Ensemble Kalman filter in high dimensions

Xin T Tong

National University of Singapore Joint work with Andrew J. Majda

Bayesian Computations for High-Dimensional statistical models. IMS, Singapore 2018

Content

- The Ensemble Kalman filter (EnKF)
 - Problem setup,
 - Origin,
 - Formulation,
 - Impact.
- High dimensional challenges for EnKF.
- Main theorem with effective dimension:
 - A variant of EnKF,
 - with a low effective dimension p,
 - reaches its proclaimed performance,

if the ensemble size K > Cp for a constant C.

- Main theorem with localization:
 - A local EnKF,
 - with a stable local covariance structure,
 - reaches its proclaimed performance,

if the ensemble size $K > C_L \log d$ for a constant C_L .

Signal-observation system with random coefficients

Signal:
$$X_{n+1} = A_n X_n + B_n + \xi_{n+1}$$
, $\xi_{n+1} \sim \mathcal{N}(0, \Sigma_n)$
Observation: $Y_{n+1} = H_n X_{n+1} + \zeta_{n+1}$, $\zeta_{n+1} \sim \mathcal{N}(0, I_q)$

Goal: estimate X_n based on Y_1, \ldots, Y_n

- A_n, B_n, H_n (stationary) sequence of random matrices and vectors.
- A_n can be unstable sometimes. H_n can be on and off.
- Nonlinear settings:

$$X_{n+1} = \Psi_n(X_n) + \xi_{n+1}, \quad Y_{n+1} = H_n(X_{n+1}) + \zeta_{n+1}.$$

Weather forecast

- Signal: $X_{n+1} = \Psi_n(X_n) + \xi_{n+1}$, Observation: $Y_{n+1} = H_n X_{n+1} + \zeta_{n+1}$.
- Weather forecast:

Signal: atmosphere and ocean, "follows" a PDE. Obs: weather station, satellite, sensors.....

• Main challenge: high dimension, $d \sim 10^6 - 10^8$.

Kalman filter: derivation

Question:
$$x_0 \sim \mathcal{N}(m_0, R_0)$$
,
 $x_1 = Ax_0 + B + \xi$, $y_1 = Hx_1 + \zeta$, how to find y_1 ?

Forecast: $x_1 \sim \mathcal{N}(Am_0 + B, AR_0A^T + \Sigma) = \mathcal{N}(\hat{m}, \hat{R}).$

Assimilation: p(x₁|y₁): apply Bayes' formula Log of the unormalized likelihood:

$$-\frac{1}{2}(x_1 - \hat{m})\hat{R}^{-1}(x_1 - \hat{m}) - \frac{1}{2}(Hx_1 - y_1)^2$$

= $-\frac{1}{2}(x_1 - m_1)(\hat{R}^{-1} + H^TH)(x_1 - m_1) + r(y_1)$

New mean and covariance

$$m_1 = \hat{m} + \hat{R}H^T (I + H\hat{R}H^T)^{-1} (y_1 - H\hat{m})$$

$$R_1 = (\hat{R}^{-1} + H^T H)^{-1} = \hat{R} - \hat{R}H^T (I + H\hat{R}H^T)^{-1}H\hat{R}.$$

Kalman filter

- Use Gaussian: $X_n|_{Y_{1...n}} \sim \mathcal{N}(m_n, R_n)$
- Forecast step: $\hat{m}_{n+1} = A_n m_n + B_n$, $\hat{R}_{n+1} = A_n R_n A_n^T + \Sigma_n$.
- Assimilation step: apply the Kalman update rule

$$m_{n+1} = \hat{m}_{n+1} + \mathcal{G}(\hat{R}_{n+1})(Y_{n+1} - H_n \hat{m}_{n+1}), \quad R_{n+1} = \mathcal{K}(\hat{R}_{n+1})$$
$$\mathcal{G}(C) = CH_n^T (I_q + H_n CH_n^T)^{-1}, \quad \mathcal{K}(C) = C - \mathcal{G}(C)H_n C$$
Complexity: $O(d^3)$.

1958: designed by Rudolf Kalman (1930-2016)

- Discovered on a late night halted train ride.
- First paper was in published in mechanical engineering, not electrical engineering.
- Second paper was rejected at first.
- 1960: Stanley Schmidt at NASA invited Kalman.
- Extended Kalman filter: used in the Apollo project.
- Most core theories were developed by Kalman.
- Easy to teach in an engineering undergrad course.
- Implemented by digital computers.

EnKF (G. Evensen 1994)

■ Monte Carlo: use samples to represent a distribution:

$$X^{(1)}, \dots, X^{(K)} \sim p, \quad \frac{1}{K} \sum_{k=1}^{K} \delta_{X^{(k)}} \approx p.$$

Ensemble $\{X_n^{(k)}\}_{k=1}^K$ to represent $\mathcal{N}(\overline{X}_n, C_n)$

$$\overline{X}_n = \frac{\sum X_n^{(k)}}{K}, \quad S_n = [\Delta X_n^{(1)}, \cdots, \Delta X_n^{(K)}], \quad C_n = \frac{S_n S_n^T}{K - 1}.$$

Ensemble Kalman filter (EnKF)

Forecast step

$$\widehat{X}_{n+1}^{(k)} = A_n X_n^{(k)} + B_n + \zeta_{n+1}^{(k)}, \quad \widehat{C}_{n+1} = \frac{\widehat{S}_{n+1} \widehat{S}_{n+1}^T}{K - 1}$$

EAKF assimilation step, find $S_{n+1} = \mathbf{A}_{n+1} \widehat{S}_{n+1}$

$$\overline{X}_{n+1} = \overline{\widehat{X}}_{n+1} + \mathcal{G}(\widehat{C}_{n+1})(Y_{n+1} - H_n\overline{\widehat{X}}_{n+1}), \quad \mathbb{E}C_{n+1} \approx \mathcal{K}(\widehat{C}_{n+1})$$

• Complexity:
$$O(dK^2)$$
.

Nonlinear case

Forecast step

$$\widehat{X}_{n+1}^k = \Psi_n(X_n^k) + \xi_{n+1}^k, \quad Y_{n+1}^k = H_n(X_{n+1}^k) + \zeta_{n+1}^k$$

Assimilation step

$$\begin{split} X_{n+1}^k &= \widehat{X}_{n+1}^k + \mathcal{G}_{n+1}(Y_{n+1} - Y_{n+1}^k).\\ \text{Gain matrix: } \mathcal{G}_{n+1} &= S_X S_Y^T (I + S_Y S_Y^T)^{-1},\\ S_X &= \frac{1}{K-1} [X_{n+1}^{(1)} - \overline{X}_{n+1}, \dots, X_{n+1}^k - \overline{X}_{n+1}].\\ \text{Complexity } O(K^2 d). \end{split}$$

X.Tong

Success of EnKF

Successful applications to weather forecast

- System $d \sim 10^6$, ensemble size $K \sim 10^2$.
- Complexity of Kalman filter: $O(d^3) = O(10^{18})$.
- Complexity of EnKF: $O(K^2d) = O(10^{10})$.
- No computation of gradient.

