Collusion-Proof Dynamic Mechanisms

Heng Liu
University of Michigan

July 10, 2018

IMS, Dynamic Models in Economics
NUS

Motivation

- Most of the dynamic mechanism design literature focuses on the "truthtelling" equilibrium (e.g. Bergemann and Välimäki (2010), Athey and Segal (2013)).

Motivation

- Most of the dynamic mechanism design literature focuses on the "truthtelling" equilibrium (e.g. Bergemann and Välimäki (2010), Athey and Segal (2013)).
- Agents have more opportunities to coordinate or collude in dynamic settings.

Motivation

- Most of the dynamic mechanism design literature focuses on the "truthtelling" equilibrium (e.g. Bergemann and Välimäki (2010), Athey and Segal (2013)).
- Agents have more opportunities to coordinate or collude in dynamic settings.
- Propose a framework to address the possibility of collusion in dynamic mechanisms.
- Main question: Which dynamic mechanisms are immune to collusion?

Motivation

- Most of the dynamic mechanism design literature focuses on the "truthtelling" equilibrium (e.g. Bergemann and Välimäki (2010), Athey and Segal (2013)).
- Agents have more opportunities to coordinate or collude in dynamic settings.
- Propose a framework to address the possibility of collusion in dynamic mechanisms.
- Main question: Which dynamic mechanisms are immune to collusion?
- Define collusion-proofness in dynamic settings.
- Construct collusion-proof dynamic mechanisms.
- Characterize collusion-proofness in stationary settings.

Related Literature

- Collusion-proof static mechanisms: Laffont and Martimort (1997, 2000), Che and Kim (2006), Safronov (2017)
- Efficient dynamic mechanisms: Bergemann and Välimäki (2010), Athey and Segal (2013), Skrzypacz and Toikka (2015)
- Optimal dynamic mechanisms: Pavan, Segal and Toikka (2014), Pavan (2016), Bergemann and Välimäki (2017)
- Collusion with persistence private info.: Athey and Bagwell (2001, 2008), Miller (2012)
- Repeated implementation: Jackson and Sonnenschein (2007), Lee and Sabourian (2009, 2013), Renou and Mezzetti (2017), Renou and Tomala (2015), Chassang and Ortner (2015)

Model: IPV w/ transfers

- Time: $t=1,2, \ldots, T(T \leq \infty)$.
- Agents: $i \in\{1,2, \ldots, N\}=\mathcal{N} . N \geq 2$.
- Private type: $\forall t \geq 1, \theta_{t}^{i} \in \Theta^{i} . \theta_{t} \triangleq\left(\theta_{t}^{1}, \ldots, \theta_{t}^{N}\right) \in \Pi_{i} \Theta^{i} \triangleq \Theta$.
- Allocations: $a_{t} \in A$.
- Flow payoff: $u^{i}\left(a_{t}, \theta_{t}^{i}\right)-p_{t}^{i}$. ("private values")
- Discounted payoff:

$$
\mathbb{E}\left\{\sum_{t \geq 1} \delta^{t-1}\left[u^{i}\left(a_{t}, \theta_{t}^{i}\right)-p_{t}^{i}\right]\right\}
$$

- Common prior: $\mu_{1}^{i}(\cdot) \in \Delta\left(\Theta^{i}\right)$. ("independence")
- Markov transition: $\mu^{i}\left(\cdot \mid a_{t-1}, \theta_{t-1}^{i}\right) \in \Delta\left(\Theta^{i}\right)$.

Dynamic Mechanisms

To simplify notations, consider public mechanisms where all the past reported types are public to all agents.

A dynamic mechanism is $M=\left(a_{t}, p_{t}\right)_{t \geq 1}$ where $\forall t \geq 1$,

- allocations: $a_{t}: \Theta^{t-1} \times A^{t-1} \times \Theta \rightarrow \Delta(A)$
- transfers: $p_{t}=\left(p_{t}^{i}\right)_{i \in \mathcal{N}}$ with $p_{t}^{i}: \Theta^{t-1} \times A^{t-1} \times \Theta \rightarrow \mathbb{R}$

Dynamic Mechanisms

To simplify notations, consider public mechanisms where all the past reported types are public to all agents.

