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APPROXIMATE BAYESIAN COMPUTATION (ABC)

θ → BLACKBOX → data.

• We have an observation Xo = (Xo1, . . . , Xon) obtained from the “black-
box” for some unknown value of θ. Suppose π(θ) is our prior on θ.

• The goal is to make inference about the value of the parameter from
which Xo was generated.

• What happens in the black box is a mystery. We assume that it is not
easy to specify a data generating model. Such a model may have many
components, even may not be analytically expressible.

• Example: Phylogenetic Trees.

• Example: Non-linear differential equations.

• Based on the values generated from the black box ABC methods makes
inference about the parameter without requiring an user to specify a
model for the data generating process.
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BASIC ABC

• The basic ABC algorithm goes through the following three steps.

1. Generate θ from π(θ).

2. Simulate X1 = (X11, . . . , X1n) from the black box with parameter θ.

3. Accept θ if Xo = X1, and return to Step 1.

• Clearly if X is a continuous random variable the probability that Xo = X1

is zero. So the above algorithm does not work well.

• Thus an approximate method is used. The steps are as follows

1. Choose a small ǫ > 0 and a distance function ρ.

2. Generate θ from π(θ).

3. Simulate X1 = (X11, . . . , X1n) from the black box with parameter θ.

4. Accept θ if ρ(Xo, X1) < ǫ, and return to Step 2.

• The acceptance rate and the accuracy of the posterior depend crucially
on ǫ. See (Allingham et. al. [2009]).
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SOME VARIATIONS AND RECENT DEVELOPMENTS

• In many cases instead of comparing the full data, a set of summary statis-
tics is compared. This reduces the dimension of the problem. However,
if the statistics used are not sufficient for the unknown data-generation
model, their would be some loss in the resulting posterior.

• Marjoram et. al. [2003] develop a MCMC ABC method by targeting a
stationary distribution of the form Πǫ(θ,X1 | Xo).

• An SMC version of ABC with each chain was considered by Sisson et.
al. [2007].

• Wood [2010] postulate a synthetic likelihood which requires asymptotic
normality of the summary statistics used.

• In recent times Drovandi et. al. [2013] among others use parametric
auxiliary models in indirect inference.

• More recently random forest based classification techniques have been
successfully used in an ABC setup. We refer to Pham et. al. [2014] for
an example.
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EMPIRICAL LIKELIHOOD (EL) IN ABC

• Mengersen, Pudlo and Robert [2013] were the first to consider the use
of empirical likelihood in ABC setting.

• They assumed that Xo1, . . ., Xon are i.i.d and a set of constraints of the
form

E [h(Xoi, θ)] = 0 ∀ i = 1, . . . , n

are available. Here the expectation is taken w.r.t. the unknown true
distribution.

• An empirical likelihood can then be calculated by re-weighting the data
by weights given by:

ŵ = argmaxw∈Wθ

n
∏

i=1

wi, where Wθ =

{

w :

n
∑

i=1

wih(Xoi, θ) = 0

}

∩∆n−1.

• They use a fast importance sampling algorithm to sample from the pos-
terior.

• However, the method requires one specify the function h, which is not
easy.
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A FULLY DATA DEPENDENT APPROACH.

• Let θo be the value of θ corresponding to Xo.

• Suppose we could generate m data sets of length n, ie. X1, . . ., Xm from
the black-box putting same parameter value θ1.

• If θ0 = θ1, for each i, X̄i· and X̄o· are identically distributed. So it clearly
follows that:

Eθ0

[

X̄o· − X̄i·

]

= 0, ∀ i = 1,2, . . . ,m.

• If we can build an EL using the above relationship, then we have a
procedure which would not require us to specify any relationship between
the data and the parameter directly.

• Furthermore, such a procedure would inherit good properties of EL as
indicated in Mengersen et. al. [2013].

• That is what we are going to do.
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THE BUILT UP

• Suppose we have pairs of independent random variables (Yi, Xi), i =
1,2, . . . ,m, with same marginal distribution and generated from the same
parameter value θ.

• Let f⊗2
θ (Yi, Xi) be the joint density of (Yi, Xi). Clearly,

f⊗2
θ (Yi, Xi) = fθ (Yi) fθ (Xi) .

• We construct a composite likelihood for (Y1, X1), (Y2, X2), . . ., (Ym, Xm)
as

l(m)(θ) =

m
∏

i=1

f⊗2
θ (Yi, Xi) .

• In the event that Yi = Xo, for all i = 1,2, . . . ,m, the above likelihood
becomes:

l(m)(θ) = {fθ (Xo)}
m

m
∏

i=1

fθ (Xi) .

• This is similar to the idea of data cloning (Doucet et. al. [2002], Lele
[2007]).
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THE BUILT UP

• We use a scaled version of the corresponding log-likelihood which is given
by:

1

m
log

(

l(m)(θ)
)

= log(fθ (Xo)) +
1

m

m
∑

i=1

log (fθ (Xi)) .

• Clearly as m → ∞, the second term converges almost everywhere to the
differential entropy defined as, Eθ [log (fθ (X1))] = logC(θ). Thus for
large m, the generated samples X1, X2, . . ., Xm have little influence on
the likelihood. Major contribution comes from the first term.

