Strategic "Mistakes": Implications for Market Design Research

Georgy Artemov[†] Yeon-Koo Che[‡] Yinghua He^{*}

[†]University of Melbourne

[‡]Columbia University

*Rice University; Toulouse School of Economics

24 July 2018

IMS, NUS

Received knowledge: mistakes

• One of the desiderata of market design: strategy-proofness.

- Allows participants to submit their true preferences to the mechanism, without attempting to second-guess the strategies of others
- Participants "strategize" and do not submit their true preferences.
 - Lab experiments
 - Hassidim, Romm & Shorrer (2018): 19% of applicants to Israeli postgraduate programs in psychology made "clear" mistakes.
 - Similar observations in Hungarian university admission (Shorrer and Sóvágó, 2017), National Resident Matching Program (Rees-Jones, 2017)

This paper: mistakes

Look deeper into (one particular type of) mistakes:

- Do they change the outcome?
 - Most mistakes are not payoff-relevant (80% to 98%)
- Payoff-irrelevant mistakes: data consistent with applicants skipping infeasible (out-of-reach) programs
- Which individual characteristics correlated with mistakes?
 - P-irrelevant: negatively correlated with ability, private school
 - P-relevant mistakes: not correlated with any of the above
 - Change in opposite directions "over time" (p-irrelevant increase, p-relevant decrease)
- Applicants do not appear to strategize in a misguided attempt to get a better assignment.

Received knowledge: Truth-telling vs. stability

Why strategy-proofness?

- Easier to avoid mistakes (pprox mistakes are payoff-irrelevant?)
- No disadvantage to unsophisticated players (\approx lower ability not correlated with payoff-relevant mistakes?)
- Observed behavior is easy to interpret as true preferences are submitted to the mechanism
 - Predict welfare changes theoretically
 - Estimate applicants' preferences assuming truth-telling (TT):
 - Draw counterfactual welfare comparisons
 - Abdulkadiroglu, Agarwal & Pathak (2015), Abdulkadiroglu, Pathak & Roth (2009), Che & Tercieux (2016a,b) ...

Received knowledge: Truth-telling vs. stability

If truth-telling is not used as identifying assumption, what is an alternative?

- \bullet Use stability (\approx ROL where "it matters") for estimates/conterfactuals
 - In centralized school choice and college admissions: Fack, Grenet & He (2015).
 - In other settings: Agarwal (2015) centralized; Chiappori, Galichon, Fox, Menzel, Salanié – decentralized matching.

This paper: implications for market research, truth-telling vs. stability

- Theoretical analysis: account for mistakes and explore implications to identifying assumptions of empirical studies (truth-telling vs. stability)
 - Participants are allowed to make ϵ -costly mistakes
 - Market grows large
 - Stability is robust to mistakes
 - but truth-telling is not
- Monte Carlo Simulations: Confirm the theory and quantify the effects of mistakes on estimates based on alternative assumptions and on the counterfactuals.
 - Bias vs. variance

Data Analysis: Institutional Background

- Centeralized mechanism via a platform **VTAC** (Victorian Tertiary Admissions Centre)
- An applicant submits a rank-ordered list (ROL) of university courses (university-major combination) up to 12 choices.
- Courses rank students (almost exlusively) by ENTER (Equivalent National Tertiary Entrance Rank) we shall call it Score (the higher the better).
- The algorithm is similar to Serial Dictatorship
 - The highest ranked student "choose" a course, then the second ...
 - Everyone "chooses" among the remaining courses.
 - How one "chooses" is determined by the submitted ROL.
- Note: not strategyproof due to length restriction;

Fee/no fee, "Skip" and its payoff relevance: definitions

- Many courses (about 881 out of 1899) are available in two versions, and treated as "separate courses" with separate cutoffs applying.
 - Full Fee (FF): Full tuition; median AUD17,000 (USD13,000) per year.
 - Reduced Fee (RF): About half of tuition; can be borrowed on a subsidized loan.
 - They are otherwise identical.
- Skip: Not listing RF version of a course but listing FF version is clearly a weakly dominated strategy when listing < 12 choices.
- A skip is declared to be payoff relevant if an applicant would have been assigned to the skipped course if that course had been listed.

