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Inverse problems

I Abstract setting: (X , 〈·〉, ‖ · ‖), (Y, 〈·〉, ‖ · ‖).

I Aim: The recovery of an unknown u ∈ X from perturbed noisy
measurements of data y ∈ Y where

y = G(u) + η. (1)

I Solution-to-parameter operator: G : O ◦ G : X → Rk .

I Forward operator: G : X → V (Solution space)

I Observational operator: O : V → Rk

I Additive Gaussian noise: η ∼ N (0, Γ).

Question: How to solve for u from (1) ???



Deterministic approach

I Construct functional with added regularization and minimize

u∗ := argminu∈X J(u), (2)

such that

J(u) :=
1

2
|y − G(u)|2Y +

λ

2
|u|2E , λ > 0, E ⊂ X .

Numerically solved through various optimization methods:

(i) Least squares.

(ii) Conjugate gradient.

(iii) L-BFGS.

Issues that can arise:-

I No guarantee of well-posedness.

I Regularization can be dependent on the problem.

I Account for uncertainty within system?



Bayesian approach

I Finite dimension

Unknown is now a probabilistic distribution of the random variable
u|y using Bayes’ formula

P(u|y)︸ ︷︷ ︸
posterior

∝ P(y |u)︸ ︷︷ ︸
likelihood

P(u)︸︷︷︸
prior

.

I ∞-dimension

We consider a posterior measure µy described through Radon-Nikodym
derivative

dµy

dµ0
(u) =

1

Z
exp(−Φ(u; y)),

where

Z :=

∫
X

exp(−Φ(u; y))µ0(du),

with misfit functional

Φ(u; y) =
1

2
|y − G(u)|2Γ.



Bayesian approach

I Well-posedness theorem X

I Tackles uncertainty X

−∇ · (κ∇p) = f ∈ D

p = 0 ∈ ∂D

}

I κ ∼ N (0, C), κ ∈ L∞(D).

I κ =
∑

j

√
λjξjφj , Cjφj = λjφj .

I σ2(I − τ 2∆)α/2κ =
√
βτ d/2W, W ∼ N (0, I ).

Uncertainty can arise such as (i) heterogenous field, (ii) level set/phase field
construction, (iii) geometric.



Theorem

Assume that µ0 is defined as N (0, C), y by (1) and Φ by 1
2
|y − G(u)|2Γ. If µy is

the regular conditional probability measure on u|y , then µy � µ0 with
Radon-Nikodym derivative

dµy

dµ0
(u) =

1

Z
exp(−Φ(u; y)),

where

Z :=

∫
X

exp(−Φ(u; y))µ0(du).

Furthermore µy is locally Lipschitz with respect to y in the Hellinger distance:
for all y , y

′
with max{|y |Γ, |y ′|Γ} ≤ r , there exists a C = c(r) > 0 such that

dHell(µ
y , µy′) ≤ C |y − y ′|Γ.



Assumptions

The least squares functional Φ : X × Y → R and probability measure µ0 on the
space (X ,Σ) satisfy the properties

1. Every r > 0 there is a K = K(r), such that for al u ∈ X , and y ∈ Y, with

0 ≤ Φ(u; y) ≤ K .

2. For ay fixed y ∈ Y, Φ(·; y) : X → R is continuous µ0-almost surely on
the probability space (X ,Σ, µ0).

3. for y1, y2 ∈ X with max{|y1|Γ, |y2|Γ} < r , there exists a C = c(r) such
that, for all u ∈ X ∣∣Φ(u; y1)− Φ(u; y2)

∣∣ ≤ C |y1 − y2|Γ

4. Continuity of the map G. (unrelated to misfit functional).



Edge-preserving Bayesian
inversion?



Brief history

I Gaussian priors:
u ∼ N (0, C)
(Lehtinen [1991], Fitzpatrick [1992], Knapik [2008], Agapiou [2011]).

I Geometric priors:
u =

∑n
i=1 ui (x)χDi (x)

(Somsersalo [2004], Iglesias [2013]).

I Level set priors:
w = w+Iu>0(x) + w−Iu<0(x)
(Burger [1991], Iglesias [2011], Lu [2015]).

I Total variation priors:
degenerate with mesh, (Lassas, Siltanen [2008]).

I Besov priors:
u =

∑n
j=1〈uj , φ〉φj

(Lassas [2009], Dashti [2011], Agapiou [2017]).

I Laplace priors:
u =

∑n
j=1

√
λjξjφj Laplace noise

(Hosseini [2016], [2017]).



Extension to α-stables
processes?



α-stable distributions
I linear combination of two independent r.v’s X1,X2 =⇒ stable

distribution.
aX1 + aX2 = cX + d .

I a r.v. is stable if its distribution is stable.

X ∼ Sα(µ, β, σ).

I α ∈ (0, 2] - stability.

