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Content

The Ensemble Kalman filter (EnKF)
Problem setup,
Origin,
Formulation,
Impact.

High dimensional challenges for EnKF.
Main theorem with effective dimension:

A variant of EnKF,
with a low effective dimension p,
reaches its proclaimed performance,

if the ensemble size K > Cp for a constant C.
Main theorem with localization:

A local EnKF,
with a stable local covariance structure,
reaches its proclaimed performance,

if the ensemble size K > CL log d for a constant CL.
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Filtering

Signal-observation system with random coefficients

Signal: Xn+1 = AnXn +Bn + ξn+1, ξn+1 ∼ N (0,Σn)

Observation: Yn+1 = HnXn+1 + ζn+1, ζn+1 ∼ N (0, Iq)

Goal: estimate Xn based on Y1, . . . , Yn
An, Bn,Hn (stationary) sequence of random matrices and
vectors.
An can be unstable sometimes. Hn can be on and off.
Nonlinear settings:

Xn+1 = Ψn(Xn) + ξn+1, Yn+1 = Hn(Xn+1) + ζn+1.
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Weather forecast

Signal: Xn+1 = Ψn(Xn) + ξn+1,
Observation: Yn+1 = HnXn+1 + ζn+1.
Weather forecast:
Signal: atmosphere and ocean, “follows” a PDE.
Obs: weather station, satellite, sensors.....

Main challenge: high dimension, d ∼ 106 − 108.
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Kalman filter: derivation

Question: x0 ∼ N (m0, R0),
x1 = Ax0 +B + ξ, y1 = Hx1 + ζ, how to find y1?
Forecast: x1 ∼ N (Am0 +B,AR0A

T +Σ) = N (m̂, R̂).
Assimilation: p(x1|y1): apply Bayes’ formula
Log of the unormalized likelihood:

− 1

2
(x1 − m̂)R̂−1(x1 − m̂)− 1

2
(Hx1 − y1)2

= −1

2
(x1 −m1)(R̂

−1 +HTH)(x1 −m1) + r(y1).

New mean and covariance

m1 = m̂+ R̂HT (I +HR̂HT )−1(y1 −Hm̂)

R1 = (R̂−1 +HTH)−1 = R̂− R̂HT (I +HR̂HT )−1HR̂.
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Kalman filter

Use Gaussian: Xn|Y1...n
∼ N (mn, Rn)

Forecast step: m̂n+1 = Anmn +Bn, R̂n+1 = AnRnA
T
n +Σn.

Assimilation step: apply the Kalman update rule

mn+1 = m̂n+1 + G(R̂n+1)(Yn+1 −Hnm̂n+1), Rn+1 = K(R̂n+1)

G(C) = CHT
n (Iq +HnCH

T
n )

−1, K(C) = C − G(C)HnC

Complexity: O(d3).
Posterior at t = n

forecast

Prior+Obs at t = n+ 1

assimilate

Posterior at t = n+ 1
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A brief history: Kalman filter

1958: designed by Rudolf Kalman (1930-2016)
Discovered on a late night halted train ride.
First paper was in published in mechanical
engineering, not electrical engineering.
Second paper was rejected at first.
1960: Stanley Schmidt at NASA invited Kalman.
Extended Kalman filter: used in the Apollo project.
Most core theories were developed by Kalman.
Easy to teach in an engineering undergrad course.
Implemented by digital computers.
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Sampling+Gaussian

EnKF (G. Evensen 1994 )
Monte Carlo: use samples to represent a distribution:

X(1), . . . , X(K) ∼ p, 1

K

K∑
k=1

δX(k) ≈ p.

Ensemble {X(k)
n }Kk=1 to represent N (Xn, Cn)

Xn =

∑
X

(k)
n

K
, Sn = [∆X(1)

n , · · · ,∆X(K)
n ], Cn =

SnS
T
n

K − 1
.
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Ensemble Kalman filter (EnKF)

Forecast step

X̂
(k)
n+1 = AnX

(k)
n +Bn + ζ

(k)
n+1, Ĉn+1 =

Ŝn+1Ŝ
T
n+1

K − 1

EAKF assimilation step, find Sn+1 = An+1Ŝn+1

Xn+1 = X̂n+1 + G(Ĉn+1)(Yn+1 −HnX̂n+1), ECn+1 ≈ K(Ĉn+1)

Complexity: O(dK2).