Skipping and Payoff-Relevant Skipping

Skips and Mistakes among V16 Applicants Listing Fewer than 12 Courses

				Payoff-relevant mistakes			
	All	FF listed	Skips	Upper bound	Lower bound		
% All	100.00	10.61	3.61	0.72	0.05		
% FF listed		100.00	34.05	6.78	0.47		
% Skips			100.00	19.92	1.39		
Total	27,922	2,963	1,009	201	14		

• Potentially non-negligible number of applicants skip,

• but the majority of the skips are payoff irrelevant.

Regressions: Who Skips? Who Makes Mistakes?

$$Skip_i = \alpha + \beta Score_i + \gamma \mathbf{X}_i^T + \epsilon_i, \qquad (1)$$

where

- Skip or not: 100% or 0
- **X**^T:
 - General Achievement Test (GAT): distinct from Score, taken as a proxy for cognitive ability (separate from Score)
 - School fee (dummy): the applicant attends a school that charges more than AUD11,000 (approx. USD8,000) in fees.
 - gender, income (postal-code average), region of birth, citizenship status, language spoken at home
 - high school fixed effects
 - number of FF courses ranked (dummies)

Payoff-relevant mistake_i =
$$\alpha + \beta Score_i + \gamma \mathbf{X}_i^T + \epsilon_i$$
, (2)

More able / better advised make fewer skips, but no fewer payoff-relevant mistakes

	All mistakes (Skips)			Pa	stakes	
	Full sample (1)	FF s/sample (2)	s) imple Full 7) (0 **** 0.0 7) (0 **** 0 0) (0 *** 0 0) (0 5 5 5 6 26 7 7 7 7 7 7 7 7 7 7 7 7 7	Full sample (3)	FF s/sample (4)	Skip s/sample (5)
Score	-0.04*** (0.01)	-0.56*** (0.07)		0.01*** (0.00)	0.19*** (0.04)	0.61*** (0.15)
GAT	-0.04*** (0.01)	-0.33*** (0.10)		<mark>0.00</mark> (0.01)	<mark>0.01</mark> (0.06)	<mark>0.28</mark> (0.19)
(Private school) × <i>Score</i>	-0.03*** (0.01)	- <mark>0.05</mark> ** (0.02)		<mark>0.01</mark> (0.01)	- <mark>0.11</mark> * (0.06)	<mark>0.22</mark> (0.27)
Other controls	Yes	Yes		Yes	Yes	Yes
# of Applicants R ²	26,325 0.36	2,766 0.17		26,325 0.14	2.766 0.25	947 0.48

- Negative correlation of skips with GAT/Private school: more able and better advised make fewer skips;
- No correlation of p-rel mistakes with GAT/Private school: less able and worse advised make as good decisions as more able better advised "where it matters";

Correlation of Score with Skips and Payoff-relevant Mistakes

Probability of Skips and Payoff-relevant mistakes

	All mistakes (Skips)			Payoff-relevant mistakes			
	Full sample (1)	FF s/sample (2)		Full sample (3)	FF s/sample (4)	Skip s/sample (5)	
Score	- <mark>0.04</mark> *** (0.01)	- <mark>0.56</mark> *** (0.07)		<mark>0.01</mark> *** (0.00)	<mark>0.19</mark> *** (0.04)	<mark>0.61</mark> *** (0.15)	
GAT	-0.04*** (0.01)	-0.33*** (0.10)		0.00 (0.01)	0.01 (0.06)	0.28 (0.19)	
(Private school) × <i>Score</i>	-0.03*** (0.01)	-0.05** (0.02)		0.01 (0.01)	-0.11* (0.06)	0.22 (0.27)	
Other controls	Yes	Yes		Yes	Yes	Yes	
# of Applicants R^2	26,325 0.36	2,766 0.17		26,325 0.14	2.766 0.25	947 0.48	

- Negative correlation of skips with Score: Consistent with omitting out-of-reach courses (lower score → more courses are out-of-reach and dropped);
- Positive correlation of p-rel mistakes with Score: Consistent with "random noise" (applicant omits any course with equal probability → more likely to be payoff-relevant for a higher-ability applicant).

