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Content

m The Ensemble Kalman filter (EnKF)

m Problem setup,
m Origin,

m Formulation,

m Impact.

m High dimensional challenges for EnKF.

m Main theorem with effective dimension:

m A variant of EnKF,
m with a low effective dimension p,
m reaches its proclaimed performance,

if the ensemble size K > Cp for a constant C.
m Main theorem with localization:

m A local EnKF,
m with a stable local covariance structure,
m reaches its proclaimed performance,

if the ensemble size K > C logd for a constant C.
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Filtering

m Signal-observation system with random coefficients

Signal:  X,+1=4,X, +Bn+&ut1, &nt1 ~N(0,%,)
Observation: Y, 11 = H, Xp11 + Cug1, Cug1 ~ N(0,1y)

Goal: estimate X, basedon Y;,...,Y,,
m A,, B,, H, (stationary) sequence of random matrices and
vectors.

m A, can be unstable sometimes. H,, can be on and off.
m Nonlinear settings:

Xn+1 = \Iln(Xn) + §n+1, Yn+1 = Hn(Xn+1) + gn—l—l-
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Weather forecast

m Signal: X, 11 = U, (X,) + &,
Observation: Y41 = H, X411 + Cop1-
m Weather forecast:
Signal: atmosphere and ocean, “follows” a PDE.
Obs: weather station, satellite, sensors.....

m Main challenge: high dimension, d ~ 10° — 108.
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Kalman filter: derivation

m Question: xy ~ N (mog, Rp),
x1 = Axg+ B+ &,y1 = Hxy + ¢, how to find ¢, ?

m Assimilation: p(x1|y,): apply Bayes’ formula
Log of the unormalized likelihood:

1 oA N 1
- 5(331 —m)R 1(.T1 —m) — §(Hz1 — y1)2
1 ~
= 75(501 — ml)(Rfl + HTH)(JJl — ml) + ’I"(yl).
New mean and covariance

my =1+ RHT(I+ HRHT) ' (y, — Hin)
R =R '+H"H)'=R—-RHT(I+ HRH")"'HR.
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Kalman filter

m Use Gaussian: X,|y, , ~ N(my,, R,)
m Forecast step: 1,11 = Apmy + Bn, Rnp1 = AnRy AT + 3,
m Assimilation step: apply the Kalman update rule

M1 =141 + G(Rog1) Vo1 — Hutitn 1), Rugr = K(Rnya)
G(C)=cHI(I,+H,CH)™, K(C)=C-G(C)H,C
m Complexity: O(d?).
Posterior at t =n Prior+Obs at t =n+1 Posterior at t =n +1

forecast

- i assimilate
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A brief history: Kalman filter

1958: designed by Rudolf Kalman (1930-2016)
m Discovered on a late night halted train ride.

m First paper was in published in mechanical
engineering, not electrical engineering.

Second paper was rejected at first.

1960: Stanley Schmidt at NASA invited Kalman.
Extended Kalman filter: used in the Apollo project.
Most core theories were developed by Kalman.
Easy to teach in an engineering undergrad course.
Implemented by digital computers.
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Sampling+Gaussian

EnKF (G. Evensen 1994 )
m Monte Carlo: use samples to represent a distribution:

K
1
(1) ) ., ~
¢ », k;aw) ~ p.

m Ensemble {X{¥}X | to represent N'(X,,,C;,)

X
pu— K B

5,87

X o1

S, =[AaxWM, ... AxF) ¢,
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Ensemble Kalman filter (EnKF)

m Forecast step
§n+1§g+1

W
K1

n+l — Aan(Lk) + By + sz?l? an—&-l =

m EAKF assimilation step, find S,, 11 = An+1§n+1

J— =~ ~

Xpi1=Xni1+G(Cni1)Yoi1 — HiXnp1), ECnp1 =~ K(Cpi)
m Complexity: O(dK?).

Posterior at t = n Prior+Obs at t =n + 1 Posterior at t =n + 1
¥ (k)
B . S £ (k)
XT(L’C)/ - -forecast: M.C. assimilate| ">~ i("“
o
o (¢)
O
o o © o
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Nonlinear case

m Forecast step
)?];—&-1 = U (X3)+ &5, Yo = Ha(X5 )+ C]rf+1
m Assimilation step
X =X 4 G (Ve — Y5
Gain matrix: G, 11 = Sx ST (I + Sy SE)~1,
Sx = 2= [ XY =X, X — X,
m Complexity O(K?d).