Posterior at t = n

forecast: M.C.X
(k)
n

X̂
(k)
n+1

Prior+Obs at t = n+ 1

assimilate
X

(k)
n+1

Posterior at t = n+ 1
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Nonlinear case

Forecast step
X̂k

n+1 = Ψn(X
k
n) + ξkn+1, Y k

n+1 = Hn(X
k
n+1) + ζkn+1

Assimilation step
Xk

n+1 = X̂k
n+1 + Gn+1(Yn+1 − Y k

n+1).

Gain matrix: Gn+1 = SXS
T
Y (I + SY S

T
Y )

−1,
SX = 1

K−1 [X
(1)
n+1 −Xn+1, . . . , X

k
n+1 −Xn+1].

Complexity O(K2d).

Posterior at t = n

forecast: M.C.X
(k)
n

X̂
(k)
n+1

Prior+Obs at t = n+ 1

assimilate
X

(k)
n+1

Posterior at t = n+ 1
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Success of EnKF
Successful applications to weather forecast

System d ∼ 106, ensemble size K ∼ 102.
Complexity of Kalman filter: O(d3) = O(1018).
Complexity of EnKF: O(K2d) = O(1010).
No computation of gradient.

Also find applications in
Oil reservoir management.
Bayesian inverse problems.
Deep learning.
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Application and theory of EnKF

Application:
Successful weather forecast and oil reservoir management.
Recently been applied to deep neural networks.
K = 50 ensembles can forecast d = 106 dimensional systems.
Extreme savings: 1010 = dK2 ≪ d3 = 1018.

Literature
Focused on showing ensemble version (Xn, Cn)→ (mn, Rn)

Require K →∞ (Mandel, Cobb, Beezley 11)
Fixed d sufficiently large K, |A| < 1 (Del Moral, Tugaut 16)
Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)
Fixed K, well definedness E|X(k)

n |2 <∞ (Law, Kelly, Stuart, 14)
Fixed K, boundedness supn E|X

(k)
n |2 <∞ (Tong, Majda, Kelly 15)

Continuous version, stability for full obs (de Wilijes, Reich, Stannat17)
Missing: performance analysis with K ≪ d.
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Challenges

Ensemble size K to represent uncertainty of dimension d:

Rank deficiency: Cn =
∑K

k=1(X
(k)
n −Xn)(X

(k)
n −Xn)

T

K−1

Has rank(Cn)≤ K − 1, see as
[
Cn 0
0 0

]
} K-1
} d-K+1

Instability of the dynamics: Ĉn+1 = AnCnA
T
n +Σn

What if span(Cn) does not cover expanding directions?
Covariance decay by random sampling: Cn+1 = K(Ĉn+1)

K : concave, monotone: ECn+1 = EK(Ĉn+1) ⪯ K(EĈn+1)

Spurious correlation in high dimension.
Suppose X(k)

n ∼ N (0, Id) i.i.d, by Bai-Yin’s law

∥Cn − Id∥ ≈
√
d/K with large probability
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Heuristic answers

We need conditions! One of two will help us
Low effective dimension.
Localized covariance structure.

Compared with high dimensional matrix computation
Low rank matrices.
Sparse matrices.
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Low effective dimension

Simulation of Lorenz 63:

Lorenz system propagation. Video: MIT Aero Astro

Exploited by the UQ community for various purpose.
Assume there is a effective dimension p < K ≪ d

Most uncertainty lies in p directions, others below a threshold ρ,[
Cn 0
0 0

]
≈

[
Cn O(ρ)
O(ρ) O(ρ)

]
} K-1
} d-K+1
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Main results

Theorem (Majda, T. 16)
Suppose the system has a low effective filter dimension p, there is a
variant of EnKF with a constant C, such that the EnKF reaches its
proclaimed performance if K > Cp.

Next, we explain
What variant of EnKF?
How to define a low effective dimension?
What does proclaimed performance mean?
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An illustrative example

Texas Hold’em,

Board: ♣4 ♠K ♡4 ♠8 ♠7
Your hand:♡K ♢K All in?

Alice’s hand:♢4 ♠4!

Chance of losing: 1 out of C2
45 = 990.

Overconfidence makes you lose.
Safer strategy: never all in (if possible).

For EnKF, confidence is described by the covariance matrix Cn.
Large covariance: less confidence in estimation.
Zero covariance: the estimator is the truth.
An “overconfidence”: filter divergence.
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EnKF variant for enhanced fidelity

Techniques to enhance fidelity
Rank deficiency: additive inflation ρId

Cρ
n = ρId +

∑K
k=1(X

(k)
n −Xn)(X

(k)
n −Xn)

T

K − 1
=

[
Cn + ρIK−1 0

0 ρId−K+1

]
The under represented direction: assume error strength is ρ.