Skips increase, Payoff-Rel Mistakes decrease

- Unique feature: Applicants revise ROLs over time: before & after Scores are revealed.
- Regressions:

$$\Delta(Skips_i) = \tau^s + \upsilon^s (\mathbf{X}_i^T - \overline{\mathbf{X}}_i^T) + \epsilon_i$$

$$\Delta(Payoff-rel Mistakes_i) = \tau^m + \upsilon^m (\mathbf{X}_i^T - \overline{\mathbf{X}}_i^T) + \epsilon_i,$$

	All mista	kes (Skips)	Payoff-rele	evant mistakes
	(1)	(2)	(3)	(4)
Constant	1.05*** (0.14)	0.72*** (0.11)	- <mark>0.12</mark> ** (0.05)	- <mark>0.19</mark> *** (0.05)
Change in $\#$ FF courses		43.24*** (2.75)		8.69*** (1.26)
Other Controls	Yes	Yes	Yes	Yes
$\#$ of Applicants R^2	26,325 0.02	26,325 0.13	26,325 0.04	26,325 0.42

With more information (about one's score), applicants

- Make fewer payoff-relevant mistakes, despite the fact that they
- Skip more

Summary of previous tables

- Payoff-irrelevant mistakes have some systematic patterns, but
- Payoff-relevant mistakes are rare and look like non-systematic noise.

Not specific to Australia

- For all mistakes (skips), results are similar to those for Israeli medical match (Hassidim, Romm & Shorrer, 2018) and Hungarian college admission (Shorrer and Sóvágó, 2017).
- Shengwu Li "Obviously Strategy-Proof Mechanisms" (2017): data from his Serial Dictatorship experiment.

	All mistakes	Payoff-relevant mistakes
Score	-0.36*** (0.06)	0.60*** (0.13)
Subject FE	Yes	Yes
Period FE	Yes	Yes
N	720	209
R ²	0.53	0.37

Theoretical Analysis

Solution Concept Permissive of Mistakes: Environment

- Azevedo-Leshno Continuum Model $E = [\eta, S]$: finite number of colleges, mass of seats $S = (S_1, ..., S_C)$, and mass of applicants given by
 - distribution η of applicant types (preferences and scores); assume atomless, full support.
 - ⇒ Unique stable matching (or DA outcome) characterized by "cutoffs" in scores.
- A sequence of finite (random) economies {F^k}_k = {[η^k, S^k]}_k, generated by k iid sampling of applicants according to η and proportionate scaling of supply S^k. F^k converges to E in a strong sense (η^k → η uniformly, a.s.).
- We consider a sequence of DA games that applicants play in $\{F^k\}_k$.

Solution Concept Permissive of Mistakes: Environment

Definition (Robust equilibrium)

A sequence of strategy profiles $\{(\sigma_i^k)_{1 \le i \le k}\}_k$ by students (wrt ROLs) with the property that, for any $\epsilon > 0$, $(\sigma_i^k)_{1 \le i \le k}$ must form an interim ϵ -BNE for all k large enough.

- Consider economy *F^k*
- Equilibria: all strategy profiles where applicants cannot gain more than ϵ by deviating;
 - We allow applicants to make small mistakes
- How small is ϵ allowed to be? For sufficiently large economy, ϵ can be made arbitrarily small.