Also find applications in

- Oil reservoir management.
- Bayesian inverse problems.

Deep learning.

X.Tong

Application:

- Successful weather forecast and oil reservoir management.
- Recently been applied to deep neural networks.
- K = 50 ensembles can forecast $d = 10^6$ dimensional systems.
- Extreme savings: $10^{10} = dK^2 \ll d^3 = 10^{18}$.

Literature

- Focused on showing ensemble version $(\overline{X}_n, C_n) \to (m_n, R_n)$
- Require $K \to \infty$ (Mandel, Cobb, Beezley 11)
- Fixed d sufficiently large K, |A| < 1 (Del Moral, Tugaut 16)
- Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)
- Fixed K, well definedness $\mathbb{E}|X_n^{(k)}|^2 < \infty$ (Law, Kelly, Stuart, 14)
- Fixed K, boundedness $\sup_n \mathbb{E} |X_n^{(k)}|^2 < \infty$ (Tong, Majda, Kelly 15)
- Continuous version, stability for full obs (de Wilijes, Reich, Stannat17)

Missing: performance analysis with $K \ll d$.

Application:

- Successful weather forecast and oil reservoir management.
- Recently been applied to deep neural networks.
- K = 50 ensembles can forecast $d = 10^6$ dimensional systems.
- Extreme savings: $10^{10} = dK^2 \ll d^3 = 10^{18}$.

Literature

- Focused on showing ensemble version $(\overline{X}_n, C_n) \to (m_n, R_n)$
- **Require** $K \to \infty$ (Mandel, Cobb, Beezley 11)
- Fixed d sufficiently large K, |A| < 1 (Del Moral, Tugaut 16)
- Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)
- Fixed K, well definedness $\mathbb{E}|X_n^{(k)}|^2 < \infty$ (Law, Kelly, Stuart, 14)
- Fixed K, boundedness $\sup_n \mathbb{E} |X_n^{(k)}|^2 < \infty$ (Tong, Majda, Kelly 15)
- Continuous version, stability for full obs (de Wilijes, Reich, Stannat17)

Missing: performance analysis with $K \ll d$.

Application:

- Successful weather forecast and oil reservoir management.
- Recently been applied to deep neural networks.
- K = 50 ensembles can forecast $d = 10^6$ dimensional systems.
- Extreme savings: $10^{10} = dK^2 \ll d^3 = 10^{18}$.

Literature

- Focused on showing ensemble version $(\overline{X}_n, C_n) \to (m_n, R_n)$
- **Require** $K \to \infty$ (Mandel, Cobb, Beezley 11)
- Fixed d sufficiently large K, |A| < 1 (Del Moral, Tugaut 16)
- Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)
- Fixed K, well definedness $\mathbb{E}|X_n^{(k)}|^2 < \infty$ (Law, Kelly, Stuart, 14)
- Fixed K, boundedness $\sup_n \mathbb{E} |X_n^{(k)}|^2 < \infty$ (Tong, Majda, Kelly 15)
- Continuous version, stability for full obs (de Wilijes, Reich, Stannat17)

Missing: performance analysis with $K \ll d$.

■ Rank deficiency:
$$C_n = \frac{\sum_{k=1}^{K} (X_n^{(k)} - \overline{X}_n) (X_n^{(k)} - \overline{X}_n)^T}{K-1}$$

Has rank(C_n) ≤ $K - 1$, see as $\begin{bmatrix} C_n & 0 \\ 0 & 0 \end{bmatrix}$ } K-1
J d-K+1

- Instability of the dynamics: $\widehat{C}_{n+1} = A_n C_n A_n^T + \Sigma_n$ What if span (C_n) does not cover expanding directions?
- Covariance decay by random sampling: $C_{n+1} = \mathcal{K}(\widehat{C}_{n+1})$ \mathcal{K} : concave, monotone: $\mathbb{E}C_{n+1} = \mathbb{E}\mathcal{K}(\widehat{C}_{n+1}) \preceq \mathcal{K}(\mathbb{E}\widehat{C}_{n+1})$
- Spurious correlation in high dimension. Suppose $X_n^{(k)} \sim \mathcal{N}(0, I_d)$ i.i.d, by Bai-Yin's law

 $\|C_n - I_d\| \approx \sqrt{d/K}$ with large probability

■ Rank deficiency:
$$C_n = \frac{\sum_{k=1}^{K} (X_n^{(k)} - \overline{X}_n) (X_n^{(k)} - \overline{X}_n)^T}{K-1}$$

Has rank(C_n)≤ $K - 1$, see as $\begin{bmatrix} C_n & 0 \\ 0 & 0 \end{bmatrix}$ } K-1
} d-K+1

- Instability of the dynamics: $\widehat{C}_{n+1} = A_n C_n A_n^T + \Sigma_n$ What if span (C_n) does not cover expanding directions?
- Covariance decay by random sampling: $C_{n+1} = \mathcal{K}(\widehat{C}_{n+1})$ \mathcal{K} : concave, monotone: $\mathbb{E}C_{n+1} = \mathbb{E}\mathcal{K}(\widehat{C}_{n+1}) \preceq \mathcal{K}(\mathbb{E}\widehat{C}_{n+1})$
- Spurious correlation in high dimension. Suppose $X_n^{(k)} \sim \mathcal{N}(0, I_d)$ i.i.d, by Bai-Yin's law

 $\|C_n - I_d\| \approx \sqrt{d/K}$ with large probability

■ Rank deficiency:
$$C_n = \frac{\sum_{k=1}^{K} (X_n^{(k)} - \overline{X}_n) (X_n^{(k)} - \overline{X}_n)^T}{K-1}$$

Has rank(C_n) ≤ $K - 1$, see as $\begin{bmatrix} C_n & 0 \\ 0 & 0 \end{bmatrix}$ } K-1
 } d-K+1