Posterior at t =n Prior+Obs at t =n +1 Posterior at t =n+1
v (k)

i S .. X e )

x{ )/ - -forecast: M.C. assimilate| "~~~ ° ntl

o
o (¢]
(@]

o o © o
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Success of EnKF

Successful applications to weather forecast
m System d ~ 10%, ensemble size K ~ 102.
m Complexity of Kalman filter: O(d3) = O(10'®).
m Complexity of EnKF: O(K?2d) = O(10%°).
m No computation of gradient.
Also find applications in
m Oil reservoir management.
m Bayesian inverse problems.
m Deep learning.

EnKF: 1010 Kalman: 108

PC: 10° HPC: 1012
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Application and theory of EnKF

Application:
m Successful weather forecast and oil reservoir management.
m Recently been applied to deep neural networks.
m K = 50 ensembles can forecast d = 10° dimensional systems.
m Extreme savings: 10'° = dK? < d3 = 10'8.
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Application and theory of EnKF

Application:
m Successful weather forecast and oil reservoir management.
m Recently been applied to deep neural networks.
m K = 50 ensembles can forecast d = 10° dimensional systems.
m Extreme savings: 10'° = dK? < d3 = 10'8.
Literature
m Focused on showing ensemble version (X,,,C,,) — (my,, Ry,)
m Require K — oo (Mandel, Cobb, Beezley 11)
m Fixed d sufficiently large K, |A| < 1 (Del Moral, Tugaut 16)
m Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)

Missing: performance analysis with K < d.
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Application and theory of EnKF

Application:
m Successful weather forecast and oil reservoir management.
m Recently been applied to deep neural networks.
m K = 50 ensembles can forecast d = 10° dimensional systems.
m Extreme savings: 10'° = dK? < d3 = 10'8.
Literature
Focused on showing ensemble version (X,,,Cy,) — (my, Ry,)
m Require K — oo (Mandel, Cobb, Beezley 11)
m Fixed d sufficiently large K, |A| < 1 (Del Moral, Tugaut 16)
m Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)
]
]

Fixed K, well definedness E|X\”|2 < oo (Law, Kelly, Stuart, 14)

Fixed K, boundedness sup,, ]E|X7(1k)|2 < oo (Tong, Majda, Kelly 15)
m Continuous version, stability for full obs (de Wilijes, Reich, Stannat17)
Missing: performance analysis with K < d.
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Challenges

Ensemble size K to represent uncertainty of dimension d:

m Rank deficiency: C,, — 2kt (Xa” = Xn) (X0 X))

K—-1
C, 0] }K-1
Has rank(C,)< K — 1, see as { 0 0 ] } d-K+1
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m Rank deficiency: C,, = 2y (XG0 X ) (X9 - X) "

K—-1
C, 0] }K-1
Has rank(C,)< K — 1, see as { 0 0 ] } d-K+1

m Instability of the dynamics: C,.1 = A,C, AL + %,
What if span(C,,) does not cover expanding directions?
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K—-1
C, 0] }K-1
Has rank(C,)< K — 1, see as { 0 0 ] } d-K+1

m Instability of the dynamics: C,.1 = A,C, AL + %,
What if span(C,,) does not cover expanding directions?

~

m Covariance decay by random sampling: Cy,+1 = K(Ch41)

~

K : concave, monotone: EC,, 11 = EX(Ch11) <X K(EC,11)
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Challenges

Ensemble size K to represent uncertainty of dimension d:

m Rank deficiency: C,, = 2y (XG0 X ) (X9 - X) "

K—-1
C, 0] }K-1
Has rank(C,)< K — 1, see as { 0 0 ] } d-K+1

m Instability of the dynamics: C,.1 = A,C, AL + %,
What if span(C,,) does not cover expanding directions?

