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State-space Model

Running example (Yu & Meng 2011):

Xt+1 = ρXt + σWt+1, Wt+1 ∼i.i.d. N(0, 1)

Yt |Xt = xt ∼ Poisson(ext+µ)

In general:

Yt−1 Yt

Xt−2 Xt−1 Xt Xt+1
fθ(Xt−1, xt)dxt

gθ(Xt , yt)dyt

Figure : Evolution of the random variables of a HMM.
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Inference Objective

The posterior: p(θ, x0:T |y0:T ), θ = (µ, ρ, σ)

Gibbs sampler (one cycle): (θ, x0:T )→ (θ′, x ′0:T )

σ′|(x0:T , µ, ρ) ∼ Gamma (· · ·)
ρ′|(x0:T , µ, σ′) ∼ Normal (· · ·)
µ′|(x0:T , σ′, ρ′) ∼ Normal (· · ·)
x ′0:T |(σ′, µ′, ρ′) ∼ p(x0:T |θ′, y0:T )

In general cannot sample from p(x0:T |θ′, y0:T )

An old remedy is one at a time: xi |(x ′0:i−1, xi+1:T , θ
′)
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Particle Filtering

Popularised by Gordon, Salmond and Smith (1993)

(Sequential) Importance sampling method to approximate

p(x0:T |θ, y0:T )

using non-iid samples:

E(h(X0:T )|θ, y0:T ) ≈
N∑
i=1

h(X
(i)
0:T )W

(i)
T
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Particle Filter execution for sampling p(x0:T |y0:T )

Given
∑N

i=1 δX (i)
0:t

≈ p(x0:t |y0:t), approximate p(x0:t+1|y0:t+1)

0 2 4 6 8 10 12 14
-5

-4

-3

-2

-1

0

1

2

3

4

5

Sample: X
(i)
t+1 ∼ f (X

(i)
t , xt+1)

Weight: w
(i)
t+1 = g(X

(i)
t+1, yt+1)

p(x0:t+1|y0:t+1) ≈
N∑
i=1

W
(i)
t+1δX (i)

0:t+1

Resample:

p(x0:t+1|y0:t+1) ≈
N∑
i=1

δ
X

(i)
0:t+1
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Particle Filtering (cont’d)

The final (Gibbs) step for states, (θ′, x0:T )→ (θ′, x ′0:T ) with

x ′0:T |(σ′, µ′, ρ′) ∼ PF approx. of p(x0:T |θ′, y0:T )

Why not, since used extensively in EM and gradient methods
to learn θ

Q(θ, θ′) = E
{

log p(x0:T , y0:T |θ′)
∣∣ θ, y0:T}

In practise particle number N must grow linearly with T
(Many results on the error of Particle filter estimates, e.g. Del
Moral’s book 2004, ...)

The bias free (mathematically correct) way (ADH2010) is to
use the conditional Particle Filter
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The Conditional Particle Filter (Andrieu, Doucet &
Holenstein, 2010)

The final step for states, (θ′, x0:T )→ (θ′, x ′0:T ) with

x ′0:T ∼ conditional Particle Filter (CPF)

A CPF simulates a PF with N particles for T time steps as

“usual” but with one particle set to X
(1)
0:T = x0:T

– Then choose one particle randomly according to its weight

In effect, the CPF is a Markov kernel:

X ′0:T ∼ Pθ′,N(x0:T , dx
′
0:T )

Invariant measure is p(x0:T |θ′, y0:T ) for any N ≥ 2

Effective sampler? How should N grow with T?
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CPF: X0’s autocorrelation

Sampling p(x0:399|y0:399) with 200 particles (Chopin & S., 2013)

0 10 20 30 40 50 60 70 80
lag

0.0

0.2

0.4

0.6

0.8

AC
F

X0

multinomial
residual
systematic
multi+BS

Statistic: ACF X0
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Coupling the CPF (Chopin & S., 2013)

The outputs of two CPFs

PN(x0:T , dx
′
0:T ) PN(x̃0:T , dx

′
0:T )

with different inputs x0:T and x̃0:T
but implemented with common random numbers

can be the same with (high) probability

Thus if (X0:T , X̃0:T ) ∼ CCPF(x0:T , x̃0:T ) then

X0:T
d
= PN(x0:T , dx

′
0:T ) X̃0:T

d
= PN(x̃0:T ,dx

′
0:T )