- Instability of the dynamics: $\widehat{C}_{n+1} = A_n C_n A_n^T + \Sigma_n$ What if span (C_n) does not cover expanding directions?
- Covariance decay by random sampling: $C_{n+1} = \mathcal{K}(\widehat{C}_{n+1})$ \mathcal{K} : concave, monotone: $\mathbb{E}C_{n+1} = \mathbb{E}\mathcal{K}(\widehat{C}_{n+1}) \preceq \mathcal{K}(\mathbb{E}\widehat{C}_{n+1})$
- Spurious correlation in high dimension. Suppose $X_n^{(k)} \sim \mathcal{N}(0, I_d)$ i.i.d, by Bai-Yin's law

 $\|C_n - I_d\| \approx \sqrt{d/K}$ with large probability

■ Rank deficiency:
$$C_n = \frac{\sum_{k=1}^{K} (X_n^{(k)} - \overline{X}_n) (X_n^{(k)} - \overline{X}_n)^T}{K-1}$$

Has rank(C_n)≤ $K - 1$, see as $\begin{bmatrix} C_n & 0 \\ 0 & 0 \end{bmatrix}$ } K-1
} d-K+1

- Instability of the dynamics: $\widehat{C}_{n+1} = A_n C_n A_n^T + \Sigma_n$ What if span (C_n) does not cover expanding directions?
- Covariance decay by random sampling: $C_{n+1} = \mathcal{K}(\widehat{C}_{n+1})$ \mathcal{K} : concave, monotone: $\mathbb{E}C_{n+1} = \mathbb{E}\mathcal{K}(\widehat{C}_{n+1}) \preceq \mathcal{K}(\mathbb{E}\widehat{C}_{n+1})$
- Spurious correlation in high dimension. Suppose $X_n^{(k)} \sim \mathcal{N}(0, I_d)$ i.i.d, by Bai-Yin's law

 $\|C_n - I_d\| pprox \sqrt{d/K}$ with large probability

We need conditions! One of two will help us

- Low effective dimension.
- Localized covariance structure.
- Compared with high dimensional matrix computation
 - Low rank matrices.
 - Sparse matrices.

Low effective dimension

Simulation of Lorenz 63:

Lorenz system propagation. Video: MIT Aero Astro

Exploited by the UQ community for various purpose. Assume there is a effective dimension $p < K \ll d$

• Most uncertainty lies in p directions, others below a threshold ρ ,

$$\begin{bmatrix} C_n & 0 \\ 0 & 0 \end{bmatrix} \approx \begin{bmatrix} C_n & O(\rho) \\ O(\rho) & O(\rho) \end{bmatrix} \frac{\text{K-1}}{\text{J}-\text{K+1}}$$

Theorem (Majda, T. 16)

Suppose the system has a low effective filter dimension p, there is a variant of EnKF with a constant C, such that the EnKF reaches its proclaimed performance if K > Cp.

Next, we explain

- What variant of EnKF?
- How to define a low effective dimension?
- What does proclaimed performance mean?

Texas Hold'em,

Board: $4 \Leftrightarrow K \heartsuit 4 \Leftrightarrow 8 \Leftrightarrow 7$

Your hand: $\heartsuit K \diamondsuit K$ All in?

Alice's hand: $\diamond 4 \ 4!$

- Chance of losing: 1 out of $C_{45}^2 = 990$.
- Overconfidence makes you lose.
- Safer strategy: never all in (if possible).

For EnKF, confidence is described by the covariance matrix C_n .

- Large covariance: less confidence in estimation.
- Zero covariance: the estimator is the truth.
- An "overconfidence": filter divergence.

Texas Hold'em,

Board: $4 \Leftrightarrow K \heartsuit 4 \Leftrightarrow 8 \Leftrightarrow 7$ Your hand: $\heartsuit K \diamondsuit K$ All in? Alice's hand: $\diamondsuit 4 \Leftrightarrow 4!$

- Chance of losing: 1 out of $C_{45}^2 = 990$.
- Overconfidence makes you lose.
- Safer strategy: never all in (if possible).

For EnKF, confidence is described by the covariance matrix C_n .

- Large covariance: less confidence in estimation.
- Zero covariance: the estimator is the truth.
- An "overconfidence": filter divergence.

\blacksquare Rank deficiency: additive inflation ρI_d

$$C_n^{\rho} = \rho I_d + \frac{\sum_{k=1}^K (X_n^{(k)} - \overline{X}_n) (X_n^{(k)} - \overline{X}_n)^T}{K - 1} = \begin{bmatrix} C_n + \rho I_{K-1} & 0\\ 0 & \rho I_{d-K+1} \end{bmatrix}$$

The under represented direction: assume error strength is ρ .

Instability of the dynamics. Increase noise strength

$$\widehat{X}_{n+1}^{k} = A_{n+1} X_{n}^{(k)} + \xi_{n+1}^{(k)}, \quad \xi_{n+1}^{(k)} \sim \Sigma_{n}^{+} \\ \Sigma_{n} \to \Sigma_{n}^{+} = [\rho A_{n} A_{n}^{T} + \Sigma_{n} - \rho/r I_{d}],$$

 Σ_n^+ indicates the system instability.

- Covariance decay by random sampling. Multiplicative inflation: $\hat{C}_{n+1} = r\hat{C}_{n+1}$
- Spurious correlation in high dimension.
 Projecting to *p* principal directions of *K*(*Ĉ*_{n+1})
 The leftover direction: assume error strength is *ρ*

\blacksquare Rank deficiency: additive inflation ρI_d

$$C_n^{\rho} = \rho I_d + \frac{\sum_{k=1}^{K} (X_n^{(k)} - \overline{X}_n) (X_n^{(k)} - \overline{X}_n)^T}{K - 1} = \begin{bmatrix} C_n + \rho I_{K-1} & 0\\ 0 & \rho I_{d-K+1} \end{bmatrix}$$

The under represented direction: assume error strength is ρ .

Instability of the dynamics. Increase noise strength

$$\begin{aligned} \widehat{X}_{n+1}^{k} &= A_{n+1} X_{n}^{(k)} + \xi_{n+1}^{(k)}, \quad \xi_{n+1}^{(k)} \sim \Sigma_{n}^{+} \\ \Sigma_{n} &\to \Sigma_{n}^{+} = [\rho A_{n} A_{n}^{T} + \Sigma_{n} - \rho/r I_{d}], \end{aligned}$$

 Σ_n^+ indicates the system instability.

- Covariance decay by random sampling. Multiplicative inflation: $\hat{C}_{n+1} = r\hat{C}_{n+1}$
- Spurious correlation in high dimension.
 Projecting to *p* principal directions of *K*(*C*_{n+1})
 The leftover direction: assume error strength is *ρ*

\blacksquare Rank deficiency: additive inflation ρI_d

$$C_n^{\rho} = \rho I_d + \frac{\sum_{k=1}^{K} (X_n^{(k)} - \overline{X}_n) (X_n^{(k)} - \overline{X}_n)^T}{K - 1} = \begin{bmatrix} C_n + \rho I_{K-1} & 0\\ 0 & \rho I_{d-K+1} \end{bmatrix}$$

The under represented direction: assume error strength is ρ .

