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Inverse problems

> Abstract setting: (X, {-), ] - |

) (G -1

» Aim: The recovery of an unknown u € X from perturbed noisy

vV v v Yy

measurements of data y € ) where

y =6(u)+n.
Solution-to-parameter operator: G: @ o G : X — R¥.
Forward operator: G : X — V (Solution space)

Observational operator: O : V — R*
Additive Gaussian noise: n ~ A(0,T).

Question: How to solve for u from (1) 777



Deterministic approach

» Construct functional with added regularization and minimize
u* = argmin, ¢ »J(u), (2)
such that

1 A
J(u) = 3ly =G+ 5lule, A>0, Eca.

Numerically solved through various optimization methods:
(i) Least squares.

(ii) Conjugate gradient.

(iii) L-BFGS.

Issues that can arise:-
> No guarantee of well-posedness.
» Regularization can be dependent on the problem.

» Account for uncertainty within system?



Bayesian approach

» Finite dimension

Unknown is now a probabilistic distribution of the random variable
uly using Bayes’ formula

P(uly) oc P(y|u) P(u).

posterior likelihood prior

» oo-dimension

We consider a posterior measure ;1 described through Radon-Nikodym

derivative du 1
I
()= Z en(-0(uiy),

where

z.= /X exp(—®(u; y))o(du),

with misfit functional )
®(u;y) = 5ly = G(u)l?.



Bayesian approach

» Well-posedness theorem v’

> Tackles uncertainty v/

-V - (kVp)=f €D }
p=0 €90D

> k~N(0,C), k€ L>®(D).
> k=3 VAEe,  Cig = Ady.
> o1 —T2A) %k = /BrPW, W ~ N(0, ).

Uncertainty can arise such as (i) heterogenous field, (ii) level set/phase field
construction, (iii) geometric.



Theorem

Assume that 4 is defined as A(0,C), y by (1) and ® by 1|y — G(u)|?. If 1 is
the regular conditional probability measure on uly, then p” < po with
Radon-Nikodym derivative
y
() = G exp(—0(uiy))

where
7= /X exp(—(u; y))po(d).

Furthermore w1 is locally Lipschitz with respect to y in the Hellinger distance:
for all y,y with max{|y|r, |y’|r} < r, there exists a C = ¢(r) > 0 such that

dren(1’, 1) < Cly — y'Ir.



Assumptions

The least squares functional ¢ : X x ) — R and probability measure po on the
space (X, X) satisfy the properties
1. Every r > 0 there is a K = K(r), such that for al v € X, and y € ), with

0<d(u;y) < K.

2. For ay fixed y € Y, ®(-;y) : X = R is continuous po-almost surely on
the probability space (X, X, uo).
3. for y1,y» € X with max{|y1]r,|y2|r} < r, there exists a C = ¢(r) such
that, forall u e X
|®(uiy1) — (w3 y2)| < Cly — yolr

4. Continuity of the map G. (unrelated to misfit functional).



Edge-preserving Bayesian
inversion?



Brief history

» Gaussian priors:
u~N(0,C)
(Lehtinen [1991], Fitzpatrick [1992], Knapik [2008], Agapiou [2011]).

» Geometric priors:
u =37 ui(x)xo (%)
(Somsersalo [2004], Iglesias [2013]).
»> Level set priors:
w = whlyso(x) + w Luco(x)
(Burger [1991], Iglesias [2011], Lu [2015]).

degenerate with mesh, (Lassas, Siltanen [2008]).

» Besov priors:

u= Z;:1<“jv ?)¢;
(Lassas [2009], Dashti [2011], Agapiou [2017]).

u=3, VAj&id; Laplace noise
(Hosseini [2016], [2017]).



Extension to a-stables
processes’



a-stable distributions

> linear combination of two independent r.v's X;, X, — stable
distribution.
aXi+aXo=cX +d.

> a r.v. is stable if its distribution is stable.

X ~ Sa(p, B,0).

a € (0, 2] - stability.
B € [-1,1] - skewness.
w € (0,00) - location.

o € (0,00) - scale.

vV v v VY

Gaussian case = 5(0,0, u), Cauchy case = S1(0, 0, p).

mpare Stable Distributions pdf Plots




What we consider

Understanding theoretical properties of these processes, i.e. convergence.
Finite convergence (expectation).

