Judicial Mechanism Design

Ron Siegel and Bruno Strulovici

Introduction

- A criminal defendant goes through a complex process
 - > Arrest, plea bargaining, cross-examination, verdict, sentencing, etc.
- Existing work considers different aspects of the process
 - Grossman and Katz (1983), Reinganum (1988), Baker and Mezzetti (2001), Kaplow (2011, 2017), Daughety and Reinganum (2015)
- We investigate a broad class of processes that determine guilt and appropriate punishment from two different welfare perspectives
 - Impose little structure on the process
- Provide insights into key features of existing judicial systems
- Conduct a mechanism design analysis focused on the defendant's private information

Introduction

- > Reduce judicial process to a single-agent mechanism
- Derive properties of interim and ex-ante welfaremaximizing mechanisms
 - Welfare criteria differ in their treatment of deterrence
 - Properties hold if optimize over more instruments (prevention, policing, etc)
- Similarities and differences with features of the American criminal justice system
 - Plea bargains, trials with binary verdicts, evidence threshold similar to BARD
 - Adversarial system, separation of fact-finding and sentencing as commitment devices

Today

- Judicial mechanism
- Interim welfare
- Ex-ante welfare
- Main assumption and class of mechanisms
- Interim optimal mechanism
- Ex-ante optimal mechanism
- Comparison to existing judicial systems

Judicial mechanism

- A crime has been committed and a suspect is arrested and charged
- \triangleright The defendant is privately informed about his guilt, $\theta \in \{i, g\}$
 - Prior λ that the defendant is guilty (main results are "prior-free" can be stated as complete class theorems)
- Criminal justice machinery put into motion, leading to a judicial decision and a sentence
 - May involve multiple actors and several stages
- Model the process as an extensive-form game and an equilibrium
- Summarize the process by a signal $t \in [0,1]$ regarding the defendant's guilt and a mapping from signals to (possibly random) sentences
- Consider the corresponding truthful mechanism: direct-revelation mechanisms in which the defendant truthfully reports his guilt $\hat{\theta} \in \{\hat{\imath}, \hat{g}\}$

М

Reduction to a single-agent DRM

- Take an extensive form game and an equilibrium
- Fix strategies of other players, and focus on strategy of the defendant, which is a function of his type
- Consider Direct Revelation Mechanism in which defendant reports his type, and corresponding strategy is played
- Truth-telling is optimal
- Outcome of the game: signal t capturing likelihood of guilt + sentence s
- ➤ Normalize signal t to lie in [0,1]

×

Summary: Judicial DRM

- \triangleright A mechanism is a pair M = (F, S), where
 - $ightharpoonup F = \left(F_i^{\hat{\imath}}, F_g^{\hat{\imath}}, F_i^{\hat{g}}, F_g^{\hat{g}}\right)$ is a vector of signal distributions
 - $\gt S(t, \hat{\theta}) \in \Delta[0, \bar{s}]$ is a sentence function
 - $\triangleright \bar{s}$ Is the highest allowable sentence for the crime
- Signal has support [0,1] and is ordered by its likelihood ratio (wlog)
- > Signal distributions have positive densities $f_{\theta}^{\widehat{\theta}}$, and $f_{g}^{\widehat{\theta}}(t)/f_{i}^{\widehat{\theta}}(t)$ is strictly increasing in t

(non atomicity can be relaxed)

Interim welfare

- \blacktriangleright Denote by $W(s,\theta)$ the welfare from imposing sentence s on defendant of type θ
 - $\triangleright W(\cdot, g)$ continuous, concave, and single peaked at $\hat{s} > 0$
 - $\gg W(\cdot, i)$ continuous, concave, and strictly decreasing, W(0, i) = 0
- \triangleright Given prior λ , sentence s leads to welfare

$$\lambda W(s,g) + (1-\lambda)W(s,i)$$

- \triangleright ($W(\tilde{s}, \theta)$) is also expected welfare from random sentence \tilde{s})
- > Interim welfare given a mechanism is

$$\lambda \left(E^{F_g^{\widehat{g}}} \left(W(S(\cdot, \widehat{g}), g) \right) - C(F_g^{\widehat{g}}) \right) +$$

$$(1 - \lambda) \left(E^{F_i^{\widehat{i}}} \left(W(S(\cdot, \widehat{i}), i) \right) - C(F_i^{\widehat{i}}) \right)$$