Instability of the dynamics. Increase noise strength
X̂k

n+1 = An+1X
(k)
n + ξ

(k)
n+1, ξ

(k)
n+1 ∼ Σ+

n

Σn → Σ+
n = [ρAnA

T
n +Σn − ρ/rId],

Σ+
n indicates the system instability.

Covariance decay by random sampling.
Multiplicative inflation: Ĉn+1 = rĈn+1

Spurious correlation in high dimension.
Projecting to p principal directions of K(Ĉn+1)
The leftover direction: assume error strength is ρ
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Algorithm 1 EnKF variant
1: for n← 0 to T − 1 do
2: Σ+

n ← The positive part of ρAnA
T
n +Σn − ρ/rId.

3: Generate ξ(k)n+1 ∼ N (0,Σ+
n ), k = 1, . . . ,K.

4: X̂n+1 ← AnXn +Bn + 1
K

∑K
k=1 ξ

(k)
n+1.

5: Ŝn+1 ←
√
r(AnSn + [∆ξ

(1)
n+1, . . . ,∆ξ

(K)
n+1]).

6: Ĉn+1 ← 1
K−1 Ŝn+1Ŝ

T
n+1.

7: Gn+1 ← Ĉρ
n+1H

T
n (Iq +HnĈ

ρ
n+1H

T
n )

−1.
8: Xn+1 ← X̂n+1 +Gn+1(Yn+1 −HnX̂n+1)

9: Pn+1 ←Projection to the largest p eigenvectors of K(Ĉρ
n+1).

10: Sn+1 ← AnŜn+1 so
Sn+1S

T
n+1

K−1 = Pn+1(K(Ĉρ
n+1)− ρId)Pn+1

11: Return: N (Xn+1,
Sn+1S

T
n+1

K−1 + ρId )
12: end for
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Kalman filter reference

Effective dimension: hard to define through physical parameters.
Use a comparison principle between Kalman filters.
Original signal observation system:

Signal: Xn+1 = AnXn +Bn + ξn+1, ξn+1 ∼ N (0,Σn)

Observation: Yn+1 = HnXn+1 + ζn+1, ζn+1 ∼ N (0, Iq)

An inflated version:

Signal : X ′
n+1 = rAnX

′
n +Bn + ξ′n+1, ξ′n+1 ∼ N (0,Σ′

n)

Observation : Y ′
n+1 = HnX

′
n+1 + ζ ′n+1, ζ ′n+1 ∼ N (0, Iq)

Noise is also inflated Σ′
n = r2Σ+

n + r2ρId.
When r ≈ 1, ρ ≈ 0, two systems are similar to each other.
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Low effective dimension
(X ′

n, Y
′
n) has its own Kalman filter (m′

n, R
′
n), with covariance update

R′
n+1 = K(r2AnR

′
nA

T
n +Σ′

n)

Such update often has a stationary solution R̃n (Bougerol 93)

Cn ⪯ R′
n with large probability

Assumption (Low effective dimension)
The original system has an effective dimension p if

A covariance sequence R̃n has at most p eigenvalues above ρ
Rank(Σ+

n ) ≤ p⇔ AnA
T
n +Σn/ρ has at p eigenvalues above 1/r

Assumption (Uniform observability)

A−1
n , An,Σn, R̃n, R̃

−1
n are all bounded in operator norm.

The m step observability Gramian
∑m

k=1A
T
k,1H

T
k HkAk,1 ⪰ cmId
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Which is more dangerous?

You are driving along a sub-optimal path.
vs.

Your speedometer and break are not working.

Source: internet
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Proclaimed performance

Classical criterion: difference between (mn, Rn) and (Xn, Cn).

Proclaimed performance
Filter estimates its error/uncertainty by covariance Cn.
Does the estimation captures variance of en = Xn −Xn?

ECn ⪰ Een ⊗ en? EeTnC−1
n en < D

Mahalanobis distance ∥v∥2C = vT [C]−1v.