Instability of the dynamics. Increase noise strength

$$\begin{aligned} \widehat{X}_{n+1}^{k} &= A_{n+1} X_{n}^{(k)} + \xi_{n+1}^{(k)}, \quad \xi_{n+1}^{(k)} \sim \Sigma_{n}^{+} \\ \Sigma_{n} &\to \Sigma_{n}^{+} = [\rho A_{n} A_{n}^{T} + \Sigma_{n} - \rho/r I_{d}], \end{aligned}$$

 Σ_n^+ indicates the system instability.

■ Covariance decay by random sampling. Multiplicative inflation: $\hat{C}_{n+1} = r\hat{C}_{n+1}$

Spurious correlation in high dimension.
 Projecting to *p* principal directions of *K*(*C*_{n+1})
 The leftover direction: assume error strength is *ρ*

\blacksquare Rank deficiency: additive inflation ρI_d

$$C_n^{\rho} = \rho I_d + \frac{\sum_{k=1}^K (X_n^{(k)} - \overline{X}_n) (X_n^{(k)} - \overline{X}_n)^T}{K - 1} = \begin{bmatrix} C_n + \rho I_{K-1} & 0\\ 0 & \rho I_{d-K+1} \end{bmatrix}$$

The under represented direction: assume error strength is ρ .

Instability of the dynamics. Increase noise strength

$$\begin{aligned} \widehat{X}_{n+1}^{k} &= A_{n+1} X_{n}^{(k)} + \xi_{n+1}^{(k)}, \quad \xi_{n+1}^{(k)} \sim \Sigma_{n}^{+} \\ \Sigma_{n} &\to \Sigma_{n}^{+} = [\rho A_{n} A_{n}^{T} + \Sigma_{n} - \rho/r I_{d}], \end{aligned}$$

 Σ_n^+ indicates the system instability.

- Covariance decay by random sampling. Multiplicative inflation: $\hat{C}_{n+1} = r\hat{C}_{n+1}$
- Spurious correlation in high dimension. Projecting to *p* principal directions of $\mathcal{K}(\widehat{C}_{n+1})$ The leftover direction: assume error strength is ρ

Algorithm 1 EnKF variant

1: for
$$n \leftarrow 0$$
 to $T - 1$ do
2: $\Sigma_n^+ \leftarrow$ The positive part of $\rho A_n A_n^T + \Sigma_n - \rho/rI_d$.
3: Generate $\xi_{n+1}^{(k)} \sim \mathcal{N}(0, \Sigma_n^+), k = 1, \dots, K$.
4: $\overline{\hat{X}}_{n+1} \leftarrow A_n \overline{X}_n + B_n + \frac{1}{K} \sum_{k=1}^{K} \xi_{n+1}^{(k)}$.
5: $\widehat{S}_{n+1} \leftarrow \sqrt{r}(A_n S_n + [\Delta \xi_{n+1}^{(1)}, \dots, \Delta \xi_{n+1}^{(K)}])$.
6: $\widehat{C}_{n+1} \leftarrow \frac{1}{K-1} \widehat{S}_{n+1} \widehat{S}_{n+1}^T$.
7: $G_{n+1} \leftarrow \widehat{C}_{n+1}^{\rho} H_n^T (I_q + H_n \widehat{C}_{n+1}^{\rho} H_n^T)^{-1}$.
8: $\overline{X}_{n+1} \leftarrow \overline{\hat{X}}_{n+1} + G_{n+1} (Y_{n+1} - H_n \overline{\hat{X}}_{n+1})$
9: $P_{n+1} \leftarrow$ Projection to the largest p eigenvectors of $\mathcal{K}(\widehat{C}_{n+1}^{\rho})$.
10: $S_{n+1} \leftarrow \mathbf{A}_n \widehat{S}_{n+1}$ so $\frac{S_{n+1} S_{n+1}^T}{K-1} = P_{n+1} (\mathcal{K}(\widehat{C}_{n+1}^{\rho}) - \rho I_d) P_{n+1}$
11: Return: $\mathcal{N}(\overline{X}_{n+1}, \frac{S_{n+1} S_{n+1}^T}{K-1} + \rho I_d)$
12: end for

Effective dimension: hard to define through physical parameters. Use a comparison principle between Kalman filters.

Original signal observation system:

Signal: $X_{n+1} = A_n X_n + B_n + \xi_{n+1}$, $\xi_{n+1} \sim \mathcal{N}(0, \Sigma_n)$ Observation: $Y_{n+1} = H_n X_{n+1} + \zeta_{n+1}$, $\zeta_{n+1} \sim \mathcal{N}(0, I_q)$

An inflated version:

$$\begin{split} \text{Signal} &: X_{n+1}' = rA_nX_n' + B_n + \xi_{n+1}', \quad \xi_{n+1}' \sim \mathcal{N}(0, \Sigma_n') \\ \text{Observation} &: Y_{n+1}' = H_nX_{n+1}' + \zeta_{n+1}', \quad \zeta_{n+1}' \sim \mathcal{N}(0, I_q) \end{split}$$

Noise is also inflated $\Sigma'_n = r^2 \Sigma_n^+ + r^2 \rho I_d$. When $r \approx 1, \rho \approx 0$, two systems are similar to each other.

Effective dimension: hard to define through physical parameters. Use a comparison principle between Kalman filters. Original signal observation system:

Signal: $X_{n+1} = A_n X_n + B_n + \xi_{n+1}$, $\xi_{n+1} \sim \mathcal{N}(0, \Sigma_n)$ Observation: $Y_{n+1} = H_n X_{n+1} + \zeta_{n+1}$, $\zeta_{n+1} \sim \mathcal{N}(0, I_q)$

An inflated version:

$$\begin{split} & \text{Signal}: X_{n+1}' = rA_nX_n' + B_n + \xi_{n+1}', \quad \xi_{n+1}' \sim \mathcal{N}(0, \Sigma_n') \\ & \text{Observation}: Y_{n+1}' = H_nX_{n+1}' + \zeta_{n+1}', \quad \zeta_{n+1}' \sim \mathcal{N}(0, I_q) \end{split}$$

Noise is also inflated $\Sigma'_n = r^2 \Sigma_n^+ + r^2 \rho I_d$. When $r \approx 1, \rho \approx 0$, two systems are similar to each other.

