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Proportional Representation in Parliamental Election
I Voters vote for parties (not for candidates)
I Based on the numbers of votes parties collected, the
parliament seats are allocated to parties

I party candidates exert e¤orts to increase the number of votes
I candidates may or may not get a parliament seat (probabilistic
outcome)

I (Closed) List rule (Argentina, Iceland, Israel, Spain, etc.)
I Is this a good rule?
I What is the optimal list if candidates di¤er in their abilities?

I Optimal rule?



Contest, Team Production, Incentives

Contest by multiple teams (Tullock type contest model)

I How to split a prize into public and private goods?
(group-size paradox?)

I Nitzan (1991), Esteban Ray (2001), Nitzan Ueda (2011)
I homogeneous player
I observable and contractable e¤ort

I How to allocate indivisible multiple prizes? (List rule or
egalitarian rule?)

I Crutzen Flamand Sahuguet (2017)
I homogeneous player
I unobservable e¤ort (free-riding incentives)

I This paper: Crutzen Flamand Sahuguet + heterogenous
abilities



Preview of the Results
I the degrees of complementarity in team production and
convexity of cost functions matter

I if team production is not too complementary, and if cost
function is not too convex, then a list rule is the optimal
monotonic rule

I a list rule is the optimal deterministic monotonic rule
I but the highest ability candidate will not be listed at the
top� in the middle of the list

I it is to let her extert the most e¤ort by making her vulnerable

I characterization of the optimal rule without monotonicity
requirement



The Model
I there are n seats in the parliament
I J parties: j = 1, ..., J
I party j has i = 1, ..., n candidates
I the number of party j�s winning seats is a random variable
that is a function of j�s e¤ort share

pj =
Ej

E1 + ...+ EJ

where Ej is the aggregