The Weak lpha-Core of Large Games

Kali P. Rath University of Notre Dame Haomiao Yu Ryerson University

Workshop on Game Theory, IMS, NUS, Singapore

June 5, 2018

Literature

- Aumann and Peleg (1960) introduce the notions of α and β cores for finite-player games. Aumann (1961) explores the issues further.
- ► General existence theorems are proved in Scarf (1967, 1971). (The notion of balancedness is important.)
- Notable contributions since have been many; e.g., Shapley (1973), Border (1982), Ichiishi (1982), Kajii (1992).
- ▶ Weber (1981): weak-core for games with a continuum of player in a characteristic function form.

Literature

- Aumann and Peleg (1960) introduce the notions of α and β cores for finite-player games. Aumann (1961) explores the issues further.
- ► General existence theorems are proved in Scarf (1967, 1971). (The notion of balancedness is important.)
- Notable contributions since have been many; e.g., Shapley (1973), Border (1982), Ichiishi (1982), Kajii (1992).
- ▶ Weber (1981): weak-core for games with a continuum of player in a characteristic function form.
- We consider a large (strategic) game over an atomless probability space of players where a player's payoff (continuously) depends on the choice of own action and the societal action distribution.

- ▶ Nash equilibrium (NE) in a large game: Existence results
 - Finite actions: Schmeidler (1973)
 - Countable actions: Khan and Sun (1995), Yu and Zhang (2007)

- ▶ Nash equilibrium (NE) in a large game: Existence results
 - Finite actions: Schmeidler (1973)
 - Countable actions: Khan and Sun (1995), Yu and Zhang (2007)
 - ▶ But it may fail for uncountable actions: Rath, Sun and Yamashige (1995), Khan, Rath and Sun (1997)
 Positive results with additional assumptions: Khan and Sun (1999), Keisler and Sun (2009), Khan et al. (2013), He, Sun and Sun (2017), He and Sun (2018), etc.

- ▶ Nash equilibrium (NE) in a large game: Existence results
 - Finite actions: Schmeidler (1973)
 - Countable actions: Khan and Sun (1995), Yu and Zhang (2007)
 - ▶ But it may fail for uncountable actions: Rath, Sun and Yamashige (1995), Khan, Rath and Sun (1997)
 Positive results with additional assumptions: Khan and Sun (1999), Keisler and Sun (2009), Khan et al. (2013), He, Sun and Sun (2017), He and Sun (2018), etc.
- ightharpoonup α -core in a large game:
 - Askoura (2011): The non-emptiness of weak α -core is shown by assuming that a player's (quasi-concave) payoff depends only on the societal distribution but does not depend on her own choice.

- ▶ Nash equilibrium (NE) in a large game: Existence results
 - Finite actions: Schmeidler (1973)
 - Countable actions: Khan and Sun (1995), Yu and Zhang (2007)
 - ▶ But it may fail for uncountable actions: Rath, Sun and Yamashige (1995), Khan, Rath and Sun (1997)
 Positive results with additional assumptions: Khan and Sun (1999), Keisler and Sun (2009), Khan et al. (2013), He, Sun and Sun (2017), He and Sun (2018), etc.
- ightharpoonup α -core in a large game:
 - Askoura (2011): The non-emptiness of weak α -core is shown by assuming that a player's (quasi-concave) payoff depends only on the societal distribution but does not depend on her own choice.
 - Askoura(2017), Example 3: Weak α -core is empty for a large game with finite actions if a player's payoff depends on his or her own action.

This Talk

1. We consider

- the relationship among NE, strong NE and the α -core in a large game.
- **b** By assuming two conditions in Konishi *et al.* (1997), we can show that the α -core in a large game is non-empty.

This Talk

- We consider
 - the relationship among NE, strong NE and the α -core in a large game.
 - By assuming two conditions in Konishi *et al.* (1997), we can show that the α -core in a large game is non-empty.
- 2. We also consider

This Talk

We consider

- the relationship among NE, strong NE and the α -core in a large game.
- **b** By assuming two conditions in Konishi *et al.* (1997), we can show that the α -core in a large game is non-empty.

We also consider

- ightharpoonup a weak lpha-core in randomized strategies in a large game,
- We show that under some conditions, the weak α -core in randomized strategies is non-empty.