A dynamic mechanism is $M=\left(a_{t}, p_{t}\right)_{t \geq 1}$ where $\forall t \geq 1$,

- allocations: $a_{t}: \Theta^{t-1} \times A^{t-1} \times \Theta \rightarrow \Delta(A)$
- transfers: $p_{t}=\left(p_{t}^{i}\right)_{i \in \mathcal{N}}$ with $p_{t}^{i}: \Theta^{t-1} \times A^{t-1} \times \Theta \rightarrow \mathbb{R}$

Given M, a strategy $\sigma^{i}=\left(\sigma_{t}^{i}\right)_{t \geq 1}$ of agent i is

$$
\sigma_{t}^{i}: \Theta^{t-1} \times A^{t-1} \times \Theta^{i t} \rightarrow \Delta\left(\Theta^{i}\right)
$$

Agent i's expected payoff under M and strategy profile $\sigma=\left(\sigma^{i}\right)$ is

$$
\mathbb{E}_{M, \mu, \sigma}\left[\sum_{t \geq 1} \delta^{t-1}\left(u^{i}\left(\tilde{a}_{t}, \tilde{\theta}_{t}^{i}\right)-\tilde{p}_{t}^{i}\right)\right]
$$

$I C, I R, \& B B$

Truthtelling strategy $\sigma^{i *}=\left(\sigma_{t}^{i *}\right)_{t \geq 1}: \forall t, \theta^{t-1}, a^{t-1}, \theta_{t}^{i}$,

$$
\sigma_{t}^{i \neq}\left(\theta^{t-1}, a^{t-1}, \theta_{t}^{i}\right)=\mathbf{1}_{\left\{\theta_{t}^{i}\right\}} .
$$

- per-period interim IC (IC): truthtelling is a wPBE
- per-period ex post IC (epIC): per-period ex post eq.

$I C, I R, \& B B$

Truthtelling strategy $\sigma^{i *}=\left(\sigma_{t}^{i *}\right)_{t \geq 1}: \forall t, \theta^{t-1}, a^{t-1}, \theta_{t}^{i}$,

$$
\sigma_{t}^{i \nless}\left(\theta^{t-1}, a^{t-1}, \theta_{t}^{i}\right)=\mathbf{1}_{\left\{\theta_{t}^{i}\right\}} .
$$

- per-period interim IC (IC): truthtelling is a wPBE
- per-period ex post IC (epIC): per-period ex post eq.
- ex ante IR $\left(\mathrm{IR}_{0}\right):$ ex ante payoff under truthtelling $\geq \bar{U}^{i}$
- per-period interim IR (IR): interim payoff $\geq \bar{U}^{i}\left(\theta_{t}^{i}\right)$
- per-period ex post IR (epIR): ex post payoff $\geq \bar{U}^{i}\left(\theta_{t}\right)$

$I C, I R, \& B B$

Truthtelling strategy $\sigma^{i *}=\left(\sigma_{t}^{i *}\right)_{t \geq 1}: \forall t, \theta^{t-1}, a^{t-1}, \theta_{t}^{i}$,

$$
\sigma_{t}^{i *}\left(\theta^{t-1}, a^{t-1}, \theta_{t}^{i}\right)=\mathbf{1}_{\left\{\theta_{t}^{i}\right\}} .
$$

- per-period interim IC (IC): truthtelling is a wPBE
- per-period ex post IC (epIC): per-period ex post eq.
- ex ante IR $\left(\mathrm{IR}_{0}\right)$: ex ante payoff under truthtelling $\geq \bar{U}^{i}$
- per-period interim IR (IR): interim payoff $\geq \bar{U}^{i}\left(\theta_{t}^{i}\right)$
- per-period ex post IR (epIR): ex post payoff $\geq \bar{U}^{i}\left(\theta_{t}\right)$
- ex post budget balance (BB): $\sum_{i} p_{t}^{i}=0, \forall t \geq 1$

Efficiency

An allocation $a^{*}=\left(a_{t}^{*}\right) w / a_{t}^{*}: \Theta \rightarrow \Delta(A)$ is efficient if it solves

$$
\max _{\left(a_{t}\right)} \mathbb{E}\left[\sum_{t \geq 1} \delta^{t-1} \sum_{i \in \mathcal{N}} u^{i}\left(a_{t}\left(\tilde{\theta}_{t}\right), \tilde{\theta}_{t}^{i}\right)\right]
$$

Efficiency

An allocation $a^{*}=\left(a_{t}^{*}\right) w / a_{t}^{*}: \Theta \rightarrow \Delta(A)$ is efficient if it solves

$$
\max _{\left(a_{t}\right)} \mathbb{E}\left[\sum_{t \geq 1} \delta^{t-1} \sum_{i \in \mathcal{N}} u^{i}\left(a_{t}\left(\tilde{\theta}_{t}\right), \tilde{\theta}_{t}^{i}\right)\right]
$$