The effective filter covariance Cρ
n = Cn + ρI =

[
Cn + ρI 0

0 ρI

]
∥en∥2Cρ

n
= eTnC

−1
n en punishes errors on the represented

directions.
∥en∥2Cρ

n
≈ d if en ∼ N (0, Cρ

n).
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Mahalanobis distance

Mahalanobis distance ∥v∥C = vT [C]−1v

Definition for Kalman update:

mn = argmin
x

(
∥x− m̂n∥2R̂n

+ ∥Yn −Hnx∥2Σn

)
Stable dissipation for Kalman filter errors

en+1 = (I −Kn+1Hn)Anen +Kn+1Hnζn+1

AT
n (I −Kn+1Hn)

TR−1
n+1(I −Kn+1Hn)An ⪯ AT

n R̂
−1
n+1An ⪯ R−1

n

eTn+1R
−1
n+1en+1 ≤ eTnR−1

n en

Stability results for Kalman filters (Bougerol 93, Reif et al. 99)
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Main theorem

Theorem (Majda, T. 16)
Suppose the signal observation system is uniformly observable with
m steps, and has a effective dimension p. Then for any c, there are
C,F,DF ,Mn, so that if K > Cp

E∥en∥Cρ
n
≤ r−n

6 EF (C0)
√
∥e0∥2C0

+ 2m+Mn

√
d

With the constants bounded by

F (C) ≤ DF exp(DF log3 ∥C∥), lim sup
n→∞

Mn ≤
1 + c

1− r−m
6
.

Cor1: exponential stability: the difference in mean converges to zero.
Cor2: ϵ scale noises lead to ϵ scale error for EnKF.
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How to apply it

Starting with a system

Signal: Xn+1 = AnXn +Bn + ξn+1, ξn+1 ∼ N (0,Σn)

Observation: Yn+1 = HnXn+1 + ξn+1, ζn+1 ∼ N (0, Iq)

1 Find the proper error threshold, inflation strength ρ, r
2 Construct the inflated system (X ′

n, Y
′
n)

3 Check whether its Kalman filter has a low dimension p
4 Choose K > Cp ensemble size, the Mahalonobis error is
bounded.

Apply to a stochastic partial differential equation

∂u(x, t) = Ω(∂x)u(x, t)− γ(∂x)u(x, t) + F (x, t) + dW (x, t)

With Kolmogorov energy spectrum, p = 10− 30 depending on
observation.
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Concentration of Random sampling matrix

Let {ak} be any K vectors of rank p, ξk ∼ N (0,Σ) with rank(Σ) = p.

C =
1

K − 1

K∑
k=1

ak ⊗ ak, Z =
1

K − 1

K∑
k=1

(ak +∆ξk)⊗ (ak +∆ξk).

Z concentrates around D = EZ = C +Σ in both ways if K > Cp.

µ = inf{u ≥ 0 : [Z + ρId]
−1 ⪯ u[D + ρId]

−1}

λ = inf{u ≥ 0 : Z ⪯ u[D + ρId]}.

Then with Q being the condition number of C + ρId:

P(µ > 1 + δ or λ > 1 + δ) ≤ (logQ+ 1) exp(Cδp− cδK)

The forecast covariance concentrates around its mean with high
probability.
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Comparison with reference

The reference Kalman filter gives control
Cn

Forecast
��

Controlled by R′
n

Forecast
��

Ĉn+1
/o/o/o/o /o/o/o/o

Assimilation
��

AnCnA
T
n +Σ+

n
ks R̂′

n+1 = AnR
′
nA

′
n +Σ′

n

Assimilation
��

K(Ĉn+1) /o/o/o/o /o/o/o/o

PCA
��

K(EĈn+1) ks K(R̂′
n+1)

Cn+1 Controlled by R′
n+1

Dissipation of Mahalanobis error on R′
n transfers to Cn.

Small probability set, controlled by Lyapunov function, uniform
observability.
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Importance of the EnKF techniques

Our proof reveals importance of EnKF techniques:
Techniques Application Theoretical

Additive inflation
Cn + ρId

Under-represented
directions

[Cn + ρId]
−1

Well-defined
Multiplicative
inflation rĈn

Covariance decay Concentration
[rĈn+ρId]

−1 ⪯ EĈn

Spectral projection:
POD

Spurious correlation Concentration:
rank(Cn) ≤ p
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Summary

Main theorem:
A variant of EnKF:

• Inflations for covariance decay.
• PCA: spurious correlation.

With an effective dimension p:
Number of significant dimensions in an inflated Kalman filter.
Reaches proclaimed performance:
E∥en∥2Cρ

n
converges to a constant independent of initial

condition.
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Heuristic answers

We need conditions! One of two will help us
Low effective dimension.
Localized covariance structure.

