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Motivation

▸ Most of the dynamic mechanism design literature focuses on

the “truthtelling” equilibrium (e.g. Bergemann and Välimäki

(2010), Athey and Segal (2013)).

▸ Agents have more opportunities to coordinate or collude in

dynamic settings.

▸ Propose a framework to address the possibility of collusion in

dynamic mechanisms.

▸ Main question: Which dynamic mechanisms are immune to

collusion?

▸ Define collusion-proofness in dynamic settings.

▸ Construct collusion-proof dynamic mechanisms.

▸ Characterize collusion-proofness in stationary settings.
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Model: IPV w/ transfers

▸ Time: t = 1,2, . . . ,T (T ≤ ∞).

▸ Agents: i ∈ {1,2, . . . ,N} = N . N ≥ 2.

▸ Private type: ∀t ≥ 1, θit ∈ Θi . θt ≜ (θ1
t , . . . , θ

N
t ) ∈ ∏i Θi ≜ Θ.

▸ Allocations: at ∈ A.

▸ Flow payoff: ui(at , θ
i
t) − pit . (“private values”)

▸ Discounted payoff:

E {∑
t≥1

δt−1 [ui(at , θ
i
t) − pit]} .

▸ Common prior: µi1(⋅) ∈ ∆(Θi). (“independence”)

▸ Markov transition: µi(⋅ ∣at−1, θ
i
t−1) ∈ ∆(Θi).



Dynamic Mechanisms

To simplify notations, consider public mechanisms where all the

past reported types are public to all agents.

A dynamic mechanism is M = (at ,pt)t≥1 where ∀t ≥ 1,

▸ allocations: at ∶ Θt−1 ×At−1 ×Θ→∆(A)

▸ transfers: pt = (pit)i∈N with pit ∶ Θt−1 ×At−1 ×Θ→ R

Given M, a strategy σi = (σit)t≥1 of agent i is

σit ∶ Θt−1
×At−1

×Θi t
→∆(Θi

).

Agent i ’s expected payoff under M and strategy profile σ = (σi) is

EM,µ,σ [∑
t≥1

δt−1 (ui(ãt , θ̃
i
t) − p̃it)] .
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IC, IR, & BB

Truthtelling strategy σi∗ = (σi∗t )t≥1: ∀t, θt−1, at−1, θit ,

σi∗t (θt−1, at−1, θit) = 1{θit}.

▸ per-period interim IC (IC): truthtelling is a wPBE

▸ per-period ex post IC (epIC): per-period ex post eq.

▸ ex ante IR (IR0): ex ante payoff under truthtelling ≥ Ū i

▸ per-period interim IR (IR): interim payoff ≥ Ū i(θit)

▸ per-period ex post IR (epIR): ex post payoff ≥ Ū i(θt)

▸ ex post budget balance (BB): ∑i p
i
t = 0, ∀t ≥ 1
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Efficiency
An allocation a∗ = (a∗t ) w/ a∗t ∶ Θ→∆(A) is efficient if it solves

max
(at)

E [∑
t≥1

δt−1
∑
i∈N

ui(at(θ̃t), θ̃
i
t)]

An allocation āt ∶ Θ→∆(A) is incentive efficient if

E [∑
t≥1

δt−1
∑
i∈N

ui(āt(θ̃t), θ̃
i
t)] ≥ E [∑

t≥1

δt−1
∑
i∈N

ui(āt(γt(θ̃t , θ̃
t−1, ãt−1

)), θ̃it)] ,

for all γ = (γt)t≥1 where γt ∶ Θ ×Θt−1 ×At−1 →∆(Θ).

A mechanism (ā,p) is incentive efficient if ∀γ,

E [∑
t≥1

δt−1
∑
i∈N

(ui(āt(θ̃t), θ̃
i
t) − pit(θ̃

t−1, ãt−1, θ̃t))]

≥ E [∑
t≥1

δt−1
∑
i∈N

(ui(āt(γt(θ̃t), θ̃
i
t) − pit(θ̃

t−1, ãt−1, γt(θ̃t))]
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)), θ̃it)] ,

for all γ = (γt)t≥1 where γt ∶ Θ ×Θt−1 ×At−1 →∆(Θ).
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Modeling Collusion

Given a dynamic mechanism M, a mediator can coordinate

collusion among (subgroups of) agents: ∀t

▸ collect reports from agents then jointly report to the designer

▸ make balanced transfers among agents

Formally, M induces a dynamic game GM among agents with

outside options. Given GM , a collusion scheme (among all agents)

Γ = (γ,q) is a mediated game (or mechanism)

▸ γ = (γt)t≥1, γt ∶ Θ ×Θt−1 ×At−1 →∆(Θ)

▸ q = (qit)i ,t , q
i
t ∶ Θ ×Θt−1 ×At−1 → R & ∑i q

i
t = 0.