We have

P(X0:T 6= X̃0:T ) ≤ ε

Page 9 of 22



Coupling the CPF (Chopin & S., 2013)

The outputs of two CPFs

PN(x0:T , dx
′
0:T ) PN(x̃0:T , dx

′
0:T )

with different inputs x0:T and x̃0:T
but implemented with common random numbers

can be the same with (high) probability

Thus if (X0:T , X̃0:T ) ∼ CCPF(x0:T , x̃0:T ) then

X0:T
d
= PN(x0:T , dx

′
0:T ) X̃0:T

d
= PN(x̃0:T ,dx

′
0:T )

We have

P(X0:T 6= X̃0:T ) ≤ ε

Page 9 of 22



Coupling the CPF (Chopin & S., 2013)

The outputs of two CPFs

PN(x0:T , dx
′
0:T ) PN(x̃0:T , dx

′
0:T )

with different inputs x0:T and x̃0:T
but implemented with common random numbers

can be the same with (high) probability

Thus if (X0:T , X̃0:T ) ∼ CCPF(x0:T , x̃0:T ) then

X0:T
d
= PN(x0:T , dx

′
0:T ) X̃0:T

d
= PN(x̃0:T ,dx

′
0:T )

We have

P(X0:T 6= X̃0:T ) ≤ ε

Page 9 of 22



Coupling the CPF (Chopin & S., 2013)

The outputs of two CPFs

PN(x0:T , dx
′
0:T ) PN(x̃0:T , dx

′
0:T )

with different inputs x0:T and x̃0:T
but implemented with common random numbers

can be the same with (high) probability

Thus if (X0:T , X̃0:T ) ∼ CCPF(x0:T , x̃0:T ) then

X0:T
d
= PN(x0:T , dx

′
0:T ) X̃0:T

d
= PN(x̃0:T ,dx

′
0:T )

We have

P(X0:T 6= X̃0:T ) ≤ ε
Page 9 of 22



Uniform Ergodicity

Chopin+S. (2013)

Can construct a coupling(PN(x0:T , ·),PN(x̃0:T , ·)) with probability
at least 1− ε.

‖Pk
N(x0:T , dx

′
0:T )− p(dx ′0:T |y0:T )‖tv≤ εk

Kuhlenschimdt + S. (2014)

‖Pk
N(x0:T , dx

′
0:T )− p(dx ′0:T |y0:T )‖tv≤ Const.×

(
T

N

)k

Andrieu, Lee, Vihola (2014); Douc, Lindsten, Moulines (2014)

PN(x0:T , dx
′
0:T ) ≥ ε(N,T )p(x ′0:T |y0:T )

and
lim inf

T
ε(N,T ) > 0 provided N ∝ T
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Cost per iteration

These results say particles must increase linearly with T

costing T 2 per application of PT ,N

Could CPF work with a fixed number of particles? Costing
NT per application of CPF or PT ,N .

N. Whiteley (RSS discussion of PMCMC, 2010) suggested an
extra backward step that tries to modify (recursively,
backward in time) the ancestry of the selected trajectory.

Highly successful in practise but no theoretical verification.
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Blocked Gibbs sampler for p(x0:T |y0:T )

J1 J3 J5

J2 J4

0 · · · · · · T
Group states x0:T into m overlapping blocks

When sampling block Ji = r : s, sample from

p(xr :s |xr−1, yr :s , xs+1)

while holding remaining states unchanged.
Cycle through the blocks in any order, sequentially, odd-even
etc.
Effectively sampling p(x0:T |y0:T ) using the Markov kernel
P(x0:T , dx

′
0:T )

P = PoPe where

{
Po = PJ1PJ3 · · ·PJm

Pe = PJ2PJ4 · · ·PJm−1
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Uniform ergodicity: ideal blocked sampling

If {J1, . . . , Jm} be an arbitrary cover of {1, . . . ,T}

If P is the blocked Gibbs kernel of one complete sweep then

||p(dx0:T |y0:T )− µPk ||tv≤ (T + 1)λk

where λ is T -independent (S., Lindsten and Moulines, 2015)

Once you decide on a block size and overlap proportion, works
for any time-series length T

Rate quickens, λ→ 0, as block overlap increases.