An allocation $\bar{a}_{t}: \Theta \rightarrow \Delta(A)$ is incentive efficient if
$\mathbb{E}\left[\sum_{t \geq 1} \delta^{t-1} \sum_{i \in \mathcal{N}} u^{i}\left(\bar{a}_{t}\left(\tilde{\theta}_{t}\right), \tilde{\theta}_{t}^{i}\right)\right] \geq \mathbb{E}\left[\sum_{t \geq 1} \delta^{t-1} \sum_{i \in \mathcal{N}} u^{i}\left(\bar{a}_{t}\left(\gamma_{t}\left(\tilde{\theta}_{t}, \tilde{\theta}^{t-1}, \tilde{a}^{t-1}\right)\right), \tilde{\theta}_{t}^{i}\right.\right.$
for all $\gamma=\left(\gamma_{t}\right)_{t \geq 1}$ where $\gamma_{t}: \Theta \times \Theta^{t-1} \times A^{t-1} \rightarrow \Delta(\Theta)$.

Efficiency

An allocation $a^{*}=\left(a_{t}^{*}\right) w / a_{t}^{*}: \Theta \rightarrow \Delta(A)$ is efficient if it solves

$$
\max _{\left(a_{t}\right)} \mathbb{E}\left[\sum_{t \geq 1} \delta^{t-1} \sum_{i \in \mathcal{N}} u^{i}\left(a_{t}\left(\tilde{\theta}_{t}\right), \tilde{\theta}_{t}^{i}\right)\right]
$$

An allocation $\bar{a}_{t}: \Theta \rightarrow \Delta(A)$ is incentive efficient if
$\mathbb{E}\left[\sum_{t \geq 1} \delta^{t-1} \sum_{i \in \mathcal{N}} u^{i}\left(\bar{a}_{t}\left(\tilde{\theta}_{t}\right), \tilde{\theta}_{t}^{i}\right)\right] \geq \mathbb{E}\left[\sum_{t \geq 1} \delta^{t-1} \sum_{i \in \mathcal{N}} u^{i}\left(\bar{a}_{t}\left(\gamma_{t}\left(\tilde{\theta}_{t}, \tilde{\theta}^{t-1}, \tilde{a}^{t-1}\right)\right), \tilde{\theta}_{t}^{i}\right.\right.$
for all $\gamma=\left(\gamma_{t}\right)_{t \geq 1}$ where $\gamma_{t}: \Theta \times \Theta^{t-1} \times A^{t-1} \rightarrow \Delta(\Theta)$.
A mechanism (\bar{a}, p) is incentive efficient if $\forall \gamma$,

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t \geq 1} \delta^{t-1} \sum_{i \in \mathcal{N}}\left(u^{i}\left(\bar{a}_{t}\left(\tilde{\theta}_{t}\right), \tilde{\theta}_{t}^{i}\right)-p_{t}^{i}\left(\tilde{\theta}^{t-1}, \tilde{a}^{t-1}, \tilde{\theta}_{t}\right)\right)\right] \\
& \geq \mathbb{E}\left[\sum _ { t \geq 1 } \delta ^ { t - 1 } \sum _ { i \in \mathcal { N } } \left(u^{i}\left(\bar{a}_{t}\left(\gamma_{t}\left(\tilde{\theta}_{t}\right), \tilde{\theta}_{t}^{i}\right)-p_{t}^{i}\left(\tilde{\theta}^{t-1}, \tilde{a}^{t-1}, \gamma_{t}\left(\tilde{\theta}_{t}\right)\right)\right]\right.\right.
\end{aligned}
$$

Modeling Collusion

Given a dynamic mechanism M, a mediator can coordinate collusion among (subgroups of) agents: $\forall t$

- collect reports from agents then jointly report to the designer
- make balanced transfers among agents

Modeling Collusion

Given a dynamic mechanism M, a mediator can coordinate collusion among (subgroups of) agents: $\forall t$

- collect reports from agents then jointly report to the designer
- make balanced transfers among agents

Formally, M induces a dynamic game G_{M} among agents with outside options. Given G_{M}, a collusion scheme (among all agents) $\Gamma=(\gamma, q)$ is a mediated game (or mechanism)

- $\gamma=\left(\gamma_{t}\right)_{t \geq 1}, \gamma_{t}: \Theta \times \Theta^{t-1} \times A^{t-1} \rightarrow \Delta(\Theta)$
- $q=\left(q_{t}^{i}\right)_{i, t}, q_{t}^{i}: \Theta \times \Theta^{t-1} \times A^{t-1} \rightarrow \mathbb{R} \& \sum_{i} q_{t}^{i}=0$.