 $\succ C(F_{\theta}^{\widehat{\theta}}) \ge 0$ is expected welfare cost of generating $F_{\theta}^{\widehat{\theta}}$

Ex-ante welfare

- Also considers the number of crimes committed
- The mechanism acts as a deterrent
- Individuals weigh cost and benefit of committing crime
 - Benefit varies in the population
- > At most one individual is apprehended and prosecuted for it
- Ex-ante social welfare given mechanism M is

$$H(M)\left(\pi_g\left(E^{F_g^{\widehat{g}}}\left(W(S(\cdot,\widehat{g}),g)\right)-C(F_g^{\widehat{g}})\right)\right)$$

Optimal mechanisms

- Derive properties of optimal mechanisms for interim and ex-ante welfare
- \triangleright Let u(s) be an individual's utility from sentence s
- Assume that when defendant is innocent, social preferences over sentences agree with those of the defendant
 - W(s, i) = u(s) (generalizes to W(s,i) = $\Phi(u(s))$ with Φ increasing and convex)
- Feasible DRM = DRM obtained from earlier reduction for some game and equilibrium. Which (truthful) mechanisms are feasible?
 - Depends on technology, unmodeled agents
- Assumption 1: Replacing the sentence function in a feasible mechanism with any other sentence function that maintains truthfulness leads to a feasible mechanism
 - Puts some structure on the set of feasible truthful mechanisms
 - Captures a notion of commitment

Interim welfare

- ➤ A mechanism is *interim optimal* if it maximizes interim welfare among all feasible mechanisms
 - Considering interim welfare allows us to disentangle the effect of deterrence from other welfare implications

- ➤ Theorem 1: Any interim optimal mechanism has the following properties
 - The innocent defendant's sentence is a step function of t, which jumps from 0 to \bar{s} at some cutoff signal \bar{t}
 - ➤ The guilty defendant's sentence is constant

Interim welfare

- Resembles system in which plea is available before trial, and trial ends in one of two verdicts
- If defendant pleads guilty, fixed sentence and avoids trial
- Otherwise, faces a trial and is either "acquitted" and obtains a sentence of 0 or "convicted" and obtains a severe sentence
- Conviction occurs if evidence is sufficiently strong (exceeds a threshold)
- No punishment following an "acquittal" was not assumed
- ➤ Extreme sentence not due to deterrence (≠ Becker (1968))
- Signal not used following a "guilty" plea, even if informative
 - Not due to cost saving (but shows cost saving need not be inefficient)
 - Screening value of pleas, noted by Grossman and Katz (1983)
- Relation to Crémer-McLean: FB achievable if disutility and likelihood ratio are both unbounded, or if utility unbounded in both direction

Proof idea

- Fix a feasible mechanism. Modify sentences (only) to maximize social welfare subject to truthful reporting
- Use signal to incentivize truthful reporting
- > Intuitively, binding IC: guilty pretends to be innocent
- Given utility level for innocent, choose sentence scheme that is least attractive for the guilty
- MLRP implies that it is a step function with extreme sentences
- Guilty sentence is constant because defendant and society are risk averse and innocent's IC not binding

- Sentence modification may affect deterrence and thus number of crimes committed
- Affects ex-ante welfare
- If, in Theorem 1, guilty's constant sentence is less than ex-post optimum ŝ, construction leaves guilty's utility unchanged
 - > Set of individuals who commit the crime does not change
- Corollary: Theorem 1 characterizes mechanisms that maximize ex-ante welfare among all mechanisms in which guilty's certainty equivalent is less than ex-post optimal sentence

- ➤ In general, deterrence may optimally require a higher sentence than the ex post optimum ŝ
- Construction in Theorem 1 then reduces sentence of the guilty
- Increases interim welfare but also the utility of the guilty
- ➤ Leads to more individuals committing the crime, which may decrease ex-ante welfare

➤ A mechanism is *ex-ante optimal* if it maximizes exante welfare among all feasible mechanisms

- ➤ Theorem 2: Any ex-ante optimal mechanism (generically) has the following properties
 - The innocent defendant's sentence is a step function of t, which jumps from 0 to \bar{s} at some cutoff signal \bar{t}
 - The guilty defendant's sentence is either constant or is a lottery over two sentences in $[\hat{s}, \bar{s}]$. The lottery can be chosen to be independent of the signal