• Moreover, C(θ) is usually a slowly varying function of θ. For a location
model C(θ) is a constant independent of θ. That is, with a pre-specified
prior π(θ), if we define a posterior as:

e
1

m
l(m)(θ)π(θ)

∫

t∈Θ
e

1

m
l(m)(t)π(t)dt

for the location models, under mild assumptions, in the limit as m →
∞ the term involving C(θ) cancels out and we get the posterior only
conditional on the observation Xo.
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APPLICATION OF THE EMPIRICAL LIKELIHOOD

• We need to estimate log
(

l(m)(θ)
)

/m from the observation Xo an the
generated data X1, X2, . . ., Xm.

• We use empirical likelihood for this.

• In particular, we estimate the joint distribution of (Xo, Xi), i = 1,2 . . . ,m.

• Consider a collection of functions g1, . . . , gr depending only on the obser-
vations and not on the parameter θ.

• For a θ generated from π(θ) and X1, . . ., Xm identically and independently
generated from the model with input θ, suppose we define,

Wθ =

r
⋂

k=1

{

w :

m
∑

i=1

wi {gk (Xi)− gk (Xo)} = 0

}

∩∆m−1.

• Let ŵ(θ) := ŵ(X1, . . . , Xm, Xo) = argmaxw∈W

(
∏m

i=1mwi

)

.

• When the problem is infeasible, we define ŵ(θ) = 0.
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THE TARGET POSTERIOR

• We first estimate:

̂1

m
log

(

l(m)(θ)
)

=
1

m

m
∑

i=1

log(ŵi(θ)).

• Now plugging this estimate in the expression of the posterior above we
get our target posterior:

Π(θ | Xo) :=
e

1

m

∑m

i=1
log(ŵi(θ))π(θ)

∫

t∈Θ
e

1

m

∑m

i=1
log(ŵi(t))π(t)dt

∝ e
1

m

∑m

i=1
log(ŵi(θ))π(θ).

• When ŵi(θ) = 0, Π(θ | Xo) := 0.

• The samples are drawn from this posterior using MCMC procedures.

• In general, computation of empirical likelihood is fast.

• The MCMC could sometimes be a bit tricky to run.

9



CHOICE OF SUMMARIES

• The proposed empirical likelihood estimates joint weights by matching
the moments of g(X1), . . ., g(Xm) with that of g(Xo), without requiring
a direct relationship with the parameter.

• We assume that for i ∈ {o,1, . . . ,m}, Xi ∈ Rn.

• For some k and some positive deterministic γk, for each i we may define,
gk (Xi) = 1

n

∑n
j=1X

γk

ij .

• The summary gk is the γkth raw sample moment and would constrain the
underlying distribution through its moments.

• The γk sample quantile of Xi may be used for any γk ∈ [0,1], which would
directly put a constraint on the distribution through its quantiles.

• The proportion of times Xi is larger than γk, i.e. gk (Xi) = 1
n

∑n
j=1 1{Xij≥γk}.

• Joint moments, up-crossings etc. Other transformations eg. spectral
domain statistics can be used.
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ASSUMPTIONS FOR ASYMPTOTIC PROPERTIES

• We consider limits as n and m = m(n) grow unbounded.

• Suppose that, E[g(X(n)
i (θ))] is finite so that we can write

g
(

X(n)
i (θ)

)

= E
[

g
(

X(n)
i (θ)

)]

+ ξ(n)i (θ) = g
(n)(θ) + ξ(n)i (θ),

where E[ξ(n)i (θ)] = 0 for all i, n and θ.

• We make the following assumptions.

(A1) (Indentifiability and convergence) There is a sequence of positive increas-
ing real numbers bn → ∞, such that:

g
(n)(θ) = bn {g(θ) + o(1)} ,

where g(θ) is a one to one function of θ that does not depend on n.
Furthermore, g(θ) is continuous at θo and for each ǫ > 0, and for all θ ∈ Θ,
there exists δ > 0, such that whenever || θ − θo ||> ǫ, || g(θ)− g(θo) ||> δ.
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ASSUMPTIONS

(A2) (Feasibility) For each θ, n and i = o,1, . . ., m(n), the vectors ξ
(n)
i (θ)

are identically distributed, supported over the whole space, and their
distribution puts positive mass on every orthant, Os of Rr, s = 1, 2, . . .,
2r. Furthermore, for every orthant Os, as n → ∞,

sup
{i : ξ(n)

i (θ)∈Os}

|| ξ(n)i (θ) ||−→ ∞

in probability, uniformly in θ.

(A3) (Growth of extrema of Errors) As n → ∞,

sup
i∈{o,1,2,...,m(n)}

|| ξ(n)i (θ) ||

bn
→ 0

in probability, uniformly in θ ∈ Θ.
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ASYMPTOTIC RESULTS

• Let ln(θ) := exp(
∑m(n)

i=1 log (ŵi(θ)) /m(n)) and for each n, we define:

Θn =
{

θ : || g(θ)− g(θo) ||≤ b−1
n

}

.

