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Background

I Two-sided markets:

I Marriage market

I Job market

I College admission market

I School choice

I . . .



Complete Information Assumption

Assumption: Information is complete (CI), i.e.,

Every agent’s characteristics and preferences are common knowledge.



Outline

1. Main consept: Stability.

I Individual Rationality (IR)

I No Blocking

I The fact of IR and no blocking provides no information to agents

2. Properties of Blocking and Stability

3. Generality of the Framework



Outline

1. Main consept: Stability.

I Individual Rationality (IR)

I No Blocking

I The fact of IR and no blocking provides no information to agents

2. Properties of Blocking and Stability

3. Generality of the Framework



Related Literature

1. One-to-one job market:
Shapley and Shubik (1971), Crawford and Knoer (1981), Chen et al. (2016),
Liu et al. (2014). . .

2. Incomplete information:
Roth (1989), Chakraborty et al. (2010), Yenmez (2013), Pomatto (2015),
Bikhchandani (2017), Liu et al. (2014) (LMPS), Chen and Hu (2017),
Liu (2017). . .



The Model



Agents

I Agents

I I 3 i: a finite set of workers.

I J 3 j: a finite set of firms.

I Types

I w : I→ W, where W is finite.

I f : J → F, where F is finite.

I t = (w, f): a type assignment function.
t ∈ W|I| × F|J|.



Values and Payoffs

I Values for match (w, f )

I worker premuneration value: νwf ∈ R.

I firm premuneration value: φwf ∈ R.

I surplus of the match: νwf + φwf .

I Payoffs (µ(i) = j):

I νw(i),f(j) + p for the worker.

I φw(i),f(j) − p for the firm.



Allocation

I matching: µ : I→ J ∪∅, one-to-one on µ−1(J).

I payment scheme: p associated with a matching function µ.
I pi,µ(i) ∈ R for each i ∈ I.

I pµ−1(j),j ∈ R for each j ∈ J.

I p∅j = pi∅ = 0.

I (µ, p): an allocation.

(µ, p)is observable for all agents.



Incomplete Information

I Assumptions about t:

I t ∈ T ⊂ W|I| × F|J|.

I Πk: Information Partition of firm k ∈ I ∪ J.

I Πk is a partition of T.

I t′ ∈ Πk(t):
Agent k thinks t′ is possible when t is true.
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Incomplete Information

I Assumptions about t:

I t ∈ T ⊂ W|I| × F|J|.

I Πk: Information Partition of firm k ∈ I ∪ J.

I Πk is a partition of T.

I t′ ∈ Πk(t):
Agent k thinks t′ is possible when t is true.

I Π := ({Πi}i∈I; {Πj}j∈J): a partition profile.

I Complete info: every partition cell is a singleton.
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State of the Market

A state of the matching market, (µ, p, t, Π), specifies

I an allocation (µ, p);

I a type assignment function t; and

I a partition profile Π.

Assumption (LMPS):
Agents can observe the true type of their own partner, if any.
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Stability



Individual Rationality

Definition 1
A state (µ, p, t, Π) is said to be individually rational if

νt(i),t(µ(i)) + pi,µ(i) ≥ 0 for all i ∈ I and

φt(µ−1(j)),t(j) − pµ−1(j),j ≥ 0 for all j ∈ J.



Naive Blocking

I Following LMPS: an agent cares about the worst case of a potential partner
if she does not know his true type.

I Given (µ, p, t, Π), consider a potential blocking by (i, j; p).

νt′(i),t′(j) + p >νt′(i),t′(µ(i)) + pi,µ(i) for all t′ ∈ Πi(t) and

φt′(i),t′(j) − p >φt′(µ−1(j)),t′(j) − pµ−1(j),j for all t′ ∈ Πj(t).
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Naive Blocking is Too Demanding

Market Ingredients:

I = {x, y}, J = {a, b}.

T = {t1, t2}:

x y a b

t1 : 2 3 3 2

t2 : 2 1 3 4

φwf = νwf = wf .

A Market State:

µ(x) = a and µ(y) = b; p = 0.

t∗ = t1.

t1
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(µ, p, t, Π) is blocked by (y, a; 0).

t′′ ∈ Πa(t1) AND [νt′′(y),t′′(a) + 0]− [νt′′(y),t′′(µ(y)) + py,µ(y)] > 0.
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Refining Consideration Sets

I Given (µ, p, t, Π), consider (i, j; p).