~

m Covariance decay by random sampling: Cy,+1 = K(Ch41)

~

K : concave, monotone: EC,, 11 = EX(Ch11) <X K(EC,11)

m Spurious correlation in high dimension.
Suppose X\ ~ N(0,1,) i.i.d, by Bai-Yin’s law

ICn — 14|l = v/d/K with large probability
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Heuristic answers

We need conditions! One of two will help us
m Low effective dimension.
m Localized covariance structure.
Compared with high dimensional matrix computation
m Low rank matrices.
m Sparse matrices.
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Low effective dimension

Simulation of Lorenz 63:

Lorenz system propagation. Video: MIT Aero Astro
Exploited by the UQ community for various purpose.
Assume there is a effective dimension p < K < d
m Most uncertainty lies in p directions, others below a threshold p,

KRR AR
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Main results

Theorem (Majda, T. 16)

Suppose the system has a low effective filter dimension p, there is a
variant of EnKF with a constant C, such that the EnKF reaches its
proclaimed performance if K > Chp.
Next, we explain

m What variant of EnKF?

m How to define a low effective dimension?

m What does proclaimed performance mean?
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An illustrative example

Texas Hold’em,

Board: &4 @K U4 &8 &7
Your hand:OK K All'in?

For EnKF, confidence is described by the covariance matrix C,,.
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An illustrative example

Texas Hold’em,

Board: &4 @K U4 &8 &7
Your hand:OK K All'in?
Alice’s hand: >4 #4!

m Chance of losing: 1 out of C%, = 990.
m Overconfidence makes you lose.
m Safer strategy: never all in (if possible).
For EnKF, confidence is described by the covariance matrix C,,.
m Large covariance: less confidence in estimation.
m Zero covariance: the estimator is the truth.
m An “overconfidence”: filter divergence.
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EnKF variant for enhanced fidelity

Techniques to enhance fidelity
m Rank deficiency: additive inflation ply

k ~ k ~
(X X)X =X)" [Catple 0
K—1 0 pla—K+1

K
Cr = pId+ E}c:l

n

The under represented direction: assume error strength is p.
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EnKF variant for enhanced fidelity

Techniques to enhance fidelity
m Rank deficiency: additive inflation ply

k ~ k ~
g+ DX = X)X KT [Cotplies 0

P
c K-1 0 pla—r+1

n

The under represented direction: assume error strength is p.

m Instability of the dynamics. Increase noise strength

o k k k
XS-H = An+1Xr(L ) 4+ ET(L—217 52-21 ~¥F
S, = XF = [pA, AT + %, — p/rly),
Y7 indicates the system instability.
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EnKF variant for enhanced fidelity

Techniques to enhance fidelity
m Rank deficiency: additive inflation ply

k <~ k ~
= oIy + 25:1()(?(1 ) _Xn)(XV(L ) _Xn)T _ Cn + plx-1 0

P
C K—1 0 pla—K+1

n

The under represented direction: assume error strength is p.

m Instability of the dynamics. Increase noise strength
)?54-1 = An—&-er(Lk) + 57(3217 57(;21 ~¥F
S, = XF = [pA, AT + %, — p/rly),
Y7 indicates the system instability.

m Covariance decay by random sampling.
Multiplicative inflation: C),41 = rCp41
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EnKF variant for enhanced fidelity

Techniques to enhance fidelity
m Rank deficiency: additive inflation ply

k ~ k ~
(X X)X =X)" [Catple 0
K-1 0 pla—r+1

K
Cp = ply + =1

n

The under represented direction: assume error strength is p.

m Instability of the dynamics. Increase noise strength
o k k k
Xy = An+1Xr(L )+ fﬁﬁu §f1+)1 ~ ¥

n
S, = XF = [pA, AT + %, — p/rly),
Y7 indicates the system instability.

m Covariance decay by random sampling.
Multiplicative inflation: C),41 = rCp41

m Spurious correlation in high dimension.

Projecting to p principal directions of K(C,+1)
The leftover direction: assume error strength is p
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Algorithm 1 EnKF variant

1: forn<0to7T —1do

o
e

11:

© o N oo A~ @b

5« The positive part of pA, AT + %, — p/rl,.
Generate §n+1 ~N(O0,25),k=1,...,K.

Xn+1 « A X+ B, + Kzflérﬁ’fﬁl

Sn+1 — \f(A Sa+ 1A, A,

Crgr — - 15n+15n+1

G’ﬂ+1 A C’IL+1HT( Cn+1HT)

YnJrl <~ XnJrl + Gn+1(Yn+1 H XnJrl)

P, +1 «<Projection to the largest p eigenvectors of IC(C 1)
15T
Sn+1 <~ Ansn+1 SO % = Pn+1(IC(Cn+1) - pId)Pn+1

Return: V' (X, .1, M +ply)

12: end for
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Kalman filter reference

Effective dimension: hard to define through physical parameters.
Use a comparison principle between Kalman filters.
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Kalman filter reference

