymptotic Normality: ∃ θ̂
T P→ θ and Σ a p.d.

matrix s.t. ∫ ∣∣∣p ( θ|Y1:T )− φ(θ; θ̂
T
,Σ/T )

∣∣∣dθ
P→ 0.

Assumption 2 - Proposal: ϑ = θ + ε/
√
T where ε ∼ υ (·) with

υ (ε) = υ (−ε).

(IMS, Singapore 2018) 38 / 48



Large sample analysis of the correlated pseudo-marginal

Assumption 1 - Asymptotic Normality: ∃ θ̂
T P→ θ and Σ a p.d.

matrix s.t. ∫ ∣∣∣p ( θ|Y1:T )− φ(θ; θ̂
T
,Σ/T )

∣∣∣dθ
P→ 0.

Assumption 2 - Proposal: ϑ = θ + ε/
√
T where ε ∼ υ (·) with

υ (ε) = υ (−ε).

(IMS, Singapore 2018) 38 / 48



Large sample analysis of the correlated PM - i.i.d. case

Proposition. Let N → ∞ as T → ∞ with N = o(T ). When
U ∼ πT (·|θ) and U ′ = ρU +

√
1− ρ2ε with ρ = exp

(
−ψN

T

)
then as

T → ∞

log

{
p̂θ+ξ/

√
T (Y1:T ;U ′)

p̂θ (Y1:T ;U)
/
pθ+ξ/

√
T (Y1:T )

pθ (Y1:T )

}∣∣∣∣∣YT ,UT ⇒ N (− κ2 (θ)

2
, κ2 (θ))

where
κ2 (θ) = 2ψE

[
‖∂uv (U,Y ; θ)‖2

]
This CLT is conditional on the observation sequence and the current
auxiliary variables.

Asymptotically the distribution of the log-ratio decouples from the
current location of the Markov chain.

The asymptotic variance is O (1) even for N ∼ log(T ).
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Large sample analysis of the correlated PM - i.i.d. case

Let ΘT := {ϑTi }i≥0 be the stationary non-Markovian sequence of the
correlated PM targetting p ( θ|Y1:T ).

Proposition (Deligiannidis et al., 2016): The sequences {ΘT }T≥1
converge weakly as T → ∞ to a stationary Markov chain of invariant
density φ

(
θ̃; 0,Σ

)
and kernel given for θ̃ 6= ϑ̃ by

Q̃(θ̃,dθ̃
′
) = υ(θ̃

′− θ̃)ER∼N (−κ2/2,κ2)

[
min

{
1,

φ(θ̃
′
; 0,Σ)

φ(θ̃; 0,Σ)
expR

}]
dθ̃
′

where κ := κ
(
θ
)
.

It is tempting to use this result to provide guidelines on the
optimization of CPM... but one has to be careful.
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Decomposition in fast and slow components

For a stationary CPM chain (ϑi ,Ui ), decompose

h (ϑi ) = E [h (ϑ)|Ui ]︸ ︷︷ ︸
slow

+ h (ϑi )−E [h (ϑ)|Ui ]︸ ︷︷ ︸
fast

.

Ui is proposed according to AR scheme with persistency
≈ 1− ψN/T : when N grows to slowly with T , IACT of h (ϑi ) is
dominated by IACT of E [h (ϑ)|Ui ] where for scalar h (ϑ) = ϑ

E [ϑ|Ui ] = θ̂T +
Σ
T
∇θ log

p̂
(
Y1:T | θ̂T ,Ui

)
p
(
Y1:T | θ̂T

)
︸ ︷︷ ︸

Ψ(Ui )

+OP
(
T−2

)
.

Proposition. Let N ∝ T α for 0 < α < 1 then
IACT(Q,Ψ) & T 1−2α.

This result suggests we need at least
√
T/N = O (1).
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Graphical Illustration
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Example: Gaussian Latent Variable Model

MH (T = 8192) IACT(θ)
15.6

PM (ρ = 0.0)
N RIACT(θ) RCT(θ)
5000 2.2 11210
CPM (ρ = 0.9963)
N κ RIACT(θ) RCT(θ)
10 3.1 14.0 126.2
20 2.2 4.7 93.3
25 2.0 2.8 69.3
35 1.7 1.7 61.1
56 1.3 1.6 87.0

Here RIACT = IACT/IACTMH and RCT = N × RIACT. Improvement
by 180 fold.
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Example: Noisy Autoregressive Model

MH (T = 16, 000) IACT(θ)
5.8

PM (ρ = 0.0)
N RIACT(θ) RCT(θ)
2500 3.1 8427.0
CPM (ρ = 0.9965)
N κ RIACT(θ) RCT(θ)
6 6.7 43.8 262.8
10 3.3 8.7 86.7
16 1.9 6.0 85.8
22 1.3 3.9 85.6
35 0.8 2.4 85.0
40 0.7 2.4 94.8

Improvement by 100 fold.

(IMS, Singapore 2018) 44 / 48



Heston Stochastic Volatility Model

Inference for a discretized one-dimensional SDE, 40,000 latent
variables. 100-fold gain compared to PM.

Real data: 4,000 returns from the S&P 500 index from 15/08/1990
to 03/07/2006.
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Higher-dimensional SSM

CLT appears to hold only for N at least of order T n/n+1 where n is
state-dimension.

Long-range effect is consequently limited.

Still significant gains over PM: over 50 fold for 2-d complex SV
model, over 70-fold for 4-d model in (Jacob et al., 2016).
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Discussion

Large sample analysis of pseudo-marginal algorithm provides useful
guidelines, overall complexity is O

(
T 2
)
.

Correlated pseudo-marginal can achieve very substantial improvement.

In i.i.d. case, analysis shows
√
T/N = O(1) is necessary and we

conjecture it is suffi cient leading to complexity O(T 3/2) vs O
(
T 2
)
.

Implementation for state-space models in state dimension n > 1 relies
on non-standard particle scheme (e.g., Gerber & Chopin, 2015): our
analysis does not capture these cases, experimental results suggest
O(T 1+

n
n+1 ).
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