Truth-telling is not the only robust equilibrium strategy in a large market

Theorem

There exists a robust equilibrium in which a positive fraction of applicants submit untruthful ROLs. The fraction can be arbitrarily close to one as $k \to \infty$.

• Implication: Truth-telling assumption is not robust to "mistakes."

Intuition:

Market grows large \rightarrow admission cutoffs become tight $\rightarrow \epsilon$ loss if an applicant skips a program she is not assigned to in *E*.

- Intuition: Market grows large \rightarrow admission cutoffs become tight $\rightarrow \epsilon$ loss if an applicant skips a program she is not assigned to in *E*.
- Details: cutoffs are an outcome of the game the applicants play. Need to $_{19/36}$

Robust equilibria result in a stable outcome

Theorem

In any "regular" robust equilibrium, the outcome becomes virtually stable as $k \to \infty$: the fraction of applicants getting their stable assignment (given the prevailing cutoffs) converges to one in probability as $k \to \infty$.

- "Stable": every applicant gets best ex-post feasible college (score above realized cutoff)
- "Regular": each student plays TT with some arbitrarily small probability.
- Implication: Stability is robust to "mistakes" in a large enough market.

Robust equilibria result in a stable outcome, intuition for proof

Theorem

In any "regular" robust equilibrium, the outcome becomes virtually stable as $k \to \infty$: the fraction of applicants getting their stable assignment (given the prevailing cutoffs) converges to one in probability as $k \to \infty$.

- Strategy does not deliver a stable outcome ⇒ deviate to TT ⇒ get a better college ⇒ discrete gain ⇒ not equilibrium (not robust eq?).
- Given any sequence of economies and strategies, there exists a subsequence of economies {F^k} which induce a sequence of (random) cutoffs {P^k_j} that converges to cutoffs P
 in the limit continuum economy.
- In such an economy, an agent who gets a non-stable outcome can deiate to TT to get a better match (determined by {P_i^k})
- This entails a gain in payoff that does not converge to zero (as {P_j^k} converge to P
- Then such a strategy is not a robust equilibrium.

Summary of Theoretical Results

Theorem

There exists a robust equilibrium in which a positive fraction of applicants submit untruthful ROLs. The fraction can be arbitrarily close to one as $k \to \infty$.

Theorem

In any "regular" robust equilibrium, the outcome becomes virtually stable as $k \to \infty$: the fraction of applicants getting their stable assignment (given the prevailing cutoffs) converges to one in probability as $k \to \infty$.

Corollary

The limit outcome of a regular robust equilibrium would be the same as if all applicants reported their preferences truthfully.

If participants play robust equilibrium, truth-telling is

- not a good predictor of behavior;
- a good predictor of the outcome.

Monte Carlo Simulation

Simulations: estimating parameters

- Monte Carlo Simulations: Confirm the theory and quantify the effects of mistakes on estimates based on alternative assumptions and on the counterfactuals.
 - Obtain the distribution of cutoffs ("historical data"): serial dictatorship on 1800 samples
 - Simulate 200 "real-life" samples
 - "real-life": make mistakes (variety of % of payoff-irrelevant and payoff-relevant mistakes)
 - Estimate parameters of random utility model using (i) truth-telling;
 (ii) stability and (iib) robust stability.

How do mistakes affect estimation?

Distribution of estimates based on TT (red), Stability (blue), and Robust (purple) [True Value: $\beta_1 = 0.3$]

• Bias vs. variance: Estimates based on stability and the robust approach is more robust than those based on TT to mistakes.

Simulations: Welfare comparisons

• Use three versions of estimates above (+ naive assumption that the same rank-ordered list would be submitted) to evaluate welfare implications of a new policy (affirmative action: a group of applicants have a higher priority than anyone else) on non-target group

Comparison of the Three Approaches: Mis-Predicted Welfare Changes for non-targeted group

Conclusion

- Most mistakes are payoff-irrelevant
- Payoff-relevant mistakes appear to be "random noise"
- \Rightarrow Strategy-proofness performs reasonably well in real life.
 - Using strategies predicted by an "exact" solution concept (that does not permit mistakes) may not be robust as a prediction or as an identification condition for empirical studies.
 - Instead outcome predicted by the proposed robust solution concept appears to work more reliably both as a prediction and as an empirical method.