Effective dimension: hard to define through physical parameters.
Use a comparison principle between Kalman filters.
Original signal observation system:

Signal: X, 11 = A, X, + Bn +&nt1, &1 ~N(0,%,)
Observation: Y11 = H, X411 + Cot1, Cnt1 ~ N(0,1)

An inflated version:

Signal : X|, .1 =14, X), + Bn + &1, &y ~N(0,X)
Observation : Y, ,; = H, X, 1 + {1y Gt ~N(0,1y)

Noise is also inflated !, = r2SF + r?ply.
When r =~ 1, p = 0, two systems are similar to each other.
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Low effective dimension

(X/,Y!) has its own Kalman filter (m/,, R},), with covariance update
1 = K2 AL RL AL +37)
Such update often has a stationary solution R, (Bougerol 93)

C, =< R, with large probability

Assumption (Low effective dimension)

The original system has an effective dimension p if
m A covariance sequence R, has at most p eigenvalues above p
® Rank(X}) < p & A,AL +3,,/p has at p eigenvalues above 1/r

Assumption (Uniform observability)

m AL A, S, Ry, E; L are all bounded in operator norm.
m The m step observability Gramian Y, A{lekTH KAk = emly
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Which is more dangerous?

You are driving along a sub-optimal path.
Vs.
Your speedometer and break are not wor

- b =
P ———— - 2 -
& - = . L

king.

Source: internet
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Proclaimed performance

Classical criterion: difference between (m,,, R,,) and (X, C,,).
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Proclaimed performance

Classical criterion: difference between (m,,, R,,) and (X, C,,).

Proclaimed performance
m Filter estimates its error/uncertainty by covariance C,,.
m Does the estimation captures variance of e,, = X,, — X,,?

EC, > Ee, ® e,? Eenglen <D

m Mahalanobis distance ||[v[|Z2 = vT[C]1v.
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Proclaimed performance

Classical criterion: difference between (m,,, R,,) and (X, C,,).

Proclaimed performance
m Filter estimates its error/uncertainty by covariance C,,.
m Does the estimation captures variance of e,, = X,, — X,,?

EC, > Ee, ® e,? Eenglen <D

m Mahalanobis distance ||[v[|Z2 = vT[C]1v.

The effective filter covariance C? = C), + pI = [C" Sr Pl pOI]
m |le,]|2, = el C, te, punishes errors on the represented

directions.
] Hen||205 ~ dif e, ~ N(0,CF).
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Mahalanobis distance

Mabhalanobis distance ||v||¢ = vT[C]"'v
m Definition for Kalman update:

mo = argmin (|l — riva|% + [V — ool )
m Stable dissipation for Kalman filter errors

Ent1 = (I - Kn+1Hn)Anen + KnJrlHnCnJrl
AZ;(I - Kn+1Hn)TR;}r1(I - Kn+1Hn)An = AZE;}AA% = Rgl

T —1 T p—1
en+1Rn+1en+1 < ean €n

Stability results for Kalman filters (Bougerol 93, Reif et al. 99)
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Main theorem

Theorem (Majda, T. 16)

Suppose the signal observation system is uniformly observable with
m Steps, and has a effective dimension p. Then for any c, there are
C,F,Dp,M,, so thatif K > Cp

Ellenlloz < 7~ ¥EF(Co)y/lleoll%, + 2m + M,Vd

With the constants bounded by

1+ec

- _m -
1—7r"%

F(C) < Dpexp(Drlog®||C|), limsup M, <
n—o0
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Main theorem

Theorem (Majda, T. 16)

Suppose the signal observation system is uniformly observable with
m Steps, and has a effective dimension p. Then for any c, there are
C,F,Dp,M,, so thatif K > Cp

Ellenlloz < 7~ ¥EF(Co)y/lleoll%, + 2m + M,Vd

With the constants bounded by

1+ec

F(C) < Dpexp(Drlog |[Cl), limsup M, < — —
n— 00 — 7 6

Cor1: exponential stability: the difference in mean converges to zero.
Cor2: € scale noises lead to ¢ scale error for EnKF.
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How to apply it

Starting with a system

Signal: X411 = A, X, + Bn +&nt1, &1 ~N(0,%,)
Observation: Y11 = H, X411+ &nt1, Cug1 ~ N(0,1)

El Find the proper error threshold, inflation strength p, r
A Construct the inflated system (X,,Y}))

B Check whether its Kalman filter has a low dimension p

A Choose K > Cp ensemble size, the Mahalonobis error is
bounded.
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How to apply it

Starting with a system

Signal: X411 = A, X, + Bn +&nt1, &1 ~N(0,%,)
Observation: Y11 = H, X411+ &nt1, Cug1 ~ N(0,1)

El Find the proper error threshold, inflation strength p, r
A Construct the inflated system (X,,Y}))

B Check whether its Kalman filter has a low dimension p

A Choose K > Cp ensemble size, the Mahalonobis error is
bounded.