By continuity of g at θ0, Θn is nonempty for each n. Furthermore, since
bn is increasing in n, Θn is a decreasing sequence of sets in n.

• Lemma 1 Under assumptions (A1) to (A3), with high probability, the
likelihood ln(θ) > 0, for all θ ∈ Θn.

• For θ ∈ Θ and ǫ > 0, by B(θ, ǫ) we denote the ball of radius ǫ around θ.

• Lemma 2 Under assumptions (A1) - (A3), for every ǫ > 0, with high
probability, the empirical likelihood is zero outside B(θ0, ǫ).

• From Lemma 1. and 2. it follows that:

Πn (θ | Xo(θo)) =
ln(θ)π(θ)

∫

t∈Θ
ln(t)π(t)dt

is a valid probability measure with high probability.

• Theorem 1 As n → ∞, Πn (θ | Xo(θo)) converges in probability to δθo
,

where δθ0
is the degenerate probability measure supported at θ0.
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RESULTS FOR A GAUSSIAN MEAN

• As a test case we consider estimation of mean from a standard normal
distribution. We assume a standard normal prior on the mean.

• We assume that the variance is known to be 1. The coverage and the
length of the 95% credible intervals were checked for different choices of
the functions g1, . . ., gr.

• We took n = 100, m = 25. The coverages are based on 100 repetitions.
For each repetition, last 50,000 of the 100,000 samples drawn from the
posterior by adaptive MCMC was used.

Choice of g Coverage Average Length
1st moment (mean) 0.93 0.3406
Median 0.93 0.4259
1st and 2nd moments 0.88 0.3047
1st, 2nd and 3rd moments 0.85 0.2710
3 quartiles 0.76 0.2807
Mean and median 0.76 0.2392
1st, 2nd, 3rd and 4th moments 0.72 0.2183
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EXAMPLE: g − and− k DISTRIBUTION

• Next we consider the g − and− k distribution.

• The distribution is expressed by its quantile function

Q (r;A,B, g, k) = A+B

(

1+ .8
1− e−gz(r)

1+ e−gz(r)

)

(

1+ z(r)2
)k

z(r),

where z(r) is the rth standard normal quantile. The parameters A, B,
gand k respectively represent location, scale, skewness and kurtosis of
the distribution.

• We generated sample from a g − and− k with A = 3, B = 1, g = 2 and
k = 0.5. The parameters were assumed to follow a U(0,10) prior.

• In our simulation we chose n = 1,000 and m = 40.

• The results are based on last 25,000 out of 50,000 samples drawn from
the posterior using an adaptive random walk MCMC procedure.
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RESULTS: g − and− k DISTRIBUTION
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• Summary statistics used: the
mean and three quartiles.

• Solid line: proposed EL based
method.

• Dashed line: Synthetic likelihood
with the same summary statistics.

• Dotted line: Rejection ABC
with regression adjustment, based
on 5,000,000 datasets, tolerance
chosen so that 2000 samples were
kept. This is the current gold
standard.

• The usual summaries based on oc-
tiles results in slightly inferior per-
formance in estimating k.

• The synthetic likelihood is expected to work well here. Both methods
produce posterior similar to the rejection ABC.
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EXAMPLE: ARCH(1)

• The ARCH(1) model is defined as

yj = σjǫj, σ2
j = α0 + α1y

2
j−1,with ǫj ∼ N(0,1), j = 1, . . . , n.

• We generate vector of size n = 1000 from α0 = 3.00 and α1 = 0.75. The
priors on α0 and α1 is taken to be U (0,5) and U(0,1) respectively. we
take m = 20.

• Four summaries were used. They were the lag 1 auto-covariance of y2

and the three quartiles of |y|.

• The first order auto-covariance is highly non-Gaussian.
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RESULTS: ARCH(1) MODEL
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• Solid line: proposed EL based
method.

• Dashed line: Synthetic likelihood
with the same summary statistics.

• Dotted line: Rejection ABC with
ǫ = .0025 based on 1,000,000
datasets.

• Synthetic likelihood estimates are quite different from those obtained by
the rejection ABC. This is specially true for α1.
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CHOICE OF FUNCTIONS: g − and− k DISTRIBUTION

• Choice of functions g1, g2, . . ., gr are crucial.

• First four raw moments.
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CONCLUSION

• We introduce an easy-to-use empirical likelihood based ABC method,
where the only required inputs are a choice of summary statistic, it’s
observed value, and the ability to simulate that particular statistic under
the model for any parameter value.

• We show that the proposed method is asymptotically consistent and
has better performance than the synthetic likelihood when the summary
statistics are not normally distributed.

• It seems the method slightly under-estimates the posterior uncertainty.

• The choice of summaries are important. Bad summary statistics may
lead to slow mixing of the MCMC. However, the proposed method is no
worse than the Synthetic likelihood for such summaries.

• As implemented, the proposed method cannot choose constraints. That
is, unimportant summaries are given equal weight as the important ones.
No guidance for choosing summary statistics.

• Good adaptive MCMC procedures are required to draw samples from the
posterior.
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