Outcomes speak louder than strategies!

Thank you!

Comments? Suggestions?

gartemov@unimelb.edu.au yc2271@columbia.edu yinghua.he@gmail.com

Institutional Background

• Centralized assignment of applicants to programs (university-major)

- 1899 programs in total
- 881 offer full-fee (FF) and reduced-fee (RF) place.
- An applicant submits a rank-ordered list (ROL) of up to 12 choices.
 - Not strategy-proof; focus on these listing less than 12 programs
- Programs rank applicants (almost only) by Score (the higher the better).
- The algorithm, a variant of DA, is similar to Serial Dictatorship
 - The highest ranked applicant "choose" a program, then the second ...
 - Everyone "chooses" among the remaining programs.
 - How one "chooses" is determined by the submitted ROL.

"Skip": mistakes and payoff relevant mistakes

- Everyone strictly prefer RF to FF program
- Skip: Not listing RF but listing FF a dominated strategy

- Example:
$$C_1 = \mathsf{RF}$$
 of course C; $C_2 = \mathsf{FF}$ of course C.

- (A_1, A_2, C_2) - skipping C_1

- Skip is **payoff-relevant** if, given others' actions, adding C₁ back into ROL results in the applicant getting C₁.
 - Depends on where in ROL we put back C_1 :
 - Upper bound: adding C_1 on top;
 - e.g., $(A_1, A_2, C_2) \rightarrow (C_1, A_1, A_2, C_2)$
 - Lower bound: adding C_1 right above C_2 .
 - e.g., $(A_1, A_2, C_2) \to (A_1, A_2, C_1, C_2)$

Data

- Sample period: 2007 application (for enrollment in 2008), with 75k applicants, about 1899 programs (881 offering both tuition types, RF/FF)
- Our focus: "V16 <12" 12th grader applicants who filled out fewer than 12 (making "skip" a dominated strategy)
- 27,992; of whom 2,963 listed at least one FF program.

Not a misguided attempt to improve an allocation

- Do applicants skip courses hoping to get a better allocation (e.g. mistake the mechanism for Boston/Immediate Acceptance algorithm)?
- H₂: skip courses from the top, but not from the bottom ⇒ skip positively correlated with compressed ROL. Negative coefficient on δ – no support.

Cutoffs top-ranked courses_i – Cutoffs bottom-ranked courses_i

	Applicants Listing at Least One Full-Fee Course							
	(1)	(2)	(3)	(4)	(5)	(6)		
Skip	-1.38 (1.11)	-0.41 (0.93)	0.09 (1.02)	<mark>0.06</mark> (1.18)	0.32 (1.00)	<mark>0.69</mark> (1.06)		
Score	0.08** (0.04)	0.08*** (0.03)	0.07** (0.03)	0.06* (0.04)	0.07** (0.03)	0.07** (0.03)		
ROL Length				Yes	Yes	Yes		
Other Controls	No	No	No	Yes	Yes	Yes		
N R ²	2825 0.18	2598 0.18	2080 0.25	2797 0.21	2570 0.21	2055 0.28		

 $= \gamma + \delta Skip_i + \zeta Score_i + \eta \mathbf{X}_i^T + \epsilon_i.$

Real effects of Payoff-Relevant Mistakes

- Applicants making payoff-relevant mistake suffer financial loss
- Payoff-relevant mistake also significantly decrease the probability of enrolment.