Apply to a stochastic partial differential equation
du(z,t) = U0z )u(x,t) — (0z)u(z,t) + F(z,t) + dW(z,1)

With Kolmogorov energy spectrum, p = 10 — 30 depending on
observation.
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Concentration of Random sampling matrix

Let {ax} be any K vectors of rank p, & ~ N (0, %) with rank(X) =

x K
1
C:ﬁ;ak@mk, Z— ;ak+A§k (ak + A&).

Z concentrates around D = EZ = C + X in both ways if K > Cp.
=inf{u>0:[Z+ply) ™' < u[D + ply) "'}

=inf{u>0:2Z 2 u[D+ pl4)}.
Then with @ being the condition number of C + ply:

Plu>1+dorA>1+46) < (logQ +1)exp(Csp — c5K)

The forecast covariance concentrates around its mean with high
probability.
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Comparison with reference

The reference Kalman filter gives control

C, Controlled by R,
Forecast lForecast
Chi1 A Co AT + Y «——R! | = A,RLAL + 35,
Assimilation iAssimilation
K(Crin) K(EC,41) —————=K(R},,)
PCA
Chri1 Controlled by Ry

X.Tong Localization 28/48



Comparison with reference

The reference Kalman filter gives control

C, Controlled by R,
Forecast lForecast
Chi1 A Co AT + Y «——R! | = A,RLAL + 35,
Assimilation iAssimilation
K(Crin) K(EC,41) —————=K(R},,)
PCA
Chri1 Controlled by R,

m Dissipation of Mahalanobis error on R/, transfers to C,,.
m Small probability set, controlled by Lyapunov function, uniform
observability.
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Importance of the EnKF techniques

Our proof reveals importance of EnKF techniques:

Techniques Application Theoretical
Additive inflation Under-represented [Ch + plg] 7t
Ch + ply directions Well-defined
Multiplicative Covariance decay Concentration
inflation rC,, [rCp+ply~* < EC,
Spectral projection: | Spurious correlation Concentration:
POD rank(C,) <p

X.Tong

Localization
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Summary

Main theorem:
m A variant of EnKF:
+ Inflations for covariance decay.
+ PCA: spurious correlation.
m With an effective dimension p:
Number of significant dimensions in an inflated Kalman filter.
m Reaches proclaimed performance:

Elle,||Z, converges to a constant independent of initial
condition.
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Heuristic answers

We need conditions! One of two will help us
m Low effective dimension.
m Localized covariance structure.
Compared with high dimensional matrix computation
m Low rank matrices.
m Sparse matrices.
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Local interaction

m High dimension often comes from dense grids.
m Interaction often is local: PDE discritization:

1
0:2(t) = o (i1 (t) — i1 (2))-
m Example: Lorenz 96 model
&i(t) = (Tig1 — xi—2)Tim1 —xdt + F, i=1,---,d

m Information travels along interaction, and is dissipated.

== — —ﬁ-—
— - d/2 — ~\,
/ N
N /
-~
4 d ¢ 2 3
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Sparsity: local covariance

m Correlation depends on information propagation.
m Correlation decays quickly with the distance.
m Covariance is localized with a structure @, e.g. ®(z) = p*

[Culig o (Ji — )
®(z) € [0,1] is decreasing. Distance can be general.

()
Localization



Covariance Localization

m Spurious correlation may exist for far away terms.
m Localization: simply ignore far away correlations.
m Implementation: Schur product with a mask

[C, 0 D.li; = [an]i,j [Drli;

Use C,, o D, to describe uncertainty

m [D.]i; = ¢(Ji — j|), with a radius L.
Gaspari-Cohn matrix: ¢(z) = exp(—4x?/L*)1,_j <L
Cutoff/Branding matrix: ¢(x) = 1;_j|<p.

m Also resolves rank deficiency, e.g.
1 1 1 1 02 0 1 02 0
1 1 1{of02 1 02(=1{02 1 0.2f.
1 11 0 02 1 0 02 1
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Domain localization

Two types LEnKF: Domain localization and covariance tempering.