- Similar to interim optimal mechanisms, except for possibility of random guilty sentence
- May be optimal to give guilty defendant a constant sentence even when it is higher than ex-post optimal
- > For random sentence to be optimal, need two things:
 - Deterrence optimally requires sentences that are higher than ex-post optimal; happens when deterrence concern dominates welfare loss from excessive punishment
 - Society must be sufficiently less risk averse, conditional on facing a guilty defendant, than individuals

Proof idea

- Modify only the sentences to increase welfare
- Similarly to Theorem 1, optimal scheme for innocent is a step function with extreme sentences
- Given a utility level for the guilty, choose threshold for step function to make the guilty indifferent
- Choose sentence scheme for guilty that maximizes welfare conditional on facing the guilty among all schemes that give him this utility level
 - No distortion because innocent does not want to mimic guilty
- This involves a concavification argument reminiscent of optimal contracting and information design
 - Here randomization concerns defendant's utility rather than belief

M

Similarities to the American legal system

- If a plea bargain is reached, no trial
 - Uncertain outcome for serious crimes (deterrence important)

- ➤ A trial ends with one of two outcomes: an acquittal (no punishment) or a conviction (punishment that is severe relative to the plea bargain)
 - Conviction if the evidence is sufficiently incriminating (similar to BARD)

(Did not assume a binary verdict, no punishment <u>End</u> following an acquittal, or availability of plea bargaining)

The role of evidence

In trials, evidence is used to determine defendant's guilt

➤ In optimal mechanisms, evidence is used to incentivize guilty defendants to admit their guilt

Appear similar: BARD

Commitment and Assumption 1

- Optimal mechanisms achieve full separation
- Only innocent goes to trial, punished if evidence is sufficiently incriminating
- Relies on Assumption 1
 - > Feasible to punish defendant known to be innocent
- ➤ US system does try to minimize the influence of punishment severity on verdict determination
 - Separation of fact finding and sentencing
 - Keep the jury uninformed about possible punishment

Conclusion

- Mechanism design approach to study optimal judicial systems
 - Reduce judicial process to single-agent mechanism
 - Formalize notion of commitment
 - Identify properties of optimal mechanisms
- Consider interim and ex-ante welfare
- Features that parallel those in the American criminal justice system
 - Plea bargains, trials with binary verdicts, adversarial, factfinding and sentencing
- The role of evidence

M

- Show that any feasible mechanism can be improved upon by a mechanism as stated in the theorem, with a strict improvement if the mechanism is not as stated in the theorem
- \triangleright Consider a feasible mechanism M = (F, S)
- Modify S to increase interim welfare and maintain incentive compatibility
- ightharpoonup Replace $S(\cdot, \hat{\imath})$ with step function $\tilde{S}(\cdot, \hat{\imath})$ to make an innocent defendant indifferent

M

Improvement with pleas

- \triangleright Choose \bar{t} to make the innocent indifferent
 - $\succ (u(0)F_i^{\hat{\iota}}[0, \overline{t}] + u(\overline{s})F_i^{\hat{\iota}}[\overline{t}, 1]$ is continuous in \overline{t})

(If distribution has atoms, may randomize at threshold.)

- Function $D(t) = u(S(t,\hat{\imath})) u(\tilde{S}(t,\hat{\imath}))$ crosses 0 once, from below
- ightharpoonup The ratio $f_g^{\hat{\imath}}(t)/f_i^{\hat{\imath}}(t)$ is increasing in t, by MLRP
- Lemma (Karlin 1968): Under the two conditions above,

$$\int_0^1 D(t)f_i^{\hat{\imath}}(t)dt \ge 0 \Rightarrow \int_0^1 D(t)f_g^{\hat{\imath}}(t)dt \ge 0$$

- So, conditional on misreporting his type, a guilty defendant prefers sentence function $S(\cdot, \hat{\imath})$ to $\tilde{S}(\cdot, \hat{\imath})$
- \triangleright By truthfulness of the original mechanism, he prefers reporting truthfully with sentence function $S(\cdot, \hat{g})$ to misreporting with sentence function $S(\cdot, \hat{i})$
- > So incentive compatibility holds when $S(\cdot, \hat{\imath})$ is replaced with $\tilde{S}(\cdot, \hat{\imath})$

M

- \triangleright Denote by s^{ce} and s^a the guilty defendant's certainty equivalent and expected sentence when reporting truthfully
- \triangleright By concavity of $u(\cdot)$, $s^{ce} \ge s^a$
- > Set plea sentence $s^b = \min\{s^{ce}, \hat{s}\}\$
- This increases social welfare conditional on facing the guilty
 - ightharpoonup If $s^b = \hat{s}$, then $W(s^b, g)$ is the highest possible utility
 - ► If $s^b < \hat{s}$, then $W(s^b, g) = W(s^{ce}, g) \ge W(s^a, g)$ and the concavity of $W(\cdot, g)$