Given M & Γ, agents play GMΓ (with outside options).

Focus on all IC (& IR) Γ’s.
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Collusion-Proofness

A dynamic mechanism M is collusion-proof if the expected payoffs

of all agents under all IC Γ’s are the same as the expected payoffs

in M under truthtelling.

Collusion-proofness: the set of equilibrium payoff vectors under

mediation in GM is a singleton, which equals the payoff vector

from truthtelling in GM .

Collusion-proofness is defined without referring to IR.

▸ can define IR w.r.t. GM or outside option

▸ beliefs after rejecting a collusion scheme
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Remarks

The dynamic pivot mechanism (Bergemann & Välimäki, 2010) is

not collusion-proof.

The balanced-team mechanism (Athey & Segal, 2013) is

collusion-proof when N = 2 but not when N ≥ 3.

A mechanism with a constant allocation rule is collusion-proof.



Results

⋆ incentive efficiency ⇒ collusion-proofness

Proposition 1

If ā is incentive efficient, then ∃ a BB transfer p s.t. (ā,p) is IC &

collusion-proof.



Sketch of Proof: i.i.d. case

Bound the minmax payoff under truthtelling: ∀σ−i

E [ui(ā(θ̃i , σ−i(θ̃
−i
)), θ̃i) − pi(θ̃i , σ−i(θ̃

−i
))] ≥ E [ui(ā(θ̃i , θ̃−i), θ̃i)]

⇒

E [pi(θ̃i , σ−i(θ̃
−i
))] ≤ E [ui(ā(θ̃i , σ−i(θ̃

−i
)), θ̃i) − ui(ā(θ̃i , θ̃−i), θ̃i)]

+∑
j≠i

E [E θ̃i [u
j
(ā(θ̃i , σ−i(θ̃

−i
)), σj(θ̃

j
))] − uj(ā(θ̃i , σ−i(θ̃

−i
), σj(θ̃

j
))]
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=0
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Sketch of Proof: i.i.d. case

N = 2:
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into (e.g. −i = {j , k})
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Sketch of Proof: i.i.d. case
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Sketch of Proof: I

Proposition 1

ā incentive efficient ⇒ ∃ BB transfer p s.t. (ā,p) is IC &

collusion-proof.

Define

V i
ā = E [∑

t≥1

δt−1ui(ā(θ̃t), θ̃
i
t)]

V i
ā(θt) = ui(ā(θt), θ

i
t) + δE [V i

(θ̃t+1; ā)∣ā(θt), θt]

Aim: For each i , agent i can guarantee an ex ante expected payoff

V i
ā + κi by truthtelling, regardless of others’ strategies, where

∑i κi = 0.

The sum of “minmax” payoffs is at least ∑i V
i
ā in GM .



Sketch of Proof: II
Fix any order of agents, wlog, 1 ≻ ⋯ ≻ N.

The change in agent j ’s expected continuation payoff caused by

agent i ’s report:

ψij
t (θ̂t , θ̂t−1) = E [V j

ā(θ̂
1
t , . . . , θ̂

i−1
t , θ̂it , θ̃

i+1
t , . . . , θ̃Nt )∣ā(θ̂t−1), θ̂t−1]

−E [V j
ā(θ̂

1
t , . . . , θ̂

i−1
t , θ̃it , θ̃

i+1
t , . . . , θ̃Nt )∣ā(θ̂t−1), θ̂t−1]

Define the BB transfer as

pit(θ̂t , θ̂t−1) = −∑
j≠i

[ψij
t (θ̂t , θ̂t−1) − ψ

ji
t (θ̂t , θ̂t−1)] − 1{t=1} ⋅ κi .

∀t, agent i

▸ pays j the change in i ’s expected continuation payoff caused

by j ’s report

▸ is paid by j the change in j ’s expected continuation payoff

caused by i ’s report
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Sketch of Proof: III

For simplicity, consider a two-period & two-agent (i ≻ j) setting.