Compared with high dimensional matrix computation
Low rank matrices.
Sparse matrices.
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Local interaction

High dimension often comes from dense grids.
Interaction often is local: PDE discritization:

∂xx(t)⇒
1

2h
(xi+1(t)− xi−1(t)).

Example: Lorenz 96 model

ẋi(t) = (xi+1 − xi−2)xi−1 − xidt+ F, i = 1, · · · , d

Information travels along interaction, and is dissipated.
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Sparsity: local covariance

Correlation depends on information propagation.
Correlation decays quickly with the distance.
Covariance is localized with a structure Φ, e.g. Φ(x) = ρx

[Ĉn]i,j ∝ Φ(|i− j|)
Φ(x) ∈ [0, 1] is decreasing. Distance can be general.
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Covariance Localization

Spurious correlation may exist for far away terms.
Localization: simply ignore far away correlations.
Implementation: Schur product with a mask

[Ĉn ◦ DL]i,j = [Ĉn]i,j · [DL]i,j

Use Ĉn ◦ DL to describe uncertainty
[DL]i,j = ϕ(|i− j|), with a radius L.
Gaspari-Cohn matrix: ϕ(x) = exp(−4x2/L2)1|i−j|≤L.
Cutoff/Branding matrix: ϕ(x) = 1|i−j|≤L.
Also resolves rank deficiency, e.g.1 1 1

1 1 1
1 1 1

 ◦
 1 0.2 0
0.2 1 0.2
0 0.2 1

 =

 1 0.2 0
0.2 1 0.2
0 0.2 1

 .
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Domain localization
Two types LEnKF: Domain localization and covariance tempering.

Domain localization with radius l:
Assume H is a partial observation matrix
Use information in Ii = {j : |i− j| ≤ l} to update component i

Ci = PIi
CPIi

, Gi(C) = CiHT (σ2
oIq +HCiHT )−1

GL(C) =
∑

eie
T
i Gi(C)

X(k)
n = X̂(k)

n + GL(Ĉn)(Yn −HX̂(k)
n + ζ(k)n ).
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Advantage with localization

Intuitively, ignoring the long distance covariance terms,
reduces the sampling difficulty, and necessary sampling size.

Theorem (Bickel, Levina 08)
If X(1), . . . , X(K) ∼ N (0,Σ), denote C = 1

K

∑K
k=1X

(k) ⊗X(k).
∥DL∥1 = maxi

∑
j |DL|i,j .There is a constant c, and for any t > 0

P(∥C ◦ DL − Σ ◦ DL∥ > ∥DL∥1t) ≤ 8 exp(2 log d− cKmin{t, t2})

This indicates that K ∝ ∥DL∥21 log d is the necessary sample size.

∥DL∥ is independent of d, e.g, the cut-off/branding matrix,
[DL

cut]i,j = 1|i−j|≤L, ∥DL
cut∥1 ≈ 2L.
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Main result: localized EnKF

Theorem (T. 18)
Suppose the system coefficients have bandwidth l, and the LEnKF
ensemble covariance admits a stable localized structure, then for any
δ > 0, LEnKf reaches its proclaimed performance with high
probability 1−O(δ):

1− 1

T

T∑
t=1

P(ES ên ⊗ ên ⪯ (1 + δ)(Ĉn ◦ D4l
cut + ρId)) ≤

1

T
D0 +D1δ,

if the sample size K > Dl,δ log d.

ES conditioned on the information of the sampling noise realization.
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Proclaimed performance

Proclaimed/estimated performance
EnKF estimates Xn by Xn = 1

K

∑
X

(k)
n .

Error en = Xn −Xn. Covariance : EeneTn = Een ⊗ en.
EnKF estimates its performance by ensemble covariance Cρ

n.
Can it captures the error covariance?

ECρ
n ⪰ Een ⊗ en

1− 1

T

T∑
t=1

P(ES ên ⊗ ên ⪯ (1 + δ)(Ĉn ◦ D4l
cut + ρId)) ≤

1

T
D0 +D1δ,
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Stable localized structure

Intuitively, we need some conditions on the covariance structure.
Stable localized structure: with local structure function Φ, e.g.
Φ(x) = λx,

[Ĉn]i,j ≤MnΦ(|i− j|),
T∑

n=1

EMn ≤ TM∗.

Mn describes how localized the sample covariance matrix is.
Why is this necessary?
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LEnKF inconsistency

An intrinsic bias/inconsistency in LEnKF.
Localization creates a bias.
Target covariance by Bayes formula

(I − GL(Ĉn)H)[Ĉn ◦ DL](I − GL(Ĉn)H)T + σ2
oGL(GL)T .