Proof

ightharpoonup Because $s^b \leq s^{ce}$, truthfulness is maintained for the guilty

Increase threshold \bar{t} until the guilty is indifferent between s^b and misreporting with sentence function $\tilde{S}(\cdot,\hat{\iota})$

This increases welfare and guarantees truthfulness by the innocent, by MLRP and the lemma

M

- \triangleright Consider a feasible mechanism M = (F, S)
- ightharpoonup Replace $S(\cdot, \hat{\imath})$ with step function $\tilde{S}(\cdot, \hat{\imath})$ to make an innocent defendant indifferent
- Increase the threshold \bar{t} until the guilty defendant is indifferent between reporting truthfully with $S(\cdot, \hat{g})$ and misreporting with $\tilde{S}(\cdot, \hat{\imath})$
- This increases social welfare and maintains truthfulness for the innocent

- \blacktriangleright Denote by U^g the guilty defendant's expected utility in mechanism M
- ightharpoonup Replace sentence function $S(\cdot, \hat{g})$ with $\tilde{S}(\cdot, \hat{g})$ that the guilty is indifferent to and that maximizes ex-ante welfare

$$H(\widetilde{M})\left(\pi_{g}E^{F_{g}^{\widehat{g}}}\left(W(\widetilde{S}(\cdot,\widehat{g}),g)\right)-C(F_{g}^{\widehat{g}})\right)$$

- Reformulate the problem in terms of the defendant's utility
- Let $\widehat{W}(U) = W(u^{-1}(U), g)$ be the social welfare from sentencing the guilty to a sentence that gives him utility U
- \triangleright Choose utility mapping $\hat{u}(t) \in \Delta[u(\bar{s}), u(0)]$ to maximize

$$E^{F_g^{\widehat{g}}}\left(E\left(\widehat{W}(\widehat{u}(\cdot))\right)\right) \text{ s.t. } E^{F_g^{\widehat{g}}}\left(E\left(\widehat{u}(\cdot)\right)\right) = U^g$$

M

Proof

- Mapping \hat{u} induces a single distribution in $\Delta[u(\bar{s}), u(0)]$
- Thus, consider choosing utility distribution $\dot{u} \in \Delta[u(\bar{s}), u(0)]$ to maximize

$$E\left(\widehat{W}(\dot{u})\right)$$
 s.t. $E(\dot{u}) = U^g$

ightharpoonup The maximal value is $\overline{W}(U^g)$, where \overline{W} is the concavification of \widehat{W}

- ▶ If $\overline{W}(U^g) = \widehat{W}(U^g)$, it is achieved by the constant sentence $u^{-1}(U^g)$
- $\triangleright \overline{W}(\cdot) = \widehat{W}(\cdot) \text{ on } [u(\hat{s}), u(0)]$

- ▶ If $\overline{W}(U^g) < \widehat{W}(U^g)$, it is achieved by randomizing between two sentences
- \triangleright Both sentences exceed \hat{s}

М

Sending guilty defendants to trial

- In reality most convicted defendants are guilty
- > Are existing trials far from optimal?

- ➤ In an optimal mechanism the guilty are indifferent between the plea bargain and going to trial
- ightharpoonup Suppose a small fraction α of guilty defendants go to trial
- Figure Given signal t, Bayesian updating gives guilt posterior $p(t) = \frac{\lambda \alpha r(t)}{\lambda \alpha r(t) + (1-\lambda)}$, where $r(t) = f_g^{\hat{i}}(t) / f_i^{\hat{i}}(t)$

Sending guilty defendants to trial

- For an illustration, suppose that $r(\bar{t}) = 10$
 - > the likelihood ratio at the optimal threshold is 10
 - > The "Blackstone ratio"
- \triangleright Suppose that $\lambda = 0.9$
 - > 90% of defendants are guilty
- For $\alpha = 0.1$, the lowest posterior associated with a conviction is

$$p(\bar{t}) = \frac{9\alpha}{9\alpha + 0.1} = \frac{0.9}{0.9 + 0.1} = 0.9$$

- "Certainty threshold is 90% when 10% of guilty defendants go to trial"
- \succ Small welfare loss relative to the optimal mechanism when α is small