Given (ā,p), suppose agent i always reports truthfully. ∀σj ,

▸ ∀t, j ’s expected payment to i , E [ψij
t ] = 0. (independence)

▸ i ’s expected payoff from allocations (E : prior)

ui(ā(θ̃i1, σ
j
(θ̃j1)), θ̃

i
1)+δE [ui(ā(θ̃i2, σ

j
(θ̃1, θ̃

j
2)), θ̃

i
2)∣ā(θ̃

i
1, σ

j
(θ̃j1)), θ̃1]

In t = 2, i pays j (δE [⋅∣ā(θ̃i1, σ
j(θ̃j1)), θ̃1])

−ui(ā(θ̃i2, σ
j
(θ̃1, θ̃

j
2)), θ̃

i
2)+E θ̃j2

[ui(ā(θ̃i2, θ̃
j
2), θ̃

i
2)∣ā(θ̃

i
1, σ

j
(θ̃j1)), θ̃

i
1, σ

j
(θ̃j1)]

In t = 1, i pays j (E : prior)

−ui(ā(θ̃i1, σ
j
(θ̃j1)), θ̃

i
1)−δE [ui(ā(θ̃i2, θ̃

j
2), θ̃

i
2)∣ā(θ̃

i
1, σ

j
(θ̃j1)), θ̃

i
1, σ

j
(θ̃j1)]

+E
θ̃j1

[ui(ā(θ̃i1, θ̃
j
1), θ̃

i
1) + δE [ui(ā(θ̃i2, θ̃

j
2), θ̃

i
2)∣ā(θ̃

i
1, θ̃

j
1), θ̃

i
1, θ̃

j
1]]
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Sketch of Proof: IV

Summing up and canceling terms, i ’s ex ante expected payoff is

E θ̃1
[E

θ̃j1
[ui(ā(θ̃i1, θ̃

j
1), θ̃

i
1) + δE [ui(ā(θ̃i2, θ̃

j
2), θ̃

i
2)∣ā(θ̃

i
1, θ̃

j
1), θ̃

i
1, θ̃

j
1]]]

= V i
ā .

Similarly, j ’s ex ante expected payoff is V j
ā (despite i ≻ j).

By incentive efficiency of ā, the sum is V i
ā +V j

ā the maximum ex

ante expected payoff.

▸ The argument extends to arbitrary T and N.

▸ When N ≥ 3, possible joint deviations.

▸ The order ≻ takes care of this possibility.

▸ The order can be history-dependent too.

▸ (ā,p) is also IC. (similar to Athey & Segal (2013))



Sketch of Proof: IV
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▸ When N ≥ 3, possible joint deviations.
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▸ (ā,p) is also IC. (similar to Athey & Segal (2013))



Results

Corollary 1

If a mechanism (ā,p) is incentive efficient, then ∃ another

collusion-proof & IC mechanism (ā,q).

Proposition 2

Suppose µi is ergodic under any allocation rule. If ā is incentive

efficient & strict IR0 under null transfers, then ∃δ̄ ∈ (0,1) s.t.

∀δ ∈ (δ̄,1), ∃ a BB transfer p such that the mechanism (ā,p) is

collusion-proof, IC & IR.



Results

Corollary 1
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collusion-proof & IC mechanism (ā,q).

Proposition 2

Suppose µi is ergodic under any allocation rule. If ā is incentive

efficient & strict IR0 under null transfers, then ∃δ̄ ∈ (0,1) s.t.
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Adding IR

▸ If (ā,0) is strictly IR0, so is (ā,p).

▸ Under ergodicity and patience, private information in any

period has a vanishing impact on total expected payoffs,

which implies (ā,p) is IR.



Results

collusion-proofness ⇒ incentive efficiency

Proposition 3

Suppose µi is ergodic under any allocation rule. ∀ IC & BB

mechanism (ā,p) where ā is not incentive efficient, ∃δ̄ ∈ (0,1) s.t.

∀δ ∈ (δ̄,1), (ā,p) is not collusion-proof.



Conversely

Suppose ā is not incentive efficient.

▸ If M = (ā,q) is IC and BB, under ergodicity and patience,

construct a collusive (and efficient) equilibrium in GM .

▸ Similar construction if M = (ā,q) is IC and IR.



Extensions

▸ Optimal collusion-proof dynamic mechanisms.

▸ Property rights in the presence of collusion.

▸ Collusion with limited transfers.

▸ Collusion with correlated information.
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(2010), Athey and Segal (2013), Skrzypacz and Toikka (2015)

▸ Optimal dynamic mechanisms: Pavan, Segal and Toikka

(2014), Pavan (2016), Bergemann and Välimäki (2017)
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