A large game

- Player space: an atomless probability space (T, T, λ)
- Common action set: A compact metric space A.
 Societal summaries: M(A), the set of probability measures on A endowed with the topology of weak convergence.
- Space of payoff functions: \mathcal{U} , the space of all continuous functions on $A \times \mathcal{M}(A)$ with the sup-norm topology.

A large game

- Player space: an atomless probability space (T, T, λ)
- Common action set: A compact metric space A.
 Societal summaries: M(A), the set of probability measures on A endowed with the topology of weak convergence.
- Space of payoff functions: \mathcal{U} , the space of all continuous functions on $A \times \mathcal{M}(A)$ with the sup-norm topology.
- ▶ A large game is a measurable function $G: T \longrightarrow U$.

A large game

- ▶ Player space: an atomless probability space (T, T, λ)
- Common action set: A compact metric space A.
 Societal summaries: M(A), the set of probability measures on A endowed with the topology of weak convergence.
- Space of payoff functions: \mathcal{U} , the space of all continuous functions on $A \times \mathcal{M}(A)$ with the sup-norm topology.
- ▶ A large game is a measurable function $G: T \longrightarrow U$.
- ▶ A (pure strategy) profile is a measurable function $f: T \longrightarrow A$.

The Notion of α -Core

- ▶ A *coalition* is a measurable subset of *T* with positive measure.
- \triangleright Given a coalition E, B(E,A) denotes the set of measurable functions from E to A.
- ▶ A coalition E blocks a strategy profile f if there is a measurable function $h_E \in B(E, A)$, such that for every $h_{E^c} \in B(E^c, A)$ and $h = (h_E, h_{E^c})$,

$$u_t(h(t), \lambda h^{-1}) > u_t(f(t), \lambda f^{-1})$$
 for almost all $t \in E$,

where we abbreviate G(t) as u_t .

The α -core of the game is the set of profiles that are not blocked by any coalition E.

Nash Equilibrium and Strong Nash Equilibrium

A strategy profile $f \in B(T, A)$ is a (pure-strategy) Nash equilibrium (NE) if

$$u_t(f(t), \lambda f^{-1}) \ge u_t(a, \lambda f^{-1})$$

for all $a \in A$ and almost all $t \in T$.

An NE f^s is a *strong NE* if there does not exist any coalition E and $h_E \in B(E,A)$ such that

$$u_t(h(t), \lambda h^{-1}) > u_t(f, \lambda f^{-1})$$

for almost all $t \in E$ where $h = (h_E, f|_{E^c})$.

Some Observations

In a large game G, it is not hard to show:

Claim

Suppose an NE is not in the α -core. Then it is not a strong NE.

Claim

If f is a strong NE then it is in the α -core.

Some Observations

In a large game G, it is not hard to show:

Claim

Suppose an NE is not in the α -core. Then it is not a strong NE.

Claim

If f is a strong NE then it is in the α -core.

So, once an NE exists in a large game, if we can obtain the existence of strong NE, then we know that α -core is not empty.

A Known Existence Result of NE

Nowhere equivalence (He, Sun and Sun, 2017)

A σ -algebra $\mathcal T$ is said to be nowhere equivalent to a sub- σ -algebra $\mathcal F$ if for every nonnegligible subset $E \in \mathcal T$, there exists an $\mathcal T$ -measurable subset E_0 of E such that $\lambda(E_0\triangle E_1)>0$ for any $E_1\in \mathcal F^E$, where $E_0\triangle E_1$ is the symmetric difference $(E_0\setminus E_1)\cup (E_1\setminus E_0)$.

Proposition 1

There exists an NE in G, provided that

- (i) A is countable, or
- (ii) \mathcal{T} is nowhere equivalent to $\sigma(\mathcal{G})$.

Two Assumptions in Konoshi et al. (1997)

Assumption IIC: Independence of Irrelevant Choices

Given any strategy profile $f \in B(T, A)$, for almost all player $t \in T$, if $\tau \in \mathcal{M}(A)$ such that $\tau(f(t)) = \lambda f^{-1}(f(t))$, then $u_t(f(t), \lambda f^{-1}) = u_t(f(t), \tau)$.

IIC says that a player's payoff depends on her own choice and the proportion of others who choose the same choice.