Recall P = PJ1PJ2 · · ·PJm . Idea is to approximate each PJi

with CPF.
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Uniform ergodicity: fixed N and any T !

Approximate each block kernel PJi with CPF PJi ,N :

(ideal) P = PJ1PJ2 · · ·PJm (CPF) PN = PJ1,NPJ2,N · · ·PJm,N

If PN is the blocked pGibbs kernel of one complete sweep then

||p(dx0:T |y0:T )− µPk
N ||tv≤ (T + 1)λkN

(S., Lindsten and Moulines, 2015)

Rate is

λN =
√
λ+ Const. × max block size× 1

N
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Coupling the CPF (Chopin & S., 2013)

The outputs of two CPFs

PN(x0:T , dx
′
0:T ) PN(x̃0:T , dx

′
0:T )

with different inputs x0:T and x̃0:T
but implemented with common random numbers

can be the same with (high) probability

Thus if (X0:T , X̃0:T ) ∼ CCPF(x0:T , x̃0:T ) then

X0:T
d
= PN(x0:T , dx

′
0:T ) X̃0:T

d
= PN(x̃0:T ,dx

′
0:T )

We have

P(X0:T 6= X̃0:T ) ≤ ε
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Coupling for Unbiased estimation

1: Set X0:T [1]← CPF(x0:T ), X̃0:T [1] = x0:T , x0:T arbitrary.
2: for n = 2, 3, . . . do

3: (X0:T [n], X̃0:T [n])← CCPF(X0:T [n − 1], X̃0:T [n − 1])

4: if X0:T [n] = X̃0:T [n] then output

Z = h(X0:T [1]) +
n∑

k=2

h(X0:T [k])− h(X̃0:T [k])

5: end for

Unbiased estimation:

E(h(Z )) =

∫
h(x0:T )p(x0:T |y0:T )dx0:T

Jacob, Lindsten, Schon (2017) use the CCPF within the
scheme of Glynn & Rhee (2014),
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Coupling for Unbiased estimation

Works because (i) X̃0:T [k]
d
= X0:T [k − 1],

(ii) coupling time is finite and
(iii) the coupling CCPF is for ergodic kernels

‖Pk
N − p(x0:T | y0:T )‖tv

k→∞−→ 0

Under weak assumptions

Lee, S., Vihola (2018)

There exists a constant c such that for any N ≥ 2 the coupling
time

P(τ ≥ k) ≤
(

c

c + N

)k

Under stronger assumptions, the coupling time is stable provided

N ∝ 2T
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The Coupled Conditional Backward Particle Filter, or
CCBPF (Lee, S., Vihola, 2018)

The problem here is we rely one one-shot coupling:
if (X0:T , X̃0:T ) ∼ CCPF(x0:T , x̃0:T ) then

P(X0:T 6= X̃0:T ) ≤ c

N + c

Is there a version which will work with a fix number of
particles N irrespective of T?

The idea is rely to coupling progressively

κn = max
{

0 ≤ t ≤ T : X0:t [n] = X̃0:t [n]
}

With CCPF implemented with backward sampling the
coupling boundary κn drifts to the right!
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The CCBPF (Lee, S., Vihola, 2018)

Let τ = first time n s.t. X0:T [n] = X̃0:T [n] then for any positive
constants α > 1 and β < 1/α

P(τ ≥ n) ≤ αTβn, for all n,T

if particle number N is large enough

Among the corollaries, an important one is coupling for
unbiased simulation is assured in time proportional to time
series length T .

P (Coupling time exceeds T )
T→∞−→ 0

The conjecture that Whiteley’s backward sampling version of
Andrieu et al’s CPH is stable for a fix N and any T is true

‖Pn
N − p(x0:T |y0:T )‖tv≤ αTβn, (∀N > N0,T , n)
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Particle number cut-off behaviour of CCBPF
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Optimal particle number behaviour of CCBPF
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