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Most of the dynamic mechanism design literature focuses on
the "truthtelling” equilibrium (e.g. Bergemann and Valimaki
(2010), Athey and Segal (2013)).

Agents have more opportunities to coordinate or collude in
dynamic settings.

Propose a framework to address the possibility of collusion in
dynamic mechanisms.

Main question: Which dynamic mechanisms are immune to
collusion?

Define collusion-proofness in dynamic settings.
Construct collusion-proof dynamic mechanisms.

Characterize collusion-proofness in stationary settings.
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» Efficient dynamic mechanisms: Bergemann and Valimaki
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Model: IPV w/ transfers

» Time: t=1,2,..., T (T <o0).
» Agents: i€{1,2,..., N} =N. N>2.
» Private type: Vt>1,0,¢@'. 0,2 (#L,....0N)e[],©0 2 0.
» Allocations: a; € A.
» Flow payoff: u'(a;,6%) - pi. (“private values")
» Discounted payoff:

E {Z ot [ui(at,ﬁé) - pé]}

t>1

» Common prior: i (-) € A(©"). (“independence”)
» Markov transition: /(- |as_1,0% ;) € A(O").



Dynamic Mechanisms

To simplify notations, consider public mechanisms where all the
past reported types are public to all agents.

A dynamic mechanism is M = (a¢, pt)¢>1 where Vt > 1,
» allocations: a;: @t x A7l x © - A(A)
» transfers: p; = (p)jen with pi: @1 x A1 x @ - R



Dynamic Mechanisms

To simplify notations, consider public mechanisms where all the
past reported types are public to all agents.

A dynamic mechanism is M = (a¢, pt)¢>1 where Vt > 1,
» allocations: a;: @t x A7l x © - A(A)
» transfers: p; = (p)jen with pi: @1 x A1 x @ - R

Given M, a strategy o' = (0!)s»1 of agent i is
ol 0l x AL 0 5 A(O).

Agent i’s expected payoff under M and strategy profile o = (¢) is

EM,;,L,O’ Zét_l (u'(ét’éé)—ﬁé) :

t>1
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IC, IR, & BB

Truthtelling strategy o'* = (01*)ss1: Vt, 0171 at71 01,

O';;* Gt_l, at_l,G;:.) = 1{92}

» per-period interim IC (IC): truthtelling is a wPBE

» per-period ex post IC (eplC): per-period ex post eq.

» ex ante IR (IRp): ex ante payoff under truthtelling > U’
» per-period interim IR (IR): interim payoff > U'(6})

» per-period ex post IR (eplR): ex post payoff > U/(6;)

» ex post budget balance (BB): ¥;pi =0, Vt>1
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An allocation a* = (a;) w/ a; : © - A(A) is efficient if it solves

max E [Z 5! > ui(at(ét)ﬁi)]

(at) t>1 ieN

An allocation 3; : © - A(A) is incentive efficient if

E [Z sty u"(at(ét),ég)] >E [Z SN U (3 (7e (0,671, 57L)), 6L
t>1 ieN t>1 ieN

for all v = (7¢)es1 Where v, : © x O 1 x A1 5 A(O).

A mechanism (3, p) is incentive efficient if ¥+,

E [z 51 S (u (3:(00), 1) - p;_;@f—l,st—l,e}))]

t>1 ieN

S E [Z 5 (i (574 (B0). B - pi(éf‘l,éf‘l,%(ét))]

t>1 ieN
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» make balanced transfers among agents



Modeling Collusion

Given a dynamic mechanism M, a mediator can coordinate
collusion among (subgroups of) agents: Vt

» collect reports from agents then jointly report to the designer

» make balanced transfers among agents

Formally, M induces a dynamic game Gp; among agents with
outside options. Given Gy, a collusion scheme (among all agents)
= (v,q) is a mediated game (or mechanism)

> = (V)1 e ©x O x AT 5 A(O)

» q=(q0)it, Gi:OxO L x AT LR & ¥, gl = 0.
Given M & T, agents play Gpr (with outside options).
Focus on all IC (& IR) I's.



Collusion-Proofness

A dynamic mechanism M is collusion-proof if the expected payoffs
of all agents under all IC I''s are the same as the expected payoffs
in M under truthtelling.

Collusion-proofness: the set of equilibrium payoff vectors under
mediation in Gy is a singleton, which equals the payoff vector
from truthtelling in Gpy.



Collusion-Proofness

A dynamic mechanism M is collusion-proof if the expected payoffs
of all agents under all IC I''s are the same as the expected payoffs
in M under truthtelling.

Collusion-proofness: the set of equilibrium payoff vectors under
mediation in Gy is a singleton, which equals the payoff vector
from truthtelling in Gpy.
Collusion-proofness is defined without referring to IR.

» can define IR w.r.t. Gy or outside option

» beliefs after rejecting a collusion scheme



Remarks

The dynamic pivot mechanism (Bergemann & Valimaki, 2010) is
not collusion-proof.

The balanced-team mechanism (Athey & Segal, 2013) is
collusion-proof when N =2 but not when N > 3.

A mechanism with a constant allocation rule is collusion-proof.