Given $M \& \Gamma$, agents play $G_{M \Gamma}$ (with outside options).
Focus on all IC (\& IR) Г's.

Collusion-Proofness

A dynamic mechanism M is collusion-proof if the expected payoffs of all agents under all IC 「's are the same as the expected payoffs in M under truthtelling.

Collusion-proofness: the set of equilibrium payoff vectors under mediation in G_{M} is a singleton, which equals the payoff vector from truthtelling in G_{M}.

Collusion-Proofness

A dynamic mechanism M is collusion-proof if the expected payoffs of all agents under all IC 「's are the same as the expected payoffs in M under truthtelling.

Collusion-proofness: the set of equilibrium payoff vectors under mediation in G_{M} is a singleton, which equals the payoff vector from truthtelling in G_{M}.

Collusion-proofness is defined without referring to IR.

- can define IR w.r.t. G_{M} or outside option
- beliefs after rejecting a collusion scheme

Remarks

The dynamic pivot mechanism (Bergemann \& Välimäki, 2010) is not collusion-proof.

The balanced-team mechanism (Athey \& Segal, 2013) is collusion-proof when $N=2$ but not when $N \geq 3$.

A mechanism with a constant allocation rule is collusion-proof.

Results

* incentive efficiency \Rightarrow collusion-proofness

Proposition 1

If \bar{a} is incentive efficient, then \exists a BB transfer p s.t. (\bar{a}, p) is IC \& collusion-proof.

Sketch of Proof: i.i.d. case

Bound the minmax payoff under truthtelling: $\forall \sigma_{-i}$
$\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right)\right), \tilde{\theta}^{i}\right)-p^{i}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right)\right)\right] \geq \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{-i}\right), \tilde{\theta}^{i}\right)\right]$

Sketch of Proof: i.i.d. case

Bound the minmax payoff under truthtelling: $\forall \sigma_{-i}$
$\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right)\right), \tilde{\theta}^{i}\right)-p^{i}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right)\right)\right] \geq \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{-i}\right), \tilde{\theta}^{i}\right)\right]$
\Rightarrow
$\mathbb{E}\left[p^{i}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right)\right)\right] \leq \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right)\right), \tilde{\theta}^{i}\right)-u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{-i}\right), \tilde{\theta}^{i}\right)\right]$

Sketch of Proof: i.i.d. case

Bound the minmax payoff under truthtelling: $\forall \sigma_{-i}$

$$
\begin{aligned}
& \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right)\right), \tilde{\theta}^{i}\right)-p^{i}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right)\right)\right] \geq \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{-i}\right), \tilde{\theta}^{i}\right)\right] \\
& \Rightarrow
\end{aligned}
$$

$$
\mathbb{E}\left[p^{i}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right)\right)\right] \leq \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right)\right), \tilde{\theta}^{i}\right)-u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{-i}\right), \tilde{\theta}^{i}\right)\right]
$$

$$
+\underbrace{\sum_{j \neq i} \mathbb{E}\left[\mathbb{E}_{\tilde{\theta}^{i}}\left[u^{j}\left(\bar{a}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right)\right), \sigma_{j}\left(\tilde{\theta}^{j}\right)\right)\right]-u^{j}\left(\bar{a}\left(\tilde{\theta}^{i}, \sigma_{-i}\left(\tilde{\theta}^{-i}\right), \sigma_{j}\left(\tilde{\theta}^{j}\right)\right)\right]\right.}_{=0}
$$

Sketch of Proof: i.i.d. case

$$
N=2:
$$

$$
\begin{gathered}
p^{i}\left(\hat{\theta}^{i}, \hat{\theta}^{j}\right)=\mathbb{E}\left[u^{i}\left(\tilde{a}^{(}\left(\tilde{\theta}^{i}, \hat{\theta}^{j}\right), \tilde{\theta}^{i}\right)\right]-\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{j}\right), \tilde{\theta}^{i}\right)\right] \\
+\mathbb{E}\left[u^{j}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{j}\right), \tilde{\theta}^{j}\right)\right]-\mathbb{E}\left[u^{j}\left(\bar{a}\left(\hat{\theta}^{i}, \tilde{\theta}^{j}\right), \tilde{\theta}^{j}\right)\right]
\end{gathered}
$$