Two Assumptions in Konoshi et al. (1997)

Assumption IIC: Independence of Irrelevant Choices

Given any strategy profile $f \in B(T, A)$, for almost all player $t \in T$, if $\tau \in \mathcal{M}(A)$ such that $\tau(f(t)) = \lambda f^{-1}(f(t))$, then $u_t(f(t), \lambda f^{-1}) = u_t(f(t), \tau)$.

IIC says that a player's payoff depends on her own choice and the proportion of others who choose the same choice.

Assumption PR: Partial Rivalry

Given any strategy profile $f \in B(T,A)$, for almost all player $t \in T$, if $\tau \in \mathcal{M}(A)$ such that $\tau(f(t)) \leq \lambda f^{-1}(f(t))$, then $u_t(f(t),\lambda f^{-1}) \geq u_t(f(t),\tau)$.

PR says that given a choice, a player's payoff is negatively related to the proportion of others who choose the same alternative.

Two Assumptions in Konoshi et al. (1997)

Assumption IIC: Independence of Irrelevant Choices

Given any strategy profile $f \in B(T, A)$, for almost all player $t \in T$, if $\tau \in \mathcal{M}(A)$ such that $\tau(f(t)) = \lambda f^{-1}(f(t))$, then $u_t(f(t), \lambda f^{-1}) = u_t(f(t), \tau)$.

IIC says that a player's payoff depends on her own choice and the proportion of others who choose the same choice.

Assumption PR: Partial Rivalry

Given any strategy profile $f \in B(T,A)$, for almost all player $t \in T$, if $\tau \in \mathcal{M}(A)$ such that $\tau(f(t)) \leq \lambda f^{-1}(f(t))$, then $u_t(f(t),\lambda f^{-1}) \geq u_t(f(t),\tau)$.

PR says that given a choice, a player's payoff is negatively related to the proportion of others who choose the same alternative.

Examples: Congestion, public goods with negative externalities,

The First Result on α -Core

Proposition 2

Under Assumptions IIC and PR, an NE must be a strong NE in \mathcal{G} .

The First Result on α -Core

Proposition 2

Under Assumptions IIC and PR, an NE must be a strong NE in \mathcal{G} .

Theorem 1

Under Assumptions IIC and PR, the α -core of $\mathcal G$ is not empty if

- (i) A is countable, or
- (ii) \mathcal{T} is nowhere equivalent to $\sigma(\mathcal{G})$.

Randomized Strategies

- A randomized strategy profile is a measurable function $g: T \longrightarrow \mathcal{M}(A)$.
- ▶ When g is played, the expect payoff of player $t \in T$ is

$$U_t(g) = \int_A u_t(a, \int_{s \in T} g(s) d\lambda(s)) dg(t; da).$$

Randomized Strategies

- A randomized strategy profile is a measurable function $g: T \longrightarrow \mathcal{M}(A)$.
- lacktriangle When g is played, the expect payoff of player $t\in \mathcal{T}$ is

$$U_t(g) = \int_A u_t(a, \int_{s \in T} g(s) d\lambda(s)) dg(t; da).$$

Let $B(T, \mathcal{M}(A))$ (the set of all randomized strategy profiles) be endowed with the weak topology which is defined as the weakest topology for which the functional

$$g
ightarrow \int_{\mathcal{T}} \int_{A} c(t,a) g(t;da) d\lambda(t)$$

is continuous for every bounded Caratheodory function $c: T \times A \longrightarrow \mathbb{R}$.

 $ightharpoonup B(T, \mathcal{M}(A))$ is a compact space under the weak topology.

The Notion of Weak α -Core in Randomized Strategies

A coalition E blocks a randomized strategy profile g if there is a $h_E \in B(E, \mathcal{M}(A))$, such that for every $h_{E^c} \in B(E^c, \mathcal{M}(A))$ and $h = (h_E, h_{E^c})$,

$$U_t(h) > U_t(g)$$
 for almost all $t \in E$.

- The α -core in randomized strategies of the game is the set of randomized profiles that are not blocked by any coalition E.
- A coalition E strongly blocks a strategy profile g if there is $\epsilon > 0$ and a $h_E \in B(E, \mathcal{M}(A))$, such that for every $h_{E^c} \in B(E^c, \mathcal{M}(A))$ and $h = (h_E, h_{E^c})$,

$$U_t(h) > U_t(g) + \epsilon$$
 for almost all $t \in E$.

The weak α -core in randomized strategies of \mathcal{G} is the set of profiles that are not strongly blocked by any coalition E.

Assumptions

The following three assumptions are respectively; integrably boundedness, equicontinuity and quasiconcavity.

Assumption 1

The family of functions $\{U_t(g): g \in B(T, \mathcal{M}(A))\}$ is integrably bounded.

Assumption 2

Let $g \in B(T, \mathcal{M}(A))$. If $\epsilon > 0$ then there is an open neighborhood $V(g, \epsilon)$ such that $|U_t(g) - U_t(g')| < \epsilon$ for all $g' \in V(g, \epsilon)$ and $t \in T$.

For a coalition E and $g \in B(T, \mathcal{M}(A))$, let $z(E, g) = \int_E U_t(g) d\lambda$.

Assumption 3

For every coalition E, $z(E, \cdot)$ is quasiconcave.

Theorem 2

Under Assumptions 1-3, the weak α -core in randomized strategies of a large game $\mathcal G$ is nonempty.

Theorem 2

Under Assumptions 1-3, the weak α -core in randomized strategies of a large game $\mathcal G$ is nonempty.

For a coalition E, let $\mathcal{H}(E) = \{g \in \mathcal{B}(T, \mathcal{M}(A)) : g \text{ is not strongly blocked by } E\}$. The proof consists of two lemmas.

Theorem 2

Under Assumptions 1-3, the weak α -core in randomized strategies of a large game $\mathcal G$ is nonempty.

For a coalition E, let $\mathcal{H}(E) = \{g \in \mathcal{B}(T, \mathcal{M}(A)) : g \text{ is not strongly blocked by } E\}$. The proof consists of two lemmas.

Lemma A

For every coalition E, $\mathcal{H}(E)$ is a nonempty, closed (and hence compact) subset of $B(T, \mathcal{M}(A))$.

Theorem 2

Under Assumptions 1-3, the weak α -core in randomized strategies of a large game $\mathcal G$ is nonempty.

For a coalition E, let $\mathcal{H}(E) = \{g \in \mathcal{B}(T, \mathcal{M}(A)) : g \text{ is not strongly blocked by } E\}$. The proof consists of two lemmas.

Lemma A

For every coalition E, $\mathcal{H}(E)$ is a nonempty, closed (and hence compact) subset of $B(T, \mathcal{M}(A))$.

Lemma B

Let E_i , $i \in I$ be a finite collection of coalitions. Then $\cap_{i \in I} \mathcal{H}(E_i)$ is nonempty.

Proof of Lemma A

$$\mathcal{H}(E) = \{g \in B(T, \mathcal{M}(A)) : g \text{ is not strongly blocked by } E\}.$$

- ▶ $\mathcal{H}(E) \neq \emptyset$. The function $z(E, \cdot) = \int_E U_t(\cdot) d\lambda(t)$ is continuous. Since $B(T, \mathcal{M}(A))$ is compact, $z(E, \cdot)$ attains its maximum, say at g^* . The coalition E cannot strongly block the strategy profile g^* and $g^* \in \mathcal{H}(E)$.
- ▶ If E strongly blocks g then there exist $\epsilon > 0$ and $h_E \in B(E, \mathcal{M}(A))$, such that for every $h_{E^c} \in B(E^c, \mathcal{M}(A))$ and $h = (h_E, h_E^c)$,

$$U_t(h) > U_t(g) + \epsilon$$
 for almost all $t \in E$.

By Assumption 2, given $\epsilon/2>0$, there is an open neighborhood $V(g,\epsilon/2)$ of f such that if $g'\in V(g,\epsilon/2)$ then $|U_t(g)-U_t(g')|<\epsilon/2$ for all $t\in T$.

For almost all $t \in E$,

$$U_t(g') + (\epsilon/2) < U_t(g) + \epsilon < U_t(h).$$

This means the coalition E strongly blocks every profile $g' \in V(g, \epsilon/2)$. Thus, the complement of $\mathcal{H}(E)$ is open and $\mathcal{H}(E)$ is closed.

Outline of Proof of Lemma B

If I is a finite set then $\bigcap_{i\in I}\mathcal{H}(E_i)\neq\emptyset$.

- ▶ Let $\{E_i\}_{i\in I}$ be a finite family of coalitions such that $\bigcup_{i\in I} E_i = T$.
- Let $\{K_j\}_{j\in J}$ be a finite family of pairwise disjoint elements of \mathcal{T} such that $\mu(K_j) > 0$ for all j and each E_i is a union of some of the K_j s.
- ▶ For $B \subseteq J$, define $K_B = \bigcup_{j \in B} K_j$. If $B \subset J$ then K_{B^c} is nonempty and automatically defined as $T \setminus (\bigcup_{j \in B} K_j)$.
- ▶ For $B \subseteq J$, define a subset V(B) of \mathbb{R}^J as follows.

$$V(B) = \{ v \in \mathbb{R}^J : \exists \ h_{K_B} \ ext{such that} \ orall \ h_{K_{B^c}} \ ext{and} \ h = (h_{K_B}, h_{K_{B^c}}), \ z(K_j, h) \ge v_j, \ orall j \in B \}.$$

Note that if $j \notin B$ then $v_j \in V(B)$ can be any number in \mathbb{R} .

- ► The following properties hold:
 - (1) For every $B \subseteq J$, V(B) is nonempty and closed.
 - (2) For every $B \subseteq J$, if $v \in V(B)$ and $v' \le v$ then $v' \in V(B)$.
 - (3) V(J) is bounded from above.
 - (4) J is balanced. (By Assumption 3)

Proof of Lemma 2, contd.

- Scarf' theorem: The core of G = (J, V) is nonempty. (If v is in the core then v is not in the interior of V(B) for any $B \subseteq J$.)
- If the core of G = (J, V) is not empty, then $\bigcap_{i \in I} \mathcal{H}(E_i) \neq \emptyset$.
- Let v be in the core of G = (J, V). Let $g : T \longrightarrow \mathcal{M}(A)$ such that $z(K_j, g) \ge v_j$ for all $j \in J$.
- Fix an arbitrary index $i \in I$. E_i is a finite union of some sets K_j , $j \in J$. Let $E_i = \bigcup_{j \in J_i} K_j$ where $J_i \subseteq J$.
- ▶ Since v is not in the interior of $V(J_i)$, for every h_{E_i} , there exists $h_{E_i^c}$ and an index $j \in J_i$ such that for $h = (h_{E_i}, h_{E_i^c})$,

$$z(K_j,h) \leq v_j \leq z(K_j,g).$$

- ▶ Thus, for any h_{E_i} , there exists $h_{E_i^c}$ and a subset D_i of E_i of positive measure such that $u_t(h) \leq U_t(g)$ for all $t \in D_i$.
- ▶ This shows that $g \in \bigcap_{i \in I} \mathcal{H}(E_i)$ and completes the proof.

Weak α -Core in Pure Strategies?

- We have proved the existence of a randomized strategy profile in the weak α -core. Does the core contain a pure strategy profile?
 - Purification (in progress)
 - 1. A is countable: Use the DWW theorem.
 - A is uncountable: assume the no-where equivalence conditions.

- ▶ The player space is T = [0, 1] and λ denotes Lebesgue measure.
- The set of Nash equilibria is a proper subset of the core.
- ▶ Let $A = \{a_1, a_2\}$. For any $\eta \in \mathcal{M}(A)$, let

$$u(a_1, \eta) = \frac{1}{2},$$
 $u(a_2, \eta) = 1 - \eta(a_2).$

For each $t \in T$, let $u_t = u$.

- f is a Nash equilibrium of this game iff $\lambda \circ f^{-1}(a_2) = 1/2$.
- Since the payoff function is the same for all the players, the weak α -core and the α -core are the same.
- ▶ We will show that the α-core of this game is any f such that $\lambda \circ f^{-1}(a_2) \le 1/2$.

(Thus, the set of Nash equilibria is contained in the α -core.)

Example 1: Blocked Profiles

- If $\lambda \circ f^{-1}(a_2) > 1/2$ then f is not in the core.
- ▶ Let $E \subseteq \{t \in T : f(t) = a_2\}$ such that $\lambda(E) > 0$.
- For any $t \in E$,

$$u_t(f(t), \lambda \circ f^{-1}) = 1 - \lambda \circ f^{-1}(a_2) < \frac{1}{2}.$$

▶ Let $h_E(t) = a_1$ for any $t \in E$. Then for any h_{E^c} and $h = (h_E, h_{E^c})$,

$$u_t(h(t), \lambda \circ h^{-1}) = \frac{1}{2} \text{ for } t \in E.$$

► So, the coalition *E* blocks *f*.

Example 1: Unblocked Profiles

- Now consider any f such that $\lambda \circ f^{-1}(a_2) \le 1/2$. We will show that it is in the core.
- Suppose there is a coalition E which blocks f. Let h_E be the function on E such that for any function h_{E^c} on E^c and $h = (h_E, h_{E^c})$,

$$u_t(h(t), \lambda \circ h^{-1}) > u_t(f(t), \lambda \circ f^{-1}).$$

Consider

$$S_{ij} = \{t \in E : f(t) = a_i \text{ and } h(t) = a_j, i, j = 1, 2\}.$$

- ▶ If $t \in S_{11}$ then $u_t(h(t), \lambda \circ h^{-1}) = u_t(f(t), \lambda \circ f^{-1}) = 1/2$, a contradiction. So, $\lambda(S_{11}) = 0$.
- ▶ If $t \in S_{21}$ then $u_t(f(t), \lambda \circ f^{-1}) = 1 \lambda \circ f^{-1}(a_2) \ge 1/2$ and $u_t(h(t), \lambda \circ h^{-1}) = 1/2$, again a contradiction. So, $\lambda(S_{21}) = 0$.
- ► Thus, $E = S_{12} \cup S_{22}$.

Example 1: Unblocked Profiles, contd.

We have

$$S_{ij} = \{t \in E : f(t) = a_i \text{ and } h(t) = a_j, \ i, j = 1, 2\}, \qquad E = S_{12} \cup S_{22}.$$

- ▶ If $t \in S_{12}$ then $u_t(f(t), \lambda \circ f^{-1}) = 1/2$. If $t \in S_{22}$ then $u_t(f(t), \lambda \circ f^{-1}) = 1 - \lambda \circ f^{-1}(a_2) \ge 1/2$.
- ► Let $h_{E^c}(t) = a_2$. Then $\lambda \circ h^{-1}(a_2) = 1$.
- ► For any $t \in E$, $u_t(h(t), \lambda \circ h^{-1}) = 1 \lambda \circ h^{-1}(a_2) = 0$. This is a contradiction.
- So, no coalition can block f and any f with $\lambda \circ f^{-1}(a_2) \leq 1/2$ is in the α -core.

- In this example the weak α -core does not contain any Nash equilibrium.
- ▶ Let $A = \{a_1, a_2, a_3\}$, $M_t = \max\{1/10, t\}$ and $m_t = \min\{9/10, t\}$. For $t \in T$ define

$$\begin{array}{rcl} u_t(a_1,\eta) & = & 2[1-\eta(a_2)]M_t \\ \\ u_t(a_2,\eta) & = & 1-\eta(a_2) \\ \\ u_t(a_3,\eta) & = & 3[\eta(a_1)-\eta(a_2)](1-m_t) \end{array}$$

- ▶ This game has two Nash equilibria f_1 and f_2 where:
 - $ightharpoonup (1) f_1(t) = a_1 \text{ if } t > 1/2 \text{ and } f_1(t) = a_2 \text{ if } t \le 1/2 \text{ and } t = 1/2 \text{$
 - ▶ (2) $f_2(t) = a_2$ for all t.
- None of the Nash equilibrium is in the weak α -core.

Example 2: Nash Equilibria

Payoff Functions:

$$u_t(a_1, \eta) = 2[1 - \eta(a_2)]M_t$$

$$u_t(a_2, \eta) = 1 - \eta(a_2)$$

$$u_t(a_3, \eta) = 3[\eta(a_1) - \eta(a_2)](1 - m_t)$$

Nash Equilibria:

(1)
$$f_1(t) = a_1 \text{ if } t > 1/2$$

 $f_1(t) = a_2 \text{ if } t \le 1/2.$
(2) $f_2(t) = a_2 \text{ for all } t.$

- Observation: If $\eta(a_2) < 1$ then for any t > 1/2, $u_t(a_1, \eta) > u_t(a_2, \eta)$ and for t < 1/2, $u_t(a_2, \eta) > u_t(a_1, \eta)$.
- ▶ (1) If $\eta = \lambda \circ (f_1)^{-1}$ then $\eta(a_1) = \eta(a_2) = 1/2$. The payoffs from a_3 is zero and from a_1 and a_2 are positive for all t. a_1 is the BR for t > 1/2 and a_2 is the BR for t < 1/2. So, f_1 is an NE.
- (2) If $f_2(t) = a_2$ and $\eta = \lambda \circ (f_2)^{-1}$ then $\eta(a_2) = 1$. For all t, the payoffs from a_1 and a_2 are zero and from a_3 is negative. So, a_2 is a BR for $t \in [0,1]$ and f_2 is an NE.
- ► The arguments to show that these are the only NE are omitted.

Example 2: No Nash Equilibrium in the Weak α -Core

Payoff Functions:

 $u_t(a_1, \eta) = 2[1 - \eta(a_2)]M_t$

Nash Equilibria:

$$u_t(a_2, \eta) = 1 - \eta(a_2)$$

 $u_t(a_3, \eta) = 3[\eta(a_1) - \eta(a_2)](1 - m_t)$

(1)
$$f_1(t) = a_1 \text{ if } t > 1/2$$

 $f_1(t) = a_2 \text{ if } t \le 1/2.$
(2) $f_2(t) = a_2 \text{ for all } t.$

At f_2 the payoff to each player is zero.

At f_1 , the payoff is t if t > 1/2 and the payoff is 1/2 if t < 1/2. So, $u_t(f_1(t), \lambda \circ (f_1)^{-1}) > u_t(f_2(t), \lambda \circ (f_2)^{-1}) + (1/2)$ for all t. So, f_2 is not in the weak core.

- At f_1 the payoff is t if t > 1/2 and the payoff is 1/2 if $t \le 1/2$.
 - ▶ Let $h(t) = a_1 = f_1(t)$ if t > 1/2 and $h(t) = a_3$ if t < 1/2.
 - If $\rho = \lambda \circ h^{-1}$ then $\rho(a_1) = 1/2$ and $\rho(a_2) = 0$.
 - ▶ The payoff at h is 2t if t > 1/2 and $(3/2)(1-t) \ge 3/4$ if $t \le 1/2$.
 - $u_t(h(t), \lambda \circ h^{-1}) > u_t(f_1(t), \lambda \circ (f_1)^{-1}) + (1/4)$ for almost all t.

So, f_1 is not in the weak α -core.

Example 2: A α -Core Profile

Payoff Functions:

A alpha-Core Profile:

$$u_t(a_1, \eta) = 2[1 - \eta(a_2)]M_t$$

 $u_t(a_2, \eta) = 1 - \eta(a_2)$
 $u_t(a_3, \eta) = 3[\eta(a_1) - \eta(a_2)](1 - m_t)$

$$f(t) = a_1 \text{ if } t > 1/2$$

 $f(t) = a_3 \text{ if } t \le 1/2.$

- If $\eta = \lambda \circ f^{-1}$ then $\eta(a_1) = \eta(a_3) = 1/2$ and $\eta(a_2) = 0$. t > 1/2: $u_t(a_1, \eta) = 2t > 1$. $t \le 1/2$: $u_t(a_3, \eta) = (3/2)(1 - t) \ge 3/4$.
- f is not an NE because at t = 1/2, $u_t(a_3, \eta) = 3/4 < 1 = u_t(a_2, \eta)$.
- Suppose a coalition *E* blocks *f*. Let $h = (h_E, h_{E^c})$ and $\rho = \lambda \circ h^{-1}$.
- ▶ Let t > 1/2. Then $u_t(a_2, \rho) \le u_t(a_1, \rho) \le u_t(a_1, \eta)$.
 - ▶ If $t \ge 2/3$ then $1 m_t \le 1/3$ and $u_t(a_3, \rho) \le 1$. $\lambda(E \cap [2/3, 1]) = 0$.
 - Let $h(t) = a_2$ on [2/3,1]. Then $\rho(a_1) \rho(a_2) \le 1/3$ and $u_t(a_3, \rho) \le 1$ if $t \in (1/2, 2/3)$. $\lambda(E \cap (1/2, 2/3)) = 0$.
- ▶ Let $t \le 1/2$. Assume that $h(t) = a_2$ if t > 1/2. Then $u_t(a_1, \rho) \le u_t(a_2, \rho) \le 1/2$ and $u_t(a_3, \rho) \le 0$. $\lambda(E \cap [0, 1/2]) = 0$.