Results

* incentive efficiency = collusion-proofness

Proposition 1

If 3 is incentive efficient, then 3 a BB transfer p s.t. (3,p) is IC &
collusion-proof.
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Sketch of Proof: i.i.d. case

Bound the minmax payoff under truthtelling: Vo_;

E [u'(3(0",0-;(67)),0") - p'(0',o_i(6)] > E [v'(3(6",077),0")]

=

E [p/(7,0i(07)] <E [u' (30, 0-i(57)),0) - o/ (3, 677),07)]

+ Y E[Egld (a0, 0-i(67)), 0;(6))] - o/ (30", 0-i(67), 05(F))]

_]¢I

=0



Sketch of Proof: i.i.d. case
N=2:

p(8,0) = B[/ (a(0,00),6)] - E[u/ (3(8", ), 57)]

+E[F(E0,6),0)] -E[4 (a0, ),5))]
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p'(0",¢") =E[u'(a(0",¢),0")] -E[u'(a(6",¢),07)]
+E[F(E0,6),0)] -E[4 (a0, ),5))]
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into (e.g. =i ={j,k})



Sketch of Proof: i.i.d. case
N=2:
Pl (0,) =E[u (a0, 0'),0)] - E [ (a(0", ), )]
+E[w(§(5lvéj)7éj)] _E[Lﬂ(‘g(élvéj)vé)]
N > 2: decompose
E [ui(é(éiaé\_i)aéi)] -E [ui(5(§i7§_i)7§i)]
into (e.g. =i ={j,k})
E[u'(3(6",0,0%),6)] -E[u' (36", #,0%),0")]

i—k

YE[u (30,8, 0%),0] - E[J (307,677, 6)]

i—j



Sketch of Proof: |

Proposition 1
3 incentive efficient = 3 BB transfer p s.t. (3,p) is IC &
collusion-proof.
Define
Vi-E [z 5t—1uf<5<ét>,5;)]

t>1

VE(0:) = u'(a(0:),0;) + OF [V (Bei1; 3)|3(6:), 0]

Aim: For each /, agent / can guarantee an ex ante expected payoff
Vg + k; by truthtelling, regardless of others’ strategies, where

Yiki=0.

The sum of “minmax” payoffs is at least ) ; Vgi in Gy.
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Sketch of Proof: Il

Fix any order of agents, wlog, 1> - > N.
The change in agent j's expected continuation payoff caused by
agent i's report:

VIO, 0ea) =B [ VA, 0070, 00,007, 00 |a(0e1), 01
—E [VI@ BT E (D), 01
Define the BB transfer as

pi(0e,0: 1) = = [ 7(0:,0:1) - w(étﬁr—l)] —1geeny ki
J#Ei
Vt, agent i

» pays j the change in i's expected continuation payoff caused
by j's report

» is paid by j the change in j's expected continuation payoff
caused by i's report
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For simplicity, consider a two-period & two-agent (i > j) setting.
Given (3, p), suppose agent i always reports truthfully. Yo/,

> Vt, j's expected payment to i, E[1)Y] = 0. (independence)

» i's expected payoff from allocations (E: prior)
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Given (3,p), suppose agent i always reports truthfully. Vo,
> Vt, j's expected payment to i, E[1)Y] = 0. (independence)
» i's expected payoff from allocations (E: prior)
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Sketch of Proof: IV

Summing up and canceling terms, i's ex ante expected payoff is
Eg, [E [0/ (3005, 8),8) + O [/ (3(03, 8), 6)\a(8, ), 61,6 ]
= Vi.

Similarly, j's ex ante expected payoff is V‘,{ (despite i > j).

By incentive efficiency of 3, the sum is Vi + Vj-; the maximum ex
ante expected payoff.



Sketch of Proof: IV

Summing up and canceling terms, i's ex ante expected payoff is
Eg, [E [0/ (3005, 8),8) + O [/ (3(03, 8), 6)\a(8, ), 61,6 ]
= Vi.

Similarly, j's ex ante expected payoff is V‘,{ (despite i > j).
By incentive efficiency of 3, the sum is Vi + Vé the maximum ex
ante expected payoff.

» The argument extends to arbitrary T and N.

» When N > 3, possible joint deviations.

» The order > takes care of this possibility.

» The order can be history-dependent too.

» (a3, p) is also IC. (similar to Athey & Segal (2013))
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Corollary 1

If a mechanism (3, p) is incentive efficient, then 3 another
collusion-proof & IC mechanism (3, q).




Results

Corollary 1

If a mechanism (3, p) is incentive efficient, then 3 another
collusion-proof & IC mechanism (3, q).

Proposition 2

Suppose 1 is ergodic under any allocation rule. If 3 is incentive
efficient & strict IRg under null transfers, then 35 € (0,1) s.t.
V6 € (8,1), 3 a BB transfer p such that the mechanism (3, p) is
collusion-proof, IC & IR.



Adding IR

» If (3,0) is strictly IR, so is (3, p).
» Under ergodicity and patience, private information in any

period has a vanishing impact on total expected payoffs,
which implies (3, p) is IR.



Results

collusion-proofness = incentive efficiency

Proposition 3

Suppose 1 is ergodic under any allocation rule. ¥V IC & BB
mechanism (3, p) where 3 is not incentive efficient, 30 € (0,1) s.t.
Vé e (8,1), (3,p) is not collusion-proof.



Conversely

Suppose 3 is not incentive efficient.

» If M =(3,q) is IC and BB, under ergodicity and patience,
construct a collusive (and efficient) equilibrium in Gp.

» Similar construction if M = (3,q) is IC and IR.



Extensions

v

Optimal collusion-proof dynamic mechanisms.
» Property rights in the presence of collusion.
» Collusion with limited transfers.

» Collusion with correlated information.
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