Sketch of Proof: i.i.d. case
$N=2:$

$$
\begin{gathered}
p^{i}\left(\hat{\theta}^{i}, \hat{\theta}^{j}\right)=\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \hat{\theta}^{j}\right), \tilde{\theta}^{i}\right)\right]-\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{j}\right), \tilde{\theta}^{i}\right)\right] \\
+\mathbb{E}\left[u^{j}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{j}\right), \tilde{\theta}^{j}\right)\right]-\mathbb{E}\left[u^{j}\left(\bar{a}\left(\hat{\theta}^{i}, \tilde{\theta}^{j}\right), \tilde{\theta}^{j}\right)\right]
\end{gathered}
$$

$N>2$: decompose

$$
\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \hat{\theta}^{-i}\right), \tilde{\theta}^{i}\right)\right]-\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{-i}\right), \tilde{\theta}^{i}\right)\right]
$$

$$
\text { into (e.g. }-i=\{j, k\})
$$

Sketch of Proof: i.i.d. case

$N=2$:

$$
\begin{gathered}
p^{i}\left(\hat{\theta}^{i}, \hat{\theta}^{j}\right)=\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \hat{\theta}^{j}\right), \tilde{\theta}^{i}\right)\right]-\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{j}\right), \tilde{\theta}^{i}\right)\right] \\
+\mathbb{E}\left[u^{j}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{j}\right), \tilde{\theta}^{j}\right)\right]-\mathbb{E}\left[u^{j}\left(\bar{a}\left(\hat{\theta}^{i}, \tilde{\theta}^{j}\right), \tilde{\theta}^{j}\right)\right]
\end{gathered}
$$

$N>2$: decompose

$$
\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \hat{\theta}^{-i}\right), \tilde{\theta}^{i}\right)\right]-\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{-i}\right), \tilde{\theta}^{i}\right)\right]
$$

into (e.g. $-i=\{j, k\}$)

$$
\begin{aligned}
& \underbrace{\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \hat{\theta}^{j}, \hat{\theta}^{k}\right), \tilde{\theta}^{i}\right)\right]-\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \hat{\theta}^{j}, \tilde{\theta}^{k}\right), \tilde{\theta}^{i}\right)\right]}_{i \rightarrow k} \\
& +\underbrace{\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \hat{\theta}^{j}, \tilde{\theta}^{k}\right), \tilde{\theta}^{i}\right)\right]-\mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}^{i}, \tilde{\theta}^{-i}\right), \tilde{\theta}^{i}\right)\right]}_{i \rightarrow j}
\end{aligned}
$$

Sketch of Proof: I

Proposition 1

\bar{a} incentive efficient $\Rightarrow \exists \mathrm{BB}$ transfer p s.t. (\bar{a}, p) is IC \& collusion-proof.

Define

$$
\begin{gathered}
V_{\bar{a}}^{i}=\mathbb{E}\left[\sum_{t \geq 1} \delta^{t-1} u^{i}\left(\bar{a}\left(\tilde{\theta}_{t}\right), \tilde{\theta}_{t}^{i}\right)\right] \\
V_{\bar{a}}^{i}\left(\theta_{t}\right)=u^{i}\left(\bar{a}\left(\theta_{t}\right), \theta_{t}^{i}\right)+\delta \mathbb{E}\left[V^{i}\left(\tilde{\theta}_{t+1} ; \bar{a}\right) \mid \bar{a}\left(\theta_{t}\right), \theta_{t}\right]
\end{gathered}
$$

Aim: For each i, agent i can guarantee an ex ante expected payoff $V_{\bar{a}}^{i}+\kappa_{i}$ by truthtelling, regardless of others' strategies, where $\sum_{i} \kappa_{i}=0$.

The sum of "minmax" payoffs is at least $\sum_{i} V_{\bar{a}}^{i}$ in G_{M}.

Sketch of Proof: II

Fix any order of agents, wlog, $1>\cdots>N$.