LEnKF implementation

X(k)
n = X̂(k)

n + GL(Ĉn)(Yn −HX̂(k)
n + ζ(k)n )

Average ensemble covariance

Cn ◦DL = [(I−GL(Ĉn)H)Ĉn(I−GL(Ĉn)H)T +σ2
oGL(GL)T ]◦DL.

Difference: commuting the localization and Kalman update.
Previously investigated numerically by Nerger 2015,
the inconsistency can lead to error growth.
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When is the inconsistency small?

localization is applied, covariance is assumed localized.
Given localized structure Φ, findMn so that

[Ĉn]i,j ≤MnΦ(|i− j|).

Interestingly, when DL is Dcut
4l , the

Localization inconsistency ≤ CMnΦ(2l).

If 2l is large, Φ(x) = λx, this difference can be controlled.
Localized covariance leads to small localization inconsistency.
Therefore, we needMn to be a stable sequence,

T∑
n=1

EMn ≤ TM∗.
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When is covariance localized?
Practical perspective

Simply assumed.
Numerically checked.

Theoretical perspective: does covariance localize for any stochastic
system?

Linear system: covariance can be computed.
Nonlinear: difficult, e.g. Lorenz 96.
LEnKF: difficult since assimilation is nonlinear.
Under strong conditions:

Weak local interaction, strong dissipation.
Sparse observation for simplicity.

Also scales with the noise strength.
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Stable local structure

Theorem
Suppose the following, then a stable localized structure with
Φ(x) = λxA
1) The system noise is diagonal and the observations are sparse

Σn = σ2
ξId, d(oi, oj) > 2l, ∀i ̸= j.

2) There is a λA < r−1, maxi
{∑d

k=1 |[An]i,k|λ−d(i,k)
A

}
≤ λA.

3) There are constants such that ψλA
(M∗, δ∗) ≤M∗

0 < δ∗ < min{0.25, 12 (λ
−1
A − r)}, M∗ ≥

(r + 2δ∗)σ
2
ξ

1− λA
,

ψλA
(M, δ) = (r+δ)max

{
λAM

(
1 + σ−2

o M
)2

+ λAσ
−2
o M2, λ2AM + σ2

ξ

}
.

4) Denote n∗ = 2L+ ⌈ log 4δ−1
∗

logλ−1
A

⌉. The sample size K exceeds

K > max
{
− 1

cδ2∗λ
2L
A

log(16d2n∗δ−2
∗ ),Γ(2rδ−1

∗ , d)

}
.
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A real example

A stochastically forced dissipative advection equation:

∂u(x, t)

∂t
= c

∂u(x, t)

∂x
− νu(x, t) + µ

∂2u(x, t)

∂x2
+ σxẆ (x, t).

Discretization

Xn+1,i = a−Xn,i−1 + a0Xn,i + a+Xn,i+1 + σx
√
∆tWn+1,i, i = 1, . . . , d;

a− = µ∆t
h2 − c∆t

2h , a0 = 1− 2µ∆t
h2 − ν∆t, a+ = µ∆t

h2 + c∆t
2h .

Observe Yn,k = Xn,p(k−1)+1 + σoBn,k.
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Stable regime

Strong damping+weak advection

h = 1, ∆t = 0.1, p = 5, ν = 5, c = 0.1, µ = 0.1, σx = σo = 1.

Direct verification of the conditions is possible.
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Strong advection regime

Weak damping+strong advection

h = 0.2, ∆t = 0.1, p = 5, ν = 0.1, c = 2, µ = 0.1, σx = σo = 1.

Direct verification of the conditions is not possible.

X.Tong Localization 46 / 48



Extension of localization

Localization has made EnKF very effective for high dimensional
DA problems.
Various generalization to particle filters.
Often relies on Gaspari Cohn matrices.
Makes non-Gaussian application difficult.
Non-ad hoc ways generalize localization to PF?
Can we apply localization to other UQ problem?
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Reference
Robustness and Accuracy of finite Ensemble Kalman filters in
large dimensions. Comm. Pure Appl. Math., 71(5), 892-937,
(2018)
Rigorous accuracy and robustness analysis for two-scale
reduced random Kalman filters in high dimensions. accepted by
CMS.
Performance analysis of local ensemble Kalman filter. J.
Nonlinear Sci. 2018, Vol 28, No. 4. p1397-1442.

Links and slides can be found at www.math.nus.edu.sg/∼mattxin.

Thank you!
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