For simplicity: finite dimensions, finite observations.

R-values stable processes.

Domain will be fixed.

vV Vv vV VY

Interested in the case of a < 2.



a-stable measures

Definition
An independently scattered o-additive set function
M: e — L°(Q),

such that for any A € ¢,

1/a fA (x)m(dx)
M(A) ~ 505 (( A)) 4 (A) 70> ’

is called an a-stable random measure on (E, €) with control measure m and
skewness parameter 3.



a-stable random fields

> Special case of Brownian sheet.

Definition
A random field X is called a multivariable a-stable sheet if

X(ti,...,tn) ::/ M(dsy, ..., dsy). (3)
[0,t1]%... X[0,tn]

A natural discretisation of (3) on [0,1]" arises by considering a uniform grid
{t=kh:ke{0,...,N}"}, h=1/N and N € N. Indeed,

X (kih, Z/l;n(sl,.. ,Sn)M(dsy, ..., ds,),

where [, are disjoint hypercubes of Lebesgue measure |I,| = h" whose all
vertices are on the grid and n represents some fixed vertice of the cube.



Convergence of sheets

> Integrand representation of stable processes.

Theorem [C., Lasanen, Roininen 18]

Let X"(t1,...,t) = Z;[ltlz/lh] ,[:":/1“ J 1,,(s)dMs for n < oo, then
XN (t) — X(t) in probability when N — co.

Theorem [C., Lasanen, Roininen 18]

Let XV(tr,..., ta) = ST S0 [11),(s)dM for n < oo, then
X"(t) — X(t) almost surely when N — cc.

» Theorems follow nicely from the properties of stable processes.

> Show convergence of other representations?



Representations

» Consider other forms of a-stable processes.

» «a-stable random measures.

> Poisson process measures.
We can represent as: Let I'; be arrivals times of a Poisson process with arrival
rate 1. Let (Vj,:) form an i.i.d. sequence of random vectors independent of I';

that consist of uniformly distributed d-dimensional random vectors V; on
[0,1]", and {—1,1}-valued random variables ~;

X(8) = G/l Y 1 e, (Vi)- (4)
i=1

with



Convergence of random series

Lemma [C., Lasanen, Roininen 18]

The random series
X(8) = > il Y T o (Vi)
i=1

which converges a.s. for t = (t1,...,t,) € [0,1]" and a.s. in LP([0,1]"]) for
max(1, @) < p < co. Moreover, the distribution of X on LP([0,1]") is identical
to the distribution of X(t1,...,t,).



Convergence of random series

Lemma [C., Lasanen, Roininen 18]

The random series
X(8) = > il Y T o (Vi)
i=1

which converges a.s. for t = (t1,...,t,) € [0,1]" and a.s. in LP([0,1]"]) for
max(1, @) < p < co. Moreover, the distribution of X on LP([0,1]") is identical
to the distribution of X(t1,...,t,).

Proof (sketch)

[1.1>"2 I‘fl/” converges a.s. when 0 < k < 1.
[2.] 1t6-Nisio Theorem, a.s. convergence — weak convergence.
[3.] Various inequalities: Jensen, Holder.



LP-sample path continuity

> Question: If X and its sample paths are in LP([0,1]") is it a random
variable in LP([0, 1]")?
» The case of 1 < a < 2 is cadlag.

» Convergence will differ for this form.

Lemma [C., Lasanen, Roininen 18]

There exists c(w), C(w) > 0 and K(w) € N so that c(w)k < M(w) < C(w)k
for all k > K(w) and for IP- almost every w. Moreover, the series

0o
z : —K

rk )
k=1

converges almost sure for all kK < 1.



LP-sample path continuity

> Question: If X and its sample paths are in LP([0,1]") is it a random
variable in LP([0, 1]")?

» The case of 1 < a < 2 is cadlag.

» Convergence will differ for this form.

Lemma [C., Lasanen, Roininen 18]

There exists c(w), C(w) > 0 and K(w) € N so that c(w)k < M(w) < C(w)k
for all k > K(w) and for IP- almost every w. Moreover, the series

(oo}

—K
§ rk )
k=1

converges almost sure for all kK < 1.

Proof (sketch)

[1.] Poisson process: 'k = Zf:l Aj with LLN.
[2.] Tk ~ k and c(w)k < Tk(w) < C(w)k for all k > K(w) = a.s.
convergence.