I β ∈ [−1, 1] - skewness.

I µ ∈ (0,∞) - location.

I σ ∈ (0,∞) - scale.

I Gaussian case = S2(σ, 0, µ), Cauchy case = S1(σ, 0, µ).



What we consider

I Understanding theoretical properties of these processes, i.e. convergence.

I Finite convergence (expectation).

I For simplicity: finite dimensions, finite observations.

I R-values stable processes.

I Domain will be fixed.

I Interested in the case of α < 2.



α-stable measures

Definition

An independently scattered σ-additive set function

M : ε0 → L0(Ω),

such that for any A ∈ ε0,

M(A) ∼ Sα

(
(m(A))1/α,

∫
A
β(x)m(dx)

m(A)
, 0

)
,

is called an α-stable random measure on (E , ε) with control measure m and
skewness parameter β.



α-stable random fields

I Special case of Brownian sheet.

Definition

A random field X is called a multivariable α-stable sheet if

X (t1, . . . , tn) :=

∫
[0,t1]×...×[0,tn ]

M(ds1, . . . , dsn). (3)

A natural discretisation of (3) on [0, 1]n arises by considering a uniform grid
{t = kh : k ∈ {0, . . . ,N}n}, h = 1/N and N ∈ N. Indeed,

X (k1h, . . . , knh) =
∑
n

∫
1In (s1, . . . , sn)M(ds1, . . . , dsn),

where In are disjoint hypercubes of Lebesgue measure |In| = hn whose all
vertices are on the grid and n represents some fixed vertice of the cube.



Convergence of sheets

I Integrand representation of stable processes.

Theorem [C., Lasanen, Roininen 18]

Let XN(t1, . . . , tn) =
∑dt1/he

k1=1 · · ·
∑dtn/he

kn=1

∫
1Ik (s)dMs for n <∞, then

XN(t)→ X (t) in probability when N →∞.

Theorem [C., Lasanen, Roininen 18]

Let XN(t1, . . . , tn) =
∑dt1/he

k1=1 · · ·
∑dtn/he

kn=1

∫
1Ik (s)dMs for n <∞, then

XN(t)→ X (t) almost surely when N →∞.

I Theorems follow nicely from the properties of stable processes.

I Show convergence of other representations?



Representations

I Consider other forms of α-stable processes.

I α-stable random measures.

I Poisson process measures.

We can represent as: Let Γi be arrivals times of a Poisson process with arrival
rate 1. Let (Vi , γi ) form an i.i.d. sequence of random vectors independent of Γi

that consist of uniformly distributed d-dimensional random vectors Vi on
[0, 1]n, and {−1, 1}-valued random variables γi

X̃ (t) := C 1/α
α

∞∑
i=1

γiΓ
−1/α
i 1[0,t1]×···×[0,tn ](Vi ). (4)

with

Cα =

(∫ ∞
0

x−α sin(x)dx

)−1

.



Convergence of random series

Lemma [C., Lasanen, Roininen 18]

The random series

X̃ (t) := C 1/α
α

∞∑
i=1

γiΓ
−1/α
i 1[0,t1]×···×[0,tn ](Vi ),

which converges a.s. for t = (t1, . . . , tn) ∈ [0, 1]n and a.s. in Lp([0, 1]n]) for

max(1, α) < p <∞. Moreover, the distribution of X̃ on Lp([0, 1]n) is identical
to the distribution of X (t1, . . . , tn).

Proof (sketch)

[1.]
∑∞

i=1 Γ
−1/κ
i converges a.s. when 0 < κ < 1.

[2.] Itô-Nisio Theorem, a.s. convergence → weak convergence.
[3.] Various inequalities: Jensen, Hölder.
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Lp-sample path continuity

I Question: If X̃ and its sample paths are in Lp([0, 1]n) is it a random
variable in Lp([0, 1]n)?

I The case of 1 ≤ α < 2 is cadlag.

I Convergence will differ for this form.

Lemma [C., Lasanen, Roininen 18]

There exists c(ω),C(ω) > 0 and K(ω) ∈ N so that c(ω)k ≤ Γk(ω) ≤ C(ω)k
for all k ≥ K(ω) and for P- almost every ω. Moreover, the series

∞∑
k=1

Γ−κk ,

converges almost sure for all κ < 1.

Proof (sketch)

[1.] Poisson process: Γk =
∑k

j=1 λj with LLN.
[2.] Γk ∼ k and c(ω)k ≤ Γk(ω) ≤ C(ω)k for all k > K(ω) =⇒ a.s.
convergence.
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Theorem [C., Lasanen, Roininen 18]

Let Ak ⊂ [0, 1]n, k = 1, . . . ,N, be such hypercubes with equal edge lengths h
that

⋃N
k=1 Ak = [0, 1]n and |Ak ∩ Ak′ | = 0 for all k 6= k ′. Choose a point tk

from each hypercube Ak .
If 0 < α < 1, the approximations

X̃N(t) =
N∑

k=1

X̃ (tk)1Ak (t),

converge a.s. to X̃ in Lp([0, 1]n) when N →∞. If 1 ≤ α < 2, the
approximations X̃N converge to X̃ in L1([0, 1]n) in distribution.