Π[1]
i (t′): t′′ ∈ Πi(t′) and

max
t̃∈Πj(t′′)

[φt̃(i),t̃(j) − p]− [φt̃(µ−1(j)),t̃(j) − pµ−1(j),j] > 0,

Π[1]
j (t′): t′′ ∈ Πj(t′) and

max
t̃∈Πi(t′′)
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Blocking

Definition 2
A state (µ, p, t, Π) is said to be blocked, if there exists a worker-firm pair (i, j)
and a payment p ∈ R such that Π[l∗ ]

i (t) 6= ∅, Π[l∗ ]
j (t) 6= ∅ and

νt′(i),t′(j) + p >νt′(i),t′(µ(i)) + pi,µ(i) for all t′ ∈ Π[l∗ ]
i (t) and

φt′(i),t′(j) − p >φt′(µ−1(j)),t′(j) − pµ−1(j),j for all t′ ∈ Π[l∗ ]
j (t).
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An Example of Blocking by (y, a; 0)

Market Ingredients:

I = {x, y}, J = {a, b}.

T = {t1, t2, t3, t4}:

x y a b

t1 : 2 3 3 2

t2 : 2 1 3 4
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y (t1) = Π[3]

a (t1) = {t1}.
(µ, p, t, Π) is blocked by (y, a; 0).



Informational Stability

The fact of IR and no blocking︸ ︷︷ ︸ provides no information︸ ︷︷ ︸ to agents.

1. Partition Representation 2. Information Aggregation

1. Given a state (µ, p, t, Π), let N(µ,p,Π) be a partition of T:

N(µ,p,Π)(t′) = N(µ,p,Π)(t′′) if and only if either neither (µ, p, t′, Π) nor
(µ, p, t′′, Π) is blocked or both of them are blocked.

2. Aggregating two pieces of information → Join of two partitions.

I Inferences: [Hµ,p(Π)]k := Πk ∨N(µ,p,Π), ∀k ∈ I ∪ J, i.e.,

[Hµ,p(Π)]k(t
′) := Πk(t

′) ∩N(µ,p,Π)(t′), ∀t′ ∈ T, ∀k ∈ I ∪ J.
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Stability

Definition 3

A state (µ, p, t, Π) is said to be stable if

1. it is individually rational,

2. it is not blocked, and

3. Π is a fixed point of Hµ,p, i.e. Hµ,p(Π) = Π.



Convergence: Path to Stability

Proposition 1
Suppose payments permitted in the job market are all integers.
Then the random learning-blocking path starting from an arbitrary state
converges with probability one to a stable state.



Properties of Blocking



Properties of Blocking: True-State Improvement

Proposition 2
If (µ, p, t, Π) is blocked by (i, j; p), then

νt(i),t(j) + p > νt(i),t(µ(i)) + pi,µ(i) and φt(i),t(j) − p > φt(µ−1(j)),t(j) − pµ−1(j),j.

Proof.
Suppose to the contrary that

νt(i),t(j) + p ≤ νt(i),t(µ(i)) + pi,µ(i).

Then t /∈ Π[l∗ ]
i (t) , which implies that either Π[l∗ ]

j (t) = ∅ or

max
t′′∈Π[l∗ ]

j (t)

[
φt′′(i),t′′(j) − p

]
−

[
φt′′(µ−1(j)),t′′(j) − pµ−1(j),j

]
≤ 0,

a contradiction.
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Properties of Blocking: Naive Blocking

I (One-Dimensional Type) W ⊂ R and F ⊂ R.

I (Non-Transferable Utility) No transfer is permitted in the model.

I (Knowledge within One Side) It is CK that each worker knows the types of
all workers and each firm knows the the types of all firms.

I (Increasing and Continuous Utility) The premuneration functions ν(w, f ) and
φ(w, f ) are strictly increasing and continuous in w and f .

Proposition 3
Under these Assumptions, (µ, t, Π) is blocked if and only if it is naïvely blocked.
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Property of Stability (Comparative Statics):

Welfare Effect of Adding One Agent



New Positions and New Workers

Γ = (I, J, t∗, T, ν, φ)

add one agent−−−−−−−−→ Γ′ = (I′, J′, t∗′, T′, ν′, φ′)

Throughout this section, we take Γ′ as a one-agent extension of Γ.
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Welfare Effect of Adding One Agent

Property. Adding one worker (firm) to a stable market state, the result of any
blocking path makes all other workers (firms) weakly worse off and all
firms (workers) weakly better off.

I Intuition: expanding one side of the market increases the competition
within that side.

