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Introduction
A pseudomarket is a mechanism for allocating a
collectively owned endowment in settings where
monetary transfers are impossible or inappropriate.

• Agents are endowed with artificial currency or
commodity bundles.

• They trade on a market.

Several unusual features are natural:

• Objects may be indivisible.

• Free disposal can be important.

• Some consumers may be sated.

Outcomes may need to be computed.
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Plan of the Talk
• Closely related literature will be reviewed.

• The main contribution is an existence-of-
competitive-equilibrium result.

• This result encompasses existence results in
related literature, as well as classical existence
theorems.

• It is more general in ways that are relevant for
certain applications.

• The proof has some interesting and novel
features.

• Two open problems are described.
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Hylland and Zeckhauser (henceforth HZ) study a
setting in which there are:

• A finite set of agents.

• A finite set of indivisible objects.

• Each object has an integral capacity.

• Each agent has a vNM utility over the objects.

The goal is to find a probability distribution over
feasible assignments of an object to each agent that is
efficient and fair.

• They propose equilibrium allocations of a market
with currency endowments and goods that are
probabilities of being assigned to each object.
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Bergstrom (1976), Mas-Colell (1992), and
Polemarchakis and Siconolfi (1993) study existence
of general competitive equilibrium with compact
consumption sets.

• This encompasses classical general equilibrium
with more-is-always-better consumers.

• Mas-Colell allows redistribution of sated
consumers’ excess income.

• Following Gale and Mas-Colell (1975, 1979),
Mas-Colell allows quite general externalities.

• Probably that could be done here, but this has
not been pursued.

• These papers do not allow free disposal.
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priority used at Harvard.
Budish and Kessler (2016): auction and market-
like mechanisms used at Wharton.

• Budish, Che, Kojima, and Milgrom (2013)
(henceforth BCKM) study probabilistic
allocations of seats.

• They give conditions under which
assignments of probabilities can be realized
by distribution over pure assignments.

• They also give a highly restricted existence
theorem generalizing HZ. – p. 6/16
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equilibrium of a pari-mutuel betting system.

• Varian (1974): trade from equal incomes leads to
allocations of a commonly owned endowment
that are efficient and envy free.

• Bogomolnaia, Moulin, Sandomirsky, and
Yanovskaya (2017): division of a commonly
owned endowment mixing goods and bads.

• Their existence results are implied by
Mas-Colell’s.

Of course there is also a vast literature on matching
and school choice. In such models usually (not
always!) both sides of the market are strategic.
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The Model
We work in a general equilibrium setting:

• There are ℓ goods indexed by h.

• There are m agents indexed by i. For each i there
are:

• a compact convex consumption set Xi ⊂ R
ℓ;

• a continuous quasiconcave utility function
ui : Xi → R;

• an endowment ωi ∈ R
ℓ.

• There are compact production sets

Y1, . . . , Yn ⊂ R
ℓ that contain the origin.

• There is an m× n matrix θ of nonnegative

ownership shares such that
∑

i θij = 1 for all j.
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• For each j and p ∈ R
ℓ let

πj(p) = max
yj∈Yj

〈p, yj〉,Mj(p) = argmaxyj∈Yj
〈p, yj〉.

• For each i and p ∈ R
ℓ, i’s total income is

µi(p) = 〈p, ωi〉+
∑

j

θijπj(p).
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′
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(b) For each i, if i is unsated at xi, then
〈p, xi〉 ≥ µi(p).

(c) For each j, yj ∈ Mj(p).

(d)
∑

i xi ≤ ω +
∑

j yj.

(e) For all h, if
∑

i xih < ωh +
∑

j yjh, then ph = 0.
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Theorem: If, for each i there is an x0i ∈ Xi such that
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m
++ there

is an EDE (p, x, y) such that
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Theorem: If, for each i there is an x0i ∈ Xi such that

x0i ≤ ωi, Xi ⊂ x0i + V0, and x0i is in the interior
(relative to xi + V0) of Xi, then for any α ∈ R

m
++ there

is an EDE (p, x, y) such that

〈p, xi〉 − µi(p) =
αi

∑

i′∈U αi′

(

∑

i′′∈S

µi′′(p)− 〈p, xi′′〉
)

for all i ∈ U , where U is the set of i that are unsated
at xi and S = {1, . . . ,m} \ U is the set of i that are
sated at xi.

This generalizes all prior existence results.
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Approaches to the Proof

The set up:

• In HZ the consumption set is the simplex over the
objects, so it is contained in a translate of V0.

• In Mas-Colell’s setting we introduce an artificial
worthless good to make consumption sets parallel
to V0 and production sets contained in V0.

Prices and excess demand:

• The natural space of prices is V0, which has two
problems:

• Budget sets are not lower semicontinuous at 0.
• Aggregate demand may be less valuable than

aggregate supply because of satiation.
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• Each consumer trades in the hyperplane parallel
to V0 that contains her endowment, then free
disposes to a point in her consumption set.

• We introduce a small endowment of an artificial
good 0 that is always desired.

Let V = R× V0.

• For each i let X̃i = [−1, τi]×Xi for some
sufficiently large τi.

• Let ũi(x̃i0, xi) = x̃i0 + ui(xi).

• For each j let Ỹj = {0} × Yj.
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Sε = { p̃ = (p̃0, p) ∈ V : ‖p̃‖ = 1 and p̃0 ≥ ε }.

• If excess demand Z̃(p̃) is defined naturally (and a
certain additional condition holds) then:

• Z̃ is upper hemicontinuous.

• 〈p̃, z̃〉 = 0 if z̃ ∈ Z̃(p̃) (all income is spent).

• Of p̃0 = ε, then z̃0 > 0 for all z̃ ∈ Z̃(p̃).

• Thus Z̃ is an uhc vector field correspondence
that is inward pointing on the boundary of Sε,
so the (generalized) Poincaré-Hopf theorem

gives a p̃∗ ∈ Sε such that 0 ∈ Z̃(p̃∗).
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Recall that a polyhedron in R
ℓ is an intersection of

finitely many closed half spaces, and a polytope is a
bounded polyhedron.

Proposition: If P1 and P2 are polyhedra in R
ℓ,

Q = { q ∈ R
ℓ = (P1 + q) ∩ P2 6= ∅ }, and I : Q → R

ℓ

is the correspondence I(q) = (P1 + q) ∩ P2, then I is
continuous.

• For each i let X i be the set of bliss points in Xi.

We take a sequence of expanded economies given by
a sequence of endowments of the artificial good that

go to zero and a sequence of polyhedra Xk
i ⊂ Xi such

that Xk
i → Xi and Xk

i ∩X i → X i.
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Concluding Remarks

The paper’s final section points to two open problems:

• In the Hylland-Zeckhauser model, is the set of
equilibria finite for generic utilities?

• Is the problem of computing an equilibrium of
the Hylland Zeckhauser model PPAD-complete?

The traditional concerns of general equilibrium theory
are (mostly) meaningful and conceptually pertinent in
relation to pseudomarkets, so one can easily produce a
host of original and meaningful problems for further
research.

– p. 16/16
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