Theorem [C., Lasanen, Roininen 18]

Let Ax C [0,1]", k =1,..., N, be such hypercubes with equal edge lengths h
that J)_, Ax = [0,1]" and |Ax N Arr| = 0 for all k # k’. Choose a point t
from each hypercube Ax.

If 0 < a < 1, the approximations

N

=" X(t)1a,(t),

k=1

converge a.s. to X in LP([0,1]") when N — co. If 1 < a < 2, the
approximations X" converge to X in L*([0,1]") in distribution.



Proof

For 0 < a < 1: by changing the order of the sums, we get

oo N
X’V(t) = Ci/a Zf}/iri—l/a Z 1[V,--e1,1]><---x[\/;-en,l](tliv)lALV(t)-

i=1 k=1

Applying previous lemma and DCT we have
oo N

. N 1/ —1/a -
IJmeX (t) = Co/ ;mri / N'me;1[\/,-~e1,1]><-»-><[V,-<e,,,1](tk)1Ak(t)a
in LP([0,1]").
for 1 < a < 2: Aim to show

Jim E[f(X")] = E[f(X)],

for all bounded Lipschitz functions on L*([0,1]%)

Split XV into XV = X{¥(t) + XJ'(t) — conditional expectation +
Khintchine inequality.



Back to well-posedness!

> We begin with assumptions on ®(u;y) and the prior form.

Theorem

Assume that o is defined as random measure, y by (1) and ® by 3|y — G(u)|?.
If i is the regular conditional probability measure on u|y, then u” < o with

Radon-Nikodym derivative
dp , o 1 _
e 0) = 5 exp(=0(uiy)),

where
Z= /X exp(—®(u; y))o(dlu).

Furthermo;e w1’ is locally Lipschitz with respect to y in the Hellinger distance:
for all y,y with max{|y|r, |y’|r} < r, there exists a C = c(r) > 0 such that

dren(’, 1) < Cly — y'|r-



Cauchy difference priors

> Continuous stochastic processes X(-) is Lévy stable process,
starting from 0, if X has independent increments such that

X(t) = X(s) ~ Sa((t = 5)7, 5,0)
> Discrete random walk t = jh by X;, where j € Z" and h >0
1
)<j _)<J'*1 ~ Sa(h”>ﬂa0)'

» We have the following density

Ajh
H( —|—(X )(j_1)2>’ Aj > 0.

Can be extended to 2D case easily




Random vectors

we discuss various approaches for sampling the statistically dependent stable
random vectors (X(s1), ..., X(sk)), where s1,...,s, € [0,1]%. A well-known
approach is to reduce the sampling to independent increments, where in the 2D
case we have

X(t1,t2) :/ M(ds)
[0,21]x[0, 5]

When the measure M is discretised into

N

MY(ds) =" ﬁ (/ 1Ak(r)M(dr)> 14, (5)ds,

k=1
we obtain for the 2D case

N

1
XN(tl, t2) = Z W (/ lAk(r)M(dr)) 1Akﬁ[0,t1]><[0,t2](5)d57

k=1



N
1
o) =3 g (/1M ) ool
=1

» Cauchy difference priors
X(hp, hr) — X(hp, h(r — 1)) — X(h(p — 1), hr)
+ X(h(p — 1), h(r — 1)) ~ Sa(h”/%,0,0),

> Key question: Can one show (6) is consistent with (5)?

> Aim: Show this limit analysis in the context of numerics.

(5)



Concluding remarks

> Vast literature on various priors.
» Considerable work on both theory and application.

> edge-preserving Bayesian inversion (lack of analysis).

> Aim was to analyze this with a-stable processes for RY.
» Convergence results of different forms.

» Work: contraction, convergence, numerical study.



Consistency and contraction

> Question: How close is the posterior measure 1 close to u'?

> posterior consistency, which states that the posterior measure contracts
around the true solution u’ as n — co. Mathematically if posterior
consistency is achieved then, for all ¢ > 0

IEy,uy{u =t > en} —0.
> Alternatively viewed as
i =G+ oo N

> we aim to show that G(u,) — G(uf).

» Can we determine the rate M e, such that

Ey,uy{u: |u— uT|| > M,,e,,} -0, YM, — oco.



Random fields
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