Sketch of Proof: II

Fix any order of agents, wlog, $1>\cdots>N$.
The change in agent j 's expected continuation payoff caused by agent i's report:

$$
\begin{aligned}
\psi_{t}^{i j}\left(\hat{\theta}_{t}, \hat{\theta}_{t-1}\right) & =\mathbb{E}\left[V_{\bar{a}}^{j}\left(\hat{\theta}_{t}^{1}, \ldots, \hat{\theta}_{t}^{i-1}, \hat{\theta}_{t}^{i}, \tilde{\theta}_{t}^{i+1}, \ldots, \tilde{\theta}_{t}^{N}\right) \mid \bar{a}\left(\hat{\theta}_{t-1}\right), \hat{\theta}_{t-1}\right] \\
& -\mathbb{E}\left[V_{\bar{a}}^{j}\left(\hat{\theta}_{t}^{1}, \ldots, \hat{\theta}_{t}^{i-1}, \tilde{\theta}_{t}^{i}, \tilde{\theta}_{t}^{i+1}, \ldots, \tilde{\theta}_{t}^{N}\right) \mid \bar{a}\left(\hat{\theta}_{t-1}\right), \hat{\theta}_{t-1}\right]
\end{aligned}
$$

Sketch of Proof: II

Fix any order of agents, wlog, $1>\cdots>N$.
The change in agent j 's expected continuation payoff caused by agent i's report:

$$
\begin{aligned}
\psi_{t}^{i j}\left(\hat{\theta}_{t}, \hat{\theta}_{t-1}\right) & =\mathbb{E}\left[V_{\bar{a}}^{j}\left(\hat{\theta}_{t}^{1}, \ldots, \hat{\theta}_{t}^{i-1}, \hat{\theta}_{t}^{i}, \tilde{\theta}_{t}^{i+1}, \ldots, \tilde{\theta}_{t}^{N}\right) \mid \bar{a}\left(\hat{\theta}_{t-1}\right), \hat{\theta}_{t-1}\right] \\
& -\mathbb{E}\left[V_{\bar{a}}^{j}\left(\hat{\theta}_{t}^{1}, \ldots, \hat{\theta}_{t}^{i-1}, \tilde{\theta}_{t}^{i}, \tilde{\theta}_{t}^{i+1}, \ldots, \tilde{\theta}_{t}^{N}\right) \mid \bar{a}\left(\hat{\theta}_{t-1}\right), \hat{\theta}_{t-1}\right]
\end{aligned}
$$

Define the BB transfer as

$$
p_{t}^{i}\left(\hat{\theta}_{t}, \hat{\theta}_{t-1}\right)=-\sum_{j \neq i}\left[\psi_{t}^{i j}\left(\hat{\theta}_{t}, \hat{\theta}_{t-1}\right)-\psi_{t}^{j i}\left(\hat{\theta}_{t}, \hat{\theta}_{t-1}\right)\right]-\mathbf{1}_{\{t=1\}} \cdot \kappa_{i} .
$$

Sketch of Proof: II

Fix any order of agents, wlog, $1>\cdots>N$.
The change in agent j 's expected continuation payoff caused by agent i's report:

$$
\begin{aligned}
\psi_{t}^{i j}\left(\hat{\theta}_{t}, \hat{\theta}_{t-1}\right) & =\mathbb{E}\left[V_{\bar{a}}^{j}\left(\hat{\theta}_{t}^{1}, \ldots, \hat{\theta}_{t}^{i-1}, \hat{\theta}_{t}^{i}, \tilde{\theta}_{t}^{i+1}, \ldots, \tilde{\theta}_{t}^{N}\right) \mid \bar{a}\left(\hat{\theta}_{t-1}\right), \hat{\theta}_{t-1}\right] \\
& -\mathbb{E}\left[V_{\bar{a}}^{j}\left(\hat{\theta}_{t}^{1}, \ldots, \hat{\theta}_{t}^{i-1}, \tilde{\theta}_{t}^{i}, \tilde{\theta}_{t}^{i+1}, \ldots, \tilde{\theta}_{t}^{N}\right) \mid \bar{a}\left(\hat{\theta}_{t-1}\right), \hat{\theta}_{t-1}\right]
\end{aligned}
$$

Define the BB transfer as

$$
p_{t}^{i}\left(\hat{\theta}_{t}, \hat{\theta}_{t-1}\right)=-\sum_{j \neq i}\left[\psi_{t}^{i j}\left(\hat{\theta}_{t}, \hat{\theta}_{t-1}\right)-\psi_{t}^{j i}\left(\hat{\theta}_{t}, \hat{\theta}_{t-1}\right)\right]-\mathbf{1}_{\{t=1\}} \cdot \kappa_{i} .
$$

$\forall t$, agent i

- pays j the change in i's expected continuation payoff caused by j 's report
- is paid by j the change in j 's expected continuation payoff caused by i's report