 $\sum_{\substack{\text{Defer}_i \\ \text{Reject}_i}}^{\text{Enroll}_i} = \omega^m \text{Payoff-relevant Mistake}_i + \omega^s Skip_i + \aleph \mathbf{X}_i^T + \epsilon_i$

	Enroll	Defer	Reject
	(1)	(2)	(3)
Payoff-relevant mistake	-15.75***	13.06***	2.69
	(3.81)	(3.34)	(2.94)
Skip	-4.07**	4.76***	-0.69
	(1.99)	(1.57)	(1.73)
Score	0.38***	0.12***	-0.51***
	(0.02)	(0.01)	(0.02)
Other controls	Yes	Yes	Yes
N	23774	23774	23774
R ²	0.17	0.13	0.18

Monte Carlo Simulation: Model Specification

- I = 1800 students; S = 12 schools with quotas $\{S_c\}_{c=1}^{12} = \{150, 75, 150, 150, 75, 150, 150, 75, 150, 150, 75, 150\}.$
- Mechanism: Serial Dictatorship where higher index student has a higher (superior) priority.
- random utility model:

$$u_{i,s} = \beta_1 s - d_{i,s} + \beta_2 T_i A_s + \sigma \epsilon_{i,s}, \forall i \text{ and } s;$$

where $(\beta_1, \beta_2, \sigma) = (0.3, 2, 1)$ true quality/preference parameters; the goal is to recover them by estimation)

- $d_{i,s}$: distance from *i* to *s* (uniform random within a circle with radius 1, schools on a circle with radius 1/2);
- Student type: $T_i = 1$ ("disadvantaged") or 0 ("advantaged"); T_i is 1 wp 2/3 for $i \le 900$; $T_i = 0$ for all i > 900.
- School type: A_s = 1 (odd numbered schools; good for disadvantaged) or 0 (even numbered schools)
- Idiosyncratic shock: $\epsilon_{i,s} \sim$ a type-I extreme value.

Data Generating Processes (DGP)

- First run 1800 Serial Dictatorship under truthful reporting with random draws of $\{d_{i,s}, \epsilon_{i,s}\}_s$ and T_i to obtain **distribution of cutoffs**.
- Next simulate behavior/outcome with another 200 samples with new independent draws of {d_{i,s}, ε_{i,s}}_s and T_i under 8 different behavioral models:
- 1. STT (Strict Truth-Telling): Every student submits a rank-ordered list of 12 schools according to her true preferences.
- IRR (Payoff Irrelevant Drops): Varying fractions of students skip schools with which they would never match given cutoff distributions, at the top ("out of reach" schools) and at the bottom ("dominated"). Fractions: 1/3 (IRR1), 2/3 (IRR2) and 1 (IRR3)
- **3. REL (Payoff Relevant Mistakes)**: In addition to IRR3, students drop schools with small match probabilities (given the simulated cutoff distribution): 7.5% (REL1), 15% (REL2), 22.5% (REL3), and 30% (REL4).

Data Generating Processes

Skips and Mistakes in Monte Carlo Simulations (Percentage Points)

	Scenarios (Data Generating Processes)								
	Strict Truth-telling	h-telling Payoff Irrelevant Skips			Pa	Payoff Relevant Mistakes			
	STT	IRR 1	IRR 2	IRR 3	REL 1	REL 2	REL 3	REL 4	
WTT: Weak Truth-Telling	100	90	76	62	61	61	61	61	
Matched w/ favorite feasible sch.	100	100	100	100	96	93	89	85	
Skippers	0	24	53	82	82	82	82	82	
By number of skips:									
11	0	14	31	46	57	61	65	68	
10	0	4	9	14	18	18	16	14	
9	0	3	6	10	7	4	2	1	
8	0	3	5	8	1	0	0	0	
7	0	1	2	3	0	0	0	0	
6	0	0	0	1	0	0	0	0	
5	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	
STT: Strict Truth-telling	100	76	47	18	18	18	18	18	
Reject TT: Hausman Test	5	8	57	100	97	93	90	85	