Proof

I For 0 < α < 1: by changing the order of the sums, we get

XN(t) = C 1/α
α

∞∑
i=1

γiΓ
−1/α
i

N∑
k=1

1[Vi ·e1,1]×···×[Vi ·en,1](t
N
k )1AN

k
(t).

I Applying previous lemma and DCT we have

lim
N→∞

XN(t) = C 1/α
α

∞∑
i=1

γiΓ
−1/α
i lim

N→∞

N∑
k=1

1[Vi ·e1,1]×···×[Vi ·en,1](tk)1Ak (t),

in Lp([0, 1]n).

I for 1 ≤ α < 2: Aim to show

lim
N→∞

E[f (XN)] = E[f (X )],

for all bounded Lipschitz functions on L1([0, 1]d)

I Split XN into XN = XN
1 (t) + XN

2 (t)→ conditional expectation +
Khintchine inequality.



Back to well-posedness!

I We begin with assumptions on Φ(u; y) and the prior form.

Theorem

Assume that µ0 is defined as random measure, y by (1) and Φ by 1
2
|y −G(u)|2Γ.

If µy is the regular conditional probability measure on u|y , then µy � µ0 with
Radon-Nikodym derivative

dµy

dµ0
(u) =

1

Z
exp(−Φ(u; y)),

where

Z :=

∫
X

exp(−Φ(u; y))µ0(du).

Furthermore µy is locally Lipschitz with respect to y in the Hellinger distance:
for all y , y

′
with max{|y |Γ, |y ′|Γ} ≤ r , there exists a C = c(r) > 0 such that

dHell(µ
y , µy′) ≤ C |y − y ′|Γ.



Cauchy difference priors

I Continuous stochastic processes X (·) is Lévy stable process,
starting from 0, if X has independent increments such that

X (t)− X (s) ∼ Sα
(
(t − s)

1
α , β, 0

)
I Discrete random walk t = jh by Xj , where j ∈ Z+ and h > 0

Xj − Xj−1 ∼ Sα
(
h

1
α , β, 0

)
.

I We have the following density

D(x) = C

j∏
j=1

(
λjh

(λjh)2 + (Xj − Xj−1)2

)
, λj > 0.

Can be extended to 2D case easily



Random vectors

we discuss various approaches for sampling the statistically dependent stable
random vectors (X (s1), . . . ,X (sk)), where s1, . . . , sk ∈ [0, 1]d . A well-known
approach is to reduce the sampling to independent increments, where in the 2D
case we have

X (t1, t2) =

∫
[0,t1]×[0,t2]

M(ds).

When the measure M is discretised into

MN(ds) =
N∑

k=1

1

|Ak |

(∫
1Ak (r)M(dr)

)
1Ak (s)ds,

we obtain for the 2D case

XN(t1, t2) =
N∑

k=1

1

|Ak |

(∫
1Ak (r)M(dr)

)
1Ak∩[0,t1]×[0,t2](s)ds,



XN(t1, t2) =
N∑

k=1

1

|Ak |

(∫
1Ak (r)M(dr)

)
1Ak∩[0,t1]×[0,t2](s)ds, (5)

I Cauchy difference priors

X (hp, hr)− X (hp, h(r − 1))− X (h(p − 1), hr) (6)

+ X (h(p − 1), h(r − 1)) ∼ Sα(hd/α, 0, 0),

I Key question: Can one show (6) is consistent with (5)?

I Aim: Show this limit analysis in the context of numerics.



Concluding remarks

I Vast literature on various priors.

I Considerable work on both theory and application.

I edge-preserving Bayesian inversion (lack of analysis).

I Aim was to analyze this with α-stable processes for Rd .

I Convergence results of different forms.

I Work: contraction, convergence, numerical study.



Consistency and contraction

I Question: How close is the posterior measure µy close to u†?

I posterior consistency, which states that the posterior measure contracts
around the true solution u† as n→∞. Mathematically if posterior
consistency is achieved then, for all ε > 0

Eyµy
{
u : ‖u − u†‖ ≥ εn

}
→ 0.

I Alternatively viewed as

yj = Gj(u†) + ηj , j , . . . ,N.

I we aim to show that G(un)→ G(u†).

I Can we determine the rate Mnεn such that

Eyµy
{
u : ‖u − u†‖ ≥ Mnεn

}
→ 0, ∀Mn →∞.



Random fields

Gaussian random field (above), Cauchy random field (below).
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