 (X_n^\prime,Y_n^\prime) has its own Kalman filter $(m_n^\prime,R_n^\prime),$ with covariance update

 $R'_{n+1} = \mathcal{K}(r^2 A_n R'_n A_n^T + \Sigma'_n)$

Such update often has a stationary solution \widetilde{R}_n (Bougerol 93)

 $C_n \preceq R'_n$ with large probability

Assumption (Low effective dimension)

The original system has an effective dimension p if

- A covariance sequence \widetilde{R}_n has at most p eigenvalues above ρ
- **Bank** $(\Sigma_n^+) \le p \Leftrightarrow A_n A_n^T + \Sigma_n / \rho$ has at p eigenvalues above 1/r

Assumption (Uniform observability)

• $A_n^{-1}, A_n, \Sigma_n, \widetilde{R}_n, \widetilde{R}_n^{-1}$ are all bounded in operator norm.

• The *m* step observability Gramian $\sum_{k=1}^{m} A_{k,1}^{T} H_{k}^{T} H_{k} A_{k,1} \succeq c_{m} I_{d}$

You are driving along a sub-optimal path. vs. Your speedometer and break are not working.

Source: internet

Classical criterion: difference between (m_n, R_n) and (\overline{X}_n, C_n) .

Proclaimed performance

- Filter estimates its error/uncertainty by covariance C_n .
- Does the estimation captures variance of $e_n = \overline{X}_n X_n$?

$$\mathbb{E}C_n \succeq \mathbb{E}e_n \otimes e_n? \quad \mathbb{E}e_n^T C_n^{-1} e_n < D$$

• Mahalanobis distance $||v||_C^2 = v^T [C]^{-1} v$.

The effective filter covariance $C_n^{\rho} = C_n + \rho I = \begin{bmatrix} C_n + \rho I & 0 \\ 0 & \rho I \end{bmatrix}$

■ $||e_n||_{C_n^{\rho}}^2 = e_n^T C_n^{-1} e_n$ punishes errors on the represented directions.

$$\blacksquare \|e_n\|_{C_n^{\rho}}^2 \approx d \text{ if } e_n \sim \mathcal{N}(0, C_n^{\rho}).$$

Classical criterion: difference between (m_n, R_n) and (\overline{X}_n, C_n) .

Proclaimed performance

- Filter estimates its error/uncertainty by covariance C_n .
- Does the estimation captures variance of $e_n = \overline{X}_n X_n$?

$$\mathbb{E}C_n \succeq \mathbb{E}e_n \otimes e_n? \quad \mathbb{E}e_n^T C_n^{-1} e_n < D$$

 $\blacksquare \text{ Mahalanobis distance } \|v\|_C^2 = v^T [C]^{-1} v.$

The effective filter covariance $C_n^{\rho} = C_n + \rho I = \begin{bmatrix} C_n + \rho I & 0 \\ 0 & \rho I \end{bmatrix}$

■ $||e_n||_{C_n^{\rho}}^2 = e_n^T C_n^{-1} e_n$ punishes errors on the represented directions.

$$\blacksquare \|e_n\|_{C_n^{\rho}}^2 \approx d \text{ if } e_n \sim \mathcal{N}(0, C_n^{\rho}).$$

Classical criterion: difference between (m_n, R_n) and (\overline{X}_n, C_n) .

Proclaimed performance

- Filter estimates its error/uncertainty by covariance C_n .
- Does the estimation captures variance of $e_n = \overline{X}_n X_n$?

$$\mathbb{E}C_n \succeq \mathbb{E}e_n \otimes e_n? \quad \mathbb{E}e_n^T C_n^{-1} e_n < D$$

 $\blacksquare \text{ Mahalanobis distance } \|v\|_C^2 = v^T [C]^{-1} v.$

The effective filter covariance $C_n^{\rho} = C_n + \rho I = \begin{bmatrix} C_n + \rho I & 0 \\ 0 & \rho I \end{bmatrix}$

■ $||e_n||_{C_n^{\rho}}^2 = e_n^T C_n^{-1} e_n$ punishes errors on the represented directions.

$$\blacksquare \ \|e_n\|_{C_n^{\rho}}^2 \approx d \text{ if } e_n \sim \mathcal{N}(0, C_n^{\rho}).$$

Mahalanobis distance $||v||_C = v^T [C]^{-1} v$

Definition for Kalman update:

$$m_n = \arg \min_x \left(\|x - \hat{m}_n\|_{\hat{R}_n}^2 + \|Y_n - H_n x\|_{\Sigma_n}^2 \right)$$

Stable dissipation for Kalman filter errors

$$e_{n+1} = (I - K_{n+1}H_n)A_ne_n + K_{n+1}H_n\zeta_{n+1}$$
$$A_n^T(I - K_{n+1}H_n)^T R_{n+1}^{-1}(I - K_{n+1}H_n)A_n \leq A_n^T \widehat{R}_{n+1}^{-1}A_n \leq R_n^{-1}$$
$$e_{n+1}^T R_{n+1}^{-1}e_{n+1} \leq e_n^T R_n^{-1}e_n$$

Stability results for Kalman filters (Bougerol 93, Reif et al. 99)

Theorem (Majda, T. 16)

Suppose the signal observation system is uniformly observable with m steps, and has a effective dimension p. Then for any c, there are C, F, D_F, M_n , so that if K > Cp

$$\mathbb{E} \|e_n\|_{C_n^{\rho}} \le r^{-\frac{n}{6}} \mathbb{E} F(C_0) \sqrt{\|e_0\|_{C_0}^2 + 2m + M_n \sqrt{d}}$$

With the constants bounded by

$$F(C) \le D_F \exp(D_F \log^3 \|C\|), \quad \limsup_{n \to \infty} M_n \le \frac{1+c}{1-r^{-\frac{m}{6}}}.$$

Cor1: exponential stability: the difference in mean converges to zero. Cor2: ϵ scale noises lead to ϵ scale error for EnKF.

Theorem (Majda, T. 16)

Suppose the signal observation system is uniformly observable with m steps, and has a effective dimension p. Then for any c, there are C, F, D_F, M_n , so that if K > Cp

$$\mathbb{E} \|e_n\|_{C_n^{\rho}} \le r^{-\frac{n}{6}} \mathbb{E} F(C_0) \sqrt{\|e_0\|_{C_0}^2 + 2m + M_n \sqrt{d}}$$

With the constants bounded by

$$F(C) \le D_F \exp(D_F \log^3 \|C\|), \quad \limsup_{n \to \infty} M_n \le \frac{1+c}{1-r^{-\frac{m}{6}}}.$$

Cor1: exponential stability: the difference in mean converges to zero. Cor2: ϵ scale noises lead to ϵ scale error for EnKF.