Domain localization with radius I:
Assume H is a partial observation matrix
Use information in Z; = {j : |i — j| < [} to update component i
C'=Pr,CPr,, G'(C)=C'H" (021, + HC'H")™!
GH(C) =) el G'(C)
X = XE) 4 GH(Co) (Vo — HXP 4 ¢{).

L e A __4-—»__
_ - a2 ~ -
/ N
N
\'\:_
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Advantage with localization

Intuitively, ignoring the long distance covariance terms,
reduces the sampling difficulty, and necessary sampling size.

Theorem (Bickel, Levina 08)

XD ., XE) ~ N(0,T), denote C = LK Xx®) g XK,
D1 = max; Zj |Dy|;,;. There is a constant c, and forany t > 0

P(|C oDy —XoDy| > ||Dz|1t) < 8exp(2logd — cK min{t,t*})

This indicates that K o ||Dy||? log d is the necessary sample size.

Localization 36/48



Advantage with localization

Intuitively, ignoring the long distance covariance terms,
reduces the sampling difficulty, and necessary sampling size.

Theorem (Bickel, Levina 08)

XD ., XE) ~ N(0,T), denote C = LK Xx®) g XK,
D1 = max; Zj |Dy|;,;. There is a constant c, and forany t > 0

P(|C oDy —XoDy| > ||Dz|1t) < 8exp(2logd — cK min{t,t*})

This indicates that K o ||Dy||? log d is the necessary sample size.

Dz || is independent of d, e.g, the cut-off/branding matrix,
[DcLut] 1\2 J|I<L» HDcut”l ~ 2L.
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Main result: localized EnKF
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Main result: localized EnKF

Theorem (T. 18)

Suppose the system coefficients have bandwidth [, and the LEnKF
ensemble covariance admits a stable localized structure, then for any
0 > 0, LEnKf reaches its proclaimed performance with high
probability 1 — O(9):

T
1 ~ 1
il = o § P(Esé, ® é, = (14 6)(Cp o D, + pI;)) < TDO + Dy 6,
t=1

if the sample size K > D; ;logd.

Es conditioned on the information of the sampling noise realization.
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Proclaimed performance

Proclaimed/estimated performance
m EnKF estimates X, by X,, = + >° X,
m Errore, = X,, — X,,. Covariance : Ee,el = Ee, ® e,,.
m EnKF estimates its performance by ensemble covariance C¥.

’ﬂ \

T
~ 1
Z (Esén ® én X (140)(Cp 0 DY + pla)) < Do + D16,
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Proclaimed performance

Proclaimed/estimated performance
m EnKF estimates X, by X,, = + >° X,
m Errore, = X,, — X,,. Covariance : Ee,el = Ee, ® e,,.
m EnKF estimates its performance by ensemble covariance C¥.
m Can it captures the error covariance?

EC? = Ee, ® e,

T
~ 1
Z (Esén ® én X (140)(Cp DYy + pla)) < Do + Dif,

’ﬂ \
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Stable localized structure

m Intuitively, we need some conditions on the covariance structure.

m Stable localized structure: with local structure function @, e.g.
D(x) = A7,

~

T
(Crli; < M®(]i — j1), ZEMn < TM,.

n=1

M,, describes how localized the sample covariance matrix is.
m Why is this necessary?
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LEnKF inconsistency

An intrinsic bias/inconsistency in LEnKF.
m Localization creates a bias.
m Target covariance by Bayes formula

(I = GH(Ca)H)[Cy o DL — GH(Ca)H)T + 056" (GM)T.
m LEnKF implementation
X = X0+ GH(Co) (Yo — HX + ()
m Average ensemble covariance
CpoDyp = [(I-G¥(Co)H)Co(I-GH(C)H)T +02G5(GH) oDy

m Difference: commuting the localization and Kalman update.

m Previously investigated numerically by Nerger 2015,
the inconsistency can lead to error growth.
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When is the inconsistency small?

m localization is applied, covariance is assumed localized.
m Given localized structure ®, find M,, so that

[Culiy < Ma®(Ji — j).
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When is the inconsistency small?

m localization is applied, covariance is assumed localized.
m Given localized structure ®, find M,, so that

[Culiy < Ma®(Ji — j).

m Interestingly, when D, is D$, the
Localization inconsistency < CM,,®(21).