Sketch of Proof: III

For simplicity, consider a two-period \& two-agent $(i>j)$ setting.
Given (\bar{a}, p), suppose agent i always reports truthfully. $\forall \sigma^{j}$,

- $\forall t, j$'s expected payment to $i, \mathbb{E}\left[\psi_{t}^{i j}\right]=0$. (independence)
- i's expected payoff from allocations (\mathbb{E} : prior)
$u^{i}\left(\bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}^{i}\right)+\delta \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{2}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}^{j}\right)\right), \tilde{\theta}_{2}^{i}\right) \mid \bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}\right]$

Sketch of Proof: III

For simplicity, consider a two-period \& two-agent $(i>j)$ setting.
Given (\bar{a}, p), suppose agent i always reports truthfully. $\forall \sigma^{j}$,

- $\forall t, j$'s expected payment to $i, \mathbb{E}\left[\psi_{t}^{i j}\right]=0$. (independence)
- i's expected payoff from allocations (\mathbb{E} : prior)
$u^{i}\left(\bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}^{i}\right)+\delta \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{2}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}^{j}\right)\right), \tilde{\theta}_{2}^{i}\right) \mid \bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}\right]$
In $t=2, i$ pays $j\left(\delta \mathbb{E}\left[\cdot \mid \bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}\right]\right)$
$-u^{i}\left(\bar{a}\left(\tilde{\theta}_{2}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}^{j}\right)\right), \tilde{\theta}_{2}^{i}\right)+\mathbb{E}_{\tilde{\theta}_{2}^{j}}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{2}^{i}, \tilde{\theta}_{2}^{j}\right), \tilde{\theta}_{2}^{i}\right) \mid \bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right]$

Sketch of Proof: III

For simplicity, consider a two-period \& two-agent $(i>j)$ setting.
Given (\bar{a}, p), suppose agent i always reports truthfully. $\forall \sigma^{j}$,

- $\forall t, j$'s expected payment to $i, \mathbb{E}\left[\psi_{t}^{i j}\right]=0$. (independence)
- i's expected payoff from allocations (\mathbb{E} : prior) $u^{i}\left(\bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}^{i}\right)+\delta \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{2}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}^{j}\right)\right), \tilde{\theta}_{2}^{i}\right) \mid \bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}\right]$ $\ln t=2, i$ pays $j\left(\delta \mathbb{E}\left[\cdot \mid \bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}\right]\right)$
$-u^{i}\left(\bar{a}\left(\tilde{\theta}_{2}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}^{j}\right)\right), \tilde{\theta}_{2}^{i}\right)+\mathbb{E}_{\tilde{\theta}_{2}^{j}}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{2}^{i}, \tilde{\theta}_{2}^{j}\right), \tilde{\theta}_{2}^{i}\right) \mid \bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right]$
$\ln t=1, i$ pays $j(\mathbb{E}:$ prior $)$
$-u^{i}\left(\bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}^{i}\right)-\delta \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{2}^{i}, \tilde{\theta}_{2}^{j}\right), \tilde{\theta}_{2}^{i}\right) \mid \bar{a}\left(\tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right), \tilde{\theta}_{1}^{i}, \sigma^{j}\left(\tilde{\theta}_{1}^{j}\right)\right]$
$+\mathbb{E}_{\tilde{\theta}_{1}^{j}}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{1}^{i}, \tilde{\theta}_{1}^{j}\right), \tilde{\theta}_{1}^{i}\right)+\delta \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{2}^{i}, \tilde{\theta}_{2}^{j}\right), \tilde{\theta}_{2}^{i}\right) \mid \bar{a}\left(\tilde{\theta}_{1}^{i}, \tilde{\theta}_{1}^{j}\right), \tilde{\theta}_{1}^{i}, \tilde{\theta}_{1}^{j}\right]\right]$

Sketch of Proof: IV

Summing up and canceling terms, i 's ex ante expected payoff is

$$
\begin{gathered}
\mathbb{E}_{\tilde{\theta}_{1}}\left[\mathbb{E}_{\tilde{\theta}_{1}^{j}}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{1}^{i}, \tilde{\theta}_{1}^{j}\right), \tilde{\theta}_{1}^{i}\right)+\delta \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{2}^{i}, \tilde{\theta}_{2}^{j}\right), \tilde{\theta}_{2}^{i}\right) \mid \bar{a}\left(\tilde{\theta}_{1}^{i}, \tilde{\theta}_{1}^{j}\right), \tilde{\theta}_{1}^{i}, \tilde{\theta}_{1}^{j}\right]\right]\right] \\
=V_{\bar{a}}^{i} .
\end{gathered}
$$

Similarly, j 's ex ante expected payoff is $V_{\bar{a}}^{j}$ (despite $i>j$).
By incentive efficiency of \bar{a}, the sum is $V_{\bar{a}}^{i}+V_{\bar{a}}^{j}$ the maximum ex ante expected payoff.