Starting with a system

Signal: $X_{n+1} = A_n X_n + B_n + \xi_{n+1}, \quad \xi_{n+1} \sim \mathcal{N}(0, \Sigma_n)$ Observation: $Y_{n+1} = H_n X_{n+1} + \xi_{n+1}, \quad \zeta_{n+1} \sim \mathcal{N}(0, I_q)$

- **1** Find the proper error threshold, inflation strength ρ, r
- **2** Construct the inflated system (X'_n, Y'_n)
- 3 Check whether its Kalman filter has a low dimension p
- 4 Choose K > Cp ensemble size, the Mahalonobis error is bounded.

Apply to a stochastic partial differential equation

 $\partial u(x,t) = \Omega(\partial_x)u(x,t) - \gamma(\partial_x)u(x,t) + F(x,t) + dW(x,t)$

With Kolmogorov energy spectrum, p = 10 - 30 depending on observation.

Starting with a system

Signal: $X_{n+1} = A_n X_n + B_n + \xi_{n+1}$, $\xi_{n+1} \sim \mathcal{N}(0, \Sigma_n)$ Observation: $Y_{n+1} = H_n X_{n+1} + \xi_{n+1}$, $\zeta_{n+1} \sim \mathcal{N}(0, I_q)$

- **1** Find the proper error threshold, inflation strength ρ, r
- **2** Construct the inflated system (X'_n, Y'_n)
- 3 Check whether its Kalman filter has a low dimension p
- 4 Choose K > Cp ensemble size, the Mahalonobis error is bounded.

Apply to a stochastic partial differential equation

$$\partial u(x,t) = \Omega(\partial_x)u(x,t) - \gamma(\partial_x)u(x,t) + F(x,t) + dW(x,t)$$

With Kolmogorov energy spectrum, p = 10 - 30 depending on observation.

Concentration of Random sampling matrix

Let $\{a_k\}$ be any K vectors of rank p, $\xi_k \sim \mathcal{N}(0, \Sigma)$ with rank $(\Sigma) = p$.

$$C = \frac{1}{K-1} \sum_{k=1}^{K} a_k \otimes a_k, \quad Z = \frac{1}{K-1} \sum_{k=1}^{K} (a_k + \Delta \xi_k) \otimes (a_k + \Delta \xi_k).$$

Z concentrates around $D = \mathbb{E}Z = C + \Sigma$ in both ways if K > Cp.

$$\mu = \inf\{u \ge 0 : [Z + \rho I_d]^{-1} \preceq u[D + \rho I_d]^{-1}\}$$
$$\lambda = \inf\{u \ge 0 : Z \preceq u[D + \rho I_d]\}.$$

Then with Q being the condition number of $C + \rho I_d$:

$$\mathbb{P}(\mu > 1 + \delta \text{ or } \lambda > 1 + \delta) \le (\log Q + 1) \exp(C_{\delta} p - c_{\delta} K)$$

The forecast covariance concentrates around its mean with high probability.

- Dissipation of Mahalanobis error on R'_n transfers to C_n .
- Small probability set, controlled by Lyapunov function, uniform observability.

- Dissipation of Mahalanobis error on R'_n transfers to C_n .
- Small probability set, controlled by Lyapunov function, uniform observability.

Our proof reveals importance of EnKF techniques:

Techniques	Application	Theoretical
Additive inflation	Under-represented	$[C_n + \rho I_d]^{-1}$
$C_n + \rho I_d$	directions	Well-defined
Multiplicative	Covariance decay	Concentration
inflation $r\widehat{C}_n$		$[r\widehat{C}_n + \rho I_d]^{-1} \preceq \mathbb{E}\widehat{C}_n$
Spectral projection:	Spurious correlation	Concentration:
POD		$rank(C_n) \le p$

Main theorem:

- A variant of EnKF:
 - · Inflations for covariance decay.
 - PCA: spurious correlation.
- With an effective dimension *p*:

Number of significant dimensions in an inflated Kalman filter.

Reaches proclaimed performance:

 $\mathbb{E} \|e_n\|_{C_n^{\rho}}^2$ converges to a constant independent of initial condition.

We need conditions! One of two will help us

- Low effective dimension.
- Localized covariance structure.

Compared with high dimensional matrix computation

- Low rank matrices.
- Sparse matrices.

Local interaction

High dimension often comes from dense grids.Interaction often is local: PDE discritization:

$$\partial_x x(t) \Rightarrow \frac{1}{2h} (x_{i+1}(t) - x_{i-1}(t)).$$

Example: Lorenz 96 model

$$\dot{x}_i(t) = (x_{i+1} - x_{i-2})x_{i-1} - x_i dt + F, \quad i = 1, \cdots, d$$

Information travels along interaction, and is dissipated.

Sparsity: local covariance

- Correlation depends on information propagation.
- Correlation decays quickly with the distance.
- Covariance is localized with a structure Φ , e.g. $\Phi(x) = \rho^x$

$$[\widehat{C}_n]_{i,j} \propto \Phi(|i-j|)$$

 $\Phi(x) \in [0,1]$ is decreasing. Distance can be general.

Correlation of Lorenz 96

- Nation of Sing
- Spurious correlation may exist for far away terms.
- Localization: simply ignore far away correlations.
- Implementation: Schur product with a mask

$$[\widehat{C}_n \circ \mathbf{D}_L]_{i,j} = [\widehat{C}_n]_{i,j} \cdot [\mathbf{D}_L]_{i,j}$$

Use $\widehat{C}_n \circ \mathbf{D}_L$ to describe uncertainty

 $\begin{array}{l} \label{eq:definition} \blacksquare \ [\textbf{D}_L]_{i,j} = \phi(|i-j|), \mbox{ with a radius } L. \\ \mbox{ Gaspari-Cohn matrix: } \phi(x) = \exp(-4x^2/L^2) \textbf{1}_{|i-j| \leq L}. \\ \mbox{ Cutoff/Branding matrix: } \phi(x) = \textbf{1}_{|i-j| \leq L}. \end{array}$

Also resolves rank deficiency, e.g.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.2 \\ 0 & 0.2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.2 \\ 0 & 0.2 & 1 \end{bmatrix}$$

Two types LEnKF: Domain localization and covariance tempering.

Domain localization with radius *l*: Assume *H* is a partial observation matrix Use information in $\mathcal{I}_i = \{j : |i - j| \le l\}$ to update component *i*

Intuitively, ignoring the long distance covariance terms, reduces the sampling difficulty, and necessary sampling size.