I With incomplete information, Property fails because of the correlation
of agent types.
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A Counterexample where Property Fails

Γ:

I = {x}, J = {a}.

T = {t∗, t}:

x a
t∗ : 4 1
t : −4 1

φwf = wf , νwf = |wf |.

A stable Γ-state:

µ(x) = ∅;
Πx = {{t∗}, {t}} ,
Πa = {{t∗, t}} .

Γ′:

I′ = {x, y}, J′ = {a}.

T′ = {t∗′, t′}:

x y a
t∗′ : 4 2 1
t′ : −4 3 1

φwf = wf , νwf = |wf |.

The unique stable Γ′-state:

µ′(x) = a,

µ′(y) = ∅;

Π′x = Π′y = Π′a =
{
{t∗′}, {t′}

}
.
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A stable Γ-state:

µ(x) = ∅;
Πx = {{t∗}, {t}} ,
Πa = {{t∗, t}} .

Γ′:

I′ = {x, y}, J′ = {a}.

T′ = {t∗′, t′}:

x y a
t∗′ : 4 2 1
t′ : −4 3 1

φwf = wf , νwf = |wf |.

The unique stable Γ′-state:

µ′(x) = a,

µ′(y) = ∅;

Π′x = Π′y = Π′a =
{
{t∗′}, {t′}

}
.
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.



Restoring Comparative Statics

Strict preferences: φt∗′(i),t∗′(j) 6= φt∗′(i′),t∗′(j) for i 6= i′ and
νt∗′(i),t∗′(j) 6= νt∗′(i),t∗′(j′) for j 6= j′.

Proposition 4
Suppose preferences are strict and no transfer is permitted.

If (µ, t∗, Π) is a stable Γ-state such that µ is a complete-info. stable allocation,

then for any stable Γ′-state (µ′, t∗′, Π′) produced by Learning-Blocking Paths,
when J ( J′ (resp. I ( I′),
the payoffs of all workers (resp. firms) increases
and the payoffs of all existing firms (resp. workers) decreases
compared with the payoffs under (µ, t∗, Π).



Concluding Remarks

1. Stability with incomplete information.

2. Properties of Blocking.

3. Comparative statics.

I Generality:
I Observability

I Correlation (characteristics and preferences)

I Bayesian Stability
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Bayesian Stability



Prior

Common Prior:

Assume t ∼ F.

OR

Heterogeneous Prior:

Assume t ∼ Fk for every k.



Bayesian Blocking: Agents’ Willingness

Given (µ, p, t, Π) and the prior, we consider a potential blocking by (i, j; p).

Indicator correspondence χ over Πi ∨Πj 3 π, where χ(π) ⊂ {Y, N}:

χi(π) :=

{
{Y} if E

[
νt̃(i),t̃(j)|π

]
+ p > νt(i),t(µ(i)) + pi,µ(i)

{N} otherwise,

χj(π) :=

{
{Y} if E

[
φt̃(i),t̃(j)|π

]
− p > φt(µ−1(j)),t(j) − pµ−1(j),j,

{N} otherwise;

for each k = i, j and each π ∈ Πk,

χk(π) :=
⋃

π′∈Πi∨Πj :π′⊂π

χk(π
′).
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Refinement of the Consideration Set

Define Π[0] = Π and recursively for l = 1, 2, . . . that

Π[l]
i (t′) :=

{
t′′ ∈ Πi(t

′) : Y ∈ χj(Π
[l−1]
j (t′′))

}

Π[l]
j (t′) :=

{
t′′ ∈ Πj(t

′) : Y ∈ χi(Π
[l−1]
i (t′′))

}
.



Bayesian Blocking

Definition 4
A state (µ, p, t, Π) is said to be Bayesian blocked if there exists (i, j; p) such that
Π[l∗ ]

i (t) 6= ∅, Π[l∗ ]
j (t) 6= ∅ and

E
[
νt̃(i),t̃(j)|Π

[l∗ ]
i (t)

]
+ p > νt(i),t(µ(i)) + pi,µ(i) and

E
[
φt̃(i),t̃(j)|Π

[l∗ ]
j (t)

]
− p > φt(µ−1(j)),t(j) − pµ−1(j),j.



Bayesian Stability

Definition 5

A state (µ, p, t, Π) is said to be Bayesian stable if

1. it is individually rational,

2. it is not Bayesian blocked, and

3. Π is a fixed point of Hµ,p, i.e. Hµ,p(Π) = Π.
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