Sketch of Proof: IV

Summing up and canceling terms, i's ex ante expected payoff is

$$
\begin{gathered}
\mathbb{E}_{\tilde{\theta}_{1}}\left[\mathbb{E}_{\tilde{\theta}_{1}^{j}}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{1}^{i}, \tilde{\theta}_{1}^{j}\right), \tilde{\theta}_{1}^{i}\right)+\delta \mathbb{E}\left[u^{i}\left(\bar{a}\left(\tilde{\theta}_{2}^{i}, \tilde{\theta}_{2}^{j}\right), \tilde{\theta}_{2}^{i}\right) \mid \bar{a}\left(\tilde{\theta}_{1}^{i}, \tilde{\theta}_{1}^{j}\right), \tilde{\theta}_{1}^{i}, \tilde{\theta}_{1}^{j}\right]\right]\right] \\
=V_{\bar{a}}^{i} .
\end{gathered}
$$

Similarly, j 's ex ante expected payoff is $V_{\bar{a}}^{j}$ (despite $i>j$).
By incentive efficiency of \bar{a}, the sum is $V_{\bar{a}}^{i}+V_{\bar{a}}^{j}$ the maximum ex ante expected payoff.

- The argument extends to arbitrary T and N.
- When $N \geq 3$, possible joint deviations.
- The order $>$ takes care of this possibility.
- The order can be history-dependent too.
- (\bar{a}, p) is also IC. (similar to Athey \& Segal (2013))

Results

Corollary 1

If a mechanism (\bar{a}, p) is incentive efficient, then \exists another collusion-proof \& IC mechanism (\bar{a}, q).

Results

Corollary 1

If a mechanism (\bar{a}, p) is incentive efficient, then \exists another collusion-proof \& IC mechanism (\bar{a}, q).

Proposition 2

Suppose μ^{i} is ergodic under any allocation rule. If \bar{a} is incentive efficient \& strict IR_{0} under null transfers, then $\exists \bar{\delta} \in(0,1)$ s.t. $\forall \delta \in(\bar{\delta}, 1), \exists$ a BB transfer p such that the mechanism (\bar{a}, p) is collusion-proof, IC \& IR.

Adding IR

- If $(\bar{a}, \mathbf{0})$ is strictly IR_{0}, so is (\bar{a}, p).
- Under ergodicity and patience, private information in any period has a vanishing impact on total expected payoffs, which implies (\bar{a}, p) is IR.

Results

collusion-proofness \Rightarrow incentive efficiency

Proposition 3

Suppose μ^{i} is ergodic under any allocation rule. \forall IC \& BB mechanism (\bar{a}, p) where \bar{a} is not incentive efficient, $\exists \bar{\delta} \in(0,1)$ s.t. $\forall \delta \in(\bar{\delta}, 1),(\bar{a}, p)$ is not collusion-proof.

Conversely

Suppose \bar{a} is not incentive efficient.

- If $M=(\bar{a}, q)$ is IC and BB, under ergodicity and patience, construct a collusive (and efficient) equilibrium in G_{M}.
- Similar construction if $M=(\bar{a}, q)$ is IC and IR.

Extensions

- Optimal collusion-proof dynamic mechanisms.
- Property rights in the presence of collusion.
- Collusion with limited transfers.
- Collusion with correlated information.

Related Literature

- Collusion-proof static mechanisms: Laffont and Martimort (1997, 2000), Che and Kim (2006), Safronov (2017)
- Efficient dynamic mechanisms: Bergemann and Välimäki (2010), Athey and Segal (2013), Skrzypacz and Toikka (2015)
- Optimal dynamic mechanisms: Pavan, Segal and Toikka (2014), Pavan (2016), Bergemann and Välimäki (2017)
- Collusion with persistence private info.: Athey and Bagwell (2001, 2008), Miller (2012)
- Repeated implementation: Jackson and Sonnenschein (2007), Lee and Sabourian (2009, 2013), Renou and Mezzetti (2017), Renou and Tomala (2015), Chassang and Ortner (2015)