If 21 is large, ®(x) = A7, this difference can be controlled.
m Localized covariance leads to small localization inconsistency.
m Therefore, we need M,, to be a stable sequence,

T
Z]EMn < TM,.

n=1
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When is covariance localized?

Practical perspective
m Simply assumed.
m Numerically checked.
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When is covariance localized?

Practical perspective

m Simply assumed.

m Numerically checked.
Theoretical perspective: does covariance localize for any stochastic
system?

m Linear system: covariance can be computed.

m Nonlinear: difficult, e.g. Lorenz 96.

m LEnKEF: difficult since assimilation is nonlinear.

m Under strong conditions:

m Weak local interaction, strong dissipation.
m Sparse observation for simplicity.

m Also scales with the noise strength.
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Stable local structure

Theorem

Suppose the following, then a stable localized structure with

O(x) = N4

1) The system noise is diagonal and the observations are sparse
Wi, = U?Id, d(OZ‘,Oj) > 21, Vi 75 J-

2) Thereisa As < r—%, max; {Zi:l |[An]i,k|/\;‘d(i’k)} < Aa.
3) There are constants such that v , (M., 0.) < M,

(r+28.)0
0 < 8, < min{0.25, 3(A\;" — 1)}, M*Zﬁ’
— A4

Uy (M, 6) = (r+8) max {AAM (1+052M)° + Aaoy 2 M2, N4 M + ag} .

4) Denote n, = 2L + ['Ic;g 45 -1]. The sample size K exceeds

log(16d*n..0, %), T(2rd; *, d)
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A real example

A stochastically forced dissipative advection equation:

Ou(x,t)  Ou(x,t) 0%u(x,t) .
5 = s vu(z,t) + Pz + o, W(x,t).

Discretization

Xn+177; = (L,Xnyifl + aOXn,i + a+Xn’Z-+1 + o0V Ath+1,i; = ]., ey d,

LAt oAt _ At NN
a- =5z =G a=1-"F —vAt ap =5+ G

Observe Yn,k = Xn,p(k—l)—o—l + Uan,k-
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Stable regime

Strong damping+weak advection
h=1, At=0.1, p=5 wv=5 ¢=01, p=01 o,=0,=1.

Direct verification of the conditions is possible.

a) LEnKF b) EnKF
04 oary
|
03 o3l
w ’
9 02 ozf | \
o My A v e
01 v v o1
d=10
d=100
o 10 20 3 4 s 6 70 8 % 100 d=1000| © 0 20 3 4 s 6 70 8 % 100
. to optimal t .
c) Stability of localization structure d) LEnKF MSE with small noise
s |
\ o
Ak
3 M AN
2 10°
1
107!
0 10 20 30 40 50 60 70 80 %0 100 10" 10
t Noise strength &
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Strong advection regime

Weak damping+strong advection
h=02 At=01, p=5 v=01 ¢=2, p=01, o,=0,=1

Direct verification of the conditions is not possible.

a) LEnKF b) EnKF
4
"
s
w 10°
@ 2 A
o
1 10°
d=10 |
o 10 20 % 40 & 6 70 8 % 10 d=100 [0 0 2 0 40 50 ) 70 80 %0 10
t d=1000 t
c) Largest covariance component optimal d) LEnKF MSE with small noise
8
| "
of
Nl
/ -
2
o 10 20 a0 40 s e 70 80 % 10 0

10"
t Noise strength &
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Extension of localization

m Localization has made EnKF very effective for high dimensional
DA problems.

m Various generalization to particle filters.

m Often relies on Gaspari Cohn matrices.

m Makes non-Gaussian application difficult.

m Non-ad hoc ways generalize localization to PF?
m Can we apply localization to other UQ problem?
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Reference

m Robustness and Accuracy of finite Ensemble Kalman filters in
large dimensions. Comm. Pure Appl. Math., 71(5), 892-937,
(2018)

m Rigorous accuracy and robustness analysis for two-scale
reduced random Kalman filters in high dimensions. accepted by
CMS.

m Performance analysis of local ensemble Kalman filter. J.
Nonlinear Sci. 2018, Vol 28, No. 4. p1397-1442.

Links and slides can be found at www.math.nus.edu.sg/~mattxin.

Thank you!
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