Theorem (Bickel, Levina 08)

If $X^{(1)}, \ldots, X^{(K)} \sim \mathcal{N}(0, \Sigma)$, denote $C = \frac{1}{K} \sum_{k=1}^{K} X^{(k)} \otimes X^{(k)}$. $\|\mathbf{D}_L\|_1 = \max_i \sum_j |\mathbf{D}_L|_{i,j}$. There is a constant c, and for any t > 0

 $\mathbb{P}(\|C \circ \mathbf{D}_L - \Sigma \circ \mathbf{D}_L\| > \|\mathbf{D}_L\|_1 t) \le 8 \exp(2\log d - cK\min\{t, t^2\})$

This indicates that $K \propto \|\mathbf{D}_L\|_1^2 \log d$ is the necessary sample size.

 $\|\mathbf{D}_L\|$ is independent of d, e.g, the cut-off/branding matrix, $[\mathbf{D}_{cut}^L]_{i,j} = \mathbf{1}_{|i-j| \leq L}, \|\mathbf{D}_{cut}^L\|_1 \approx 2L.$

Intuitively, ignoring the long distance covariance terms, reduces the sampling difficulty, and necessary sampling size.

Theorem (Bickel, Levina 08)

If $X^{(1)}, \ldots, X^{(K)} \sim \mathcal{N}(0, \Sigma)$, denote $C = \frac{1}{K} \sum_{k=1}^{K} X^{(k)} \otimes X^{(k)}$. $\|\mathbf{D}_L\|_1 = \max_i \sum_j |\mathbf{D}_L|_{i,j}$. There is a constant c, and for any t > 0

 $\mathbb{P}(\|C \circ \mathbf{D}_L - \Sigma \circ \mathbf{D}_L\| > \|\mathbf{D}_L\|_1 t) \le 8 \exp(2\log d - cK\min\{t, t^2\})$

This indicates that $K \propto \|\mathbf{D}_L\|_1^2 \log d$ is the necessary sample size.

 $\|\mathbf{D}_L\|$ is independent of d, e.g, the cut-off/branding matrix, $[\mathbf{D}_{cut}^L]_{i,j} = \mathbf{1}_{|i-j| \leq L}, \|\mathbf{D}_{cut}^L\|_1 \approx 2L.$

Theorem (T. 18)

Suppose the system coefficients have bandwidth *l*, and the LEnKF ensemble covariance admits a stable localized structure, then for any $\delta > 0$, LEnKf reaches its proclaimed performance with high probability $1 - O(\delta)$:

$$1 - \frac{1}{T} \sum_{t=1}^{T} \mathbb{P}(\mathbb{E}_{S} \hat{e}_{n} \otimes \hat{e}_{n} \preceq (1+\delta) (\widehat{C}_{n} \circ \mathbf{D}_{cut}^{4l} + \rho I_{d})) \leq \frac{1}{T} D_{0} + D_{1} \delta,$$

if the sample size $K > D_{l,\delta} \log d$.

 \mathbb{E}_S conditioned on the information of the sampling noise realization.

Theorem (T. 18)

Suppose the system coefficients have bandwidth *l*, and the LEnKF ensemble covariance admits a stable localized structure, then for any $\delta > 0$, LEnKf reaches its proclaimed performance with high probability $1 - O(\delta)$:

$$1 - \frac{1}{T} \sum_{t=1}^{T} \mathbb{P}(\mathbb{E}_S \hat{e}_n \otimes \hat{e}_n \preceq (1+\delta)(\widehat{C}_n \circ \mathbf{D}_{cut}^{4l} + \rho I_d)) \leq \frac{1}{T} D_0 + D_1 \delta,$$

if the sample size $K > D_{l,\delta} \log d$.

 \mathbb{E}_S conditioned on the information of the sampling noise realization.

Proclaimed/estimated performance

- EnKF estimates X_n by $\overline{X}_n = \frac{1}{K} \sum X_n^{(k)}$.
- Error $e_n = \overline{X}_n X_n$. Covariance : $\mathbb{E}e_n e_n^T = \mathbb{E}e_n \otimes e_n$.
- EnKF estimates its performance by ensemble covariance C_n^{ρ} .

Can it captures the error covariance?

$$\mathbb{E}C_n^{\rho} \succeq \mathbb{E}e_n \otimes e_n$$

$$1 - \frac{1}{T} \sum_{t=1}^{T} \mathbb{P}(\mathbb{E}_{S} \hat{e}_{n} \otimes \hat{e}_{n} \preceq (1+\delta)(\widehat{C}_{n} \circ \mathbf{D}_{cut}^{4l} + \rho I_{d})) \leq \frac{1}{T} D_{0} + D_{1}\delta,$$

Proclaimed/estimated performance

- EnKF estimates X_n by $\overline{X}_n = \frac{1}{K} \sum X_n^{(k)}$.
- Error $e_n = \overline{X}_n X_n$. Covariance : $\mathbb{E}e_n e_n^T = \mathbb{E}e_n \otimes e_n$.
- EnKF estimates its performance by ensemble covariance C_n^{ρ} .
- Can it captures the error covariance?

$$\mathbb{E}C_n^{\rho} \succeq \mathbb{E}e_n \otimes e_n$$

$$1 - \frac{1}{T} \sum_{t=1}^{T} \mathbb{P}(\mathbb{E}_{S} \hat{e}_{n} \otimes \hat{e}_{n} \preceq (1+\delta) (\widehat{C}_{n} \circ \mathbf{D}_{cut}^{4l} + \rho I_{d})) \leq \frac{1}{T} D_{0} + D_{1} \delta,$$

 Intuitively, we need some conditions on the covariance structure.
 Stable localized structure: with local structure function Φ, e.g. Φ(x) = λ^x,

$$[\widehat{C}_n]_{i,j} \le M_n \Phi(|i-j|), \quad \sum_{n=1}^T \mathbb{E}M_n \le TM_*.$$

M_n describes how localized the sample covariance matrix is. ■ Why is this necessary?

An intrinsic bias/inconsistency in LEnKF.

- Localization creates a bias.
- Target covariance by Bayes formula

$$(I - \mathcal{G}^L(\widehat{C}_n)H)[\widehat{C}_n \circ \mathbf{D}_L](I - \mathcal{G}^L(\widehat{C}_n)H)^T + \sigma_o^2 \mathcal{G}^L(\mathcal{G}^L)^T.$$

LEnKF implementation

$$X_n^{(k)} = \widehat{X}_n^{(k)} + \mathcal{G}^L(\widehat{C}_n)(Y_n - H\widehat{X}_n^{(k)} + \zeta_n^{(k)})$$

Average ensemble covariance

$$C_n \circ \mathbf{D}_L = [(I - \mathcal{G}^L(\widehat{C}_n)H)\widehat{C}_n(I - \mathcal{G}^L(\widehat{C}_n)H)^T + \sigma_o^2 \mathcal{G}^L(\mathcal{G}^L)^T] \circ \mathbf{D}_L.$$

- Difference: commuting the localization and Kalman update.
- Previously investigated numerically by Nerger 2015, the inconsistency can lead to error growth.