Payoff Functions:

$$u_t(a_1, \eta) = \eta(a_1) - \eta(a_3)$$

 $u_t(a_2, \eta) = 0$
 $u_t(a_3, \eta) = -2$

Nash Equilibria:

- (1) $f_1(t) = a_1$ for all t.
- (2) $f_2(t) = a_2$ for all t.

 f_1 is in the core but not f_2 .

- If $\eta = \lambda \circ (f_1)^{-1}$ then $\eta(a_1) = 1$ and $\eta(a_2) = \eta(a_3) = 0$. a_1 is the unique BR for $t \in [0,1]$. So, f_1 is an NE.
- (2) If $\eta = \lambda \circ (f_2)^{-1}$ then $\eta(a_2) = 1$ and $\eta(a_1) = \eta(a_3) = 0$. So, a_2 is a best response for $t \in [0,1]$ and f_2 is an NE.
- ► Conversely suppose that f is an NE and $\eta = \lambda \circ (f_1)^{-1}$.
 - ▶ If $\eta(a_1) > \eta(a_3)$ then $u_t(a_1, \eta) > u_t(a_i, \eta)$ for i = 2, 3. So, $f = f_1$.
 - If $\eta(a_1) \le \eta(a_3)$ then $u_t(a_2, \eta) = u_t(a_1, \eta) > u_t(a_3, \eta)$. So, $\eta(a_3) = 0$ which implies that $\eta(a_1) = 0$. Thus, $f = f_2$.
- ▶ The payoff to every player from f_1 is 1, which is the highest payoff in the game. So, no coalition can block it and f_1 is in the core.
- The payoff is zero to every player from f_2 . So, the all member coalition can strongly block f_2 (via f_1) and f_2 is not in the weak core.

- The core is a proper subset of the set of NE.
- Let $A = \{a_1, a_2\}$ and $u(a_i, \eta) = \eta(a_1)$ for i = 1, 2. For all $t \in [0, 1]$, let $u_t = u$.
- Each player has the same payoff function and the payoff depends only on the measure.
 - So, every measure (or the corresponding strategy profile) is an NE.
- We will show that $f(t) = a_1$ for all t is the only core profile.
- Let $\eta = \lambda \circ f^{-1}$. Then $\eta(a_1) = 1$ and the payoff is 1 to each. This is the highest payoff in the game. So, no coalition can block it and f_1 is in the core.
- Let h be any strategy profile, $\rho = \lambda \circ h^{-1}$ and $\rho(a_1) < 1$. Then the payoff to each player is $\rho(a_1) < 1$. The all member coalition strongly blocks h.
- So, f is the unique core allocation and the core is a proper subset of the set of NE.

- The core and set of NE are identical.
- ► Let $A = \{a_1, a_2\}$ and $u_t(a_1, \eta) = \eta(a_1)$, $u_t(a_2, \eta) = \eta(a_1) 1$.
- Let $f^*(t) = a_1$ for each t and $\eta^* = \lambda \circ (f^*)^{-1}$. Then $\eta^*(a_1) = 1$ and $\eta^*(a_2) = 0$. $u_t(a_1, \eta^*) = 1$ and $u_t(a_2, \eta^*) = 0$. So, f^* is an NE.
- Conversely, suppose that f is an NE. Then

$$u_t(a_1, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1), \qquad u_t(a_2, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1) - 1.$$

So, $f(t) = a_1$ for almost all t. Thus f^* is the unique NE.

- f* is in the core. The payoff to t at f* is 1 and a player never gets more than 1. So, no coalition can block f*.
- Let f be any profile such that $\lambda \circ f^{-1}(a_2) > 0$. The payoffs are: $u_t(a_1, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1) < 1$, $u_t(a_2, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1) 1 < 0$.

The all member coalition strongly blocks f (via f^*).

▶ This shows that the unique NE f^* is in the unique element of the core.