When is the inconsistency small?

- localization is applied, covariance is assumed localized.
- Given localized structure Φ , find M_n so that

 $[\widehat{C}_n]_{i,j} \le M_n \Phi(|i-j|).$

• Interestingly, when \mathbf{D}_L is \mathbf{D}_{4l}^{cut} , the

Localization inconsistency $\leq CM_n \Phi(2l)$.

If 2l is large, $\Phi(x) = \lambda^x$, this difference can be controlled.

- Localized covariance leads to small localization inconsistency.
- Therefore, we need M_n to be a stable sequence,

$$\sum_{n=1}^{T} \mathbb{E}M_n \le TM_*.$$

- Iocalization is applied, covariance is assumed localized.
- Given localized structure Φ , find M_n so that

```
[\widehat{C}_n]_{i,j} \le M_n \Phi(|i-j|).
```

■ Interestingly, when \mathbf{D}_L is \mathbf{D}_{4l}^{cut} , the

Localization inconsistency $\leq CM_n \Phi(2l)$.

If 2l is large, $\Phi(x) = \lambda^x$, this difference can be controlled.

- Localized covariance leads to small localization inconsistency.
- **\blacksquare** Therefore, we need M_n to be a stable sequence,

$$\sum_{n=1}^{T} \mathbb{E}M_n \le TM_*.$$

Practical perspective

- Simply assumed.
- Numerically checked.

Theoretical perspective: does covariance localize for any stochastic system?

- Linear system: covariance can be computed.
- Nonlinear: difficult, e.g. Lorenz 96.
- LEnKF: difficult since assimilation is nonlinear.
- Under strong conditions:
 - Weak local interaction, strong dissipation.
 - Sparse observation for simplicity.
- Also scales with the noise strength.

Practical perspective

- Simply assumed.
- Numerically checked.

Theoretical perspective: does covariance localize for any stochastic system?

- Linear system: covariance can be computed.
- Nonlinear: difficult, e.g. Lorenz 96.
- LEnKF: difficult since assimilation is nonlinear.
- Under strong conditions:
 - Weak local interaction, strong dissipation.
 - Sparse observation for simplicity.
- Also scales with the noise strength.

Theorem

Suppose the following, then a stable localized structure with $\Phi(x)=\lambda_A^x$

- 1) The system noise is diagonal and the observations are sparse $\Sigma_n = \sigma_{\xi}^2 I_d$, $\mathbf{d}(o_i, o_j) > 2l$, $\forall i \neq j$.
- 2) There is a $\lambda_A < r^{-1}$, $\max_i \left\{ \sum_{k=1}^d |[A_n]_{i,k}| \lambda_A^{-\mathbf{d}(i,k)} \right\} \leq \lambda_A$.
- 3) There are constants such that $\psi_{\lambda_A}(M_*, \delta_*) \leq M_*$

$$0 < \delta_* < \min\{0.25, \frac{1}{2}(\lambda_A^{-1} - r)\}, \quad M_* \ge \frac{(r + 2\delta_*)\sigma_{\xi}^2}{1 - \lambda_A}$$

 $\psi_{\lambda_A}(M,\delta) = (r+\delta) \max\left\{\lambda_A M \left(1 + \sigma_o^{-2}M\right)^2 + \lambda_A \sigma_o^{-2}M^2, \lambda_A^2 M + \sigma_\xi^2\right\}.$

4) Denote $n_* = 2L + \lceil \frac{\log 4\delta_*^{-1}}{\log \lambda_A^{-1}} \rceil$. The sample size K exceeds

$$K > \max\left\{-\frac{1}{c\delta_{*}^{2}\lambda_{*}^{2L}}\log(16d^{2}n_{*}\delta_{*}^{-2}), \Gamma(2r\delta_{*}^{-1}, d)\right\}$$

X.Tong

A stochastically forced dissipative advection equation:

$$\frac{\partial u(x,t)}{\partial t} = c \frac{\partial u(x,t)}{\partial x} - \nu u(x,t) + \mu \frac{\partial^2 u(x,t)}{\partial x^2} + \sigma_x \dot{W}(x,t).$$

Discretization

$$X_{n+1,i} = a_{-}X_{n,i-1} + a_{0}X_{n,i} + a_{+}X_{n,i+1} + \sigma_{x}\sqrt{\Delta t}W_{n+1,i}, \quad i = 1, \dots, d;$$
$$a_{-} = \frac{\mu\Delta t}{h^{2}} - \frac{c\Delta t}{2h}, \quad a_{0} = 1 - \frac{2\mu\Delta t}{h^{2}} - \nu\Delta t, \quad a_{+} = \frac{\mu\Delta t}{h^{2}} + \frac{c\Delta t}{2h}.$$

Observe $Y_{n,k} = X_{n,p(k-1)+1} + \sigma_o B_{n,k}$.

Strong damping+weak advection

h = 1, $\Delta t = 0.1$, p = 5, $\nu = 5$, c = 0.1, $\mu = 0.1$, $\sigma_x = \sigma_o = 1$.

Direct verification of the conditions is possible.

Weak damping+strong advection

 $h = 0.2, \quad \Delta t = 0.1, \quad p = 5, \quad \nu = 0.1, \quad c = 2, \quad \mu = 0.1, \quad \sigma_x = \sigma_o = 1.$

Direct verification of the conditions is not possible.

- Localization has made EnKF very effective for high dimensional DA problems.
- Various generalization to particle filters.
- Often relies on Gaspari Cohn matrices.
- Makes non-Gaussian application difficult.
- Non-ad hoc ways generalize localization to PF?
- Can we apply localization to other UQ problem?

Reference

- Robustness and Accuracy of finite Ensemble Kalman filters in large dimensions. Comm. Pure Appl. Math., 71(5), 892-937, (2018)
- Rigorous accuracy and robustness analysis for two-scale reduced random Kalman filters in high dimensions. accepted by CMS.
- Performance analysis of local ensemble Kalman filter. J. Nonlinear Sci. 2018, Vol 28, No. 4. p1397-1442.

Links and slides can be found at www.math.nus.edu.sg/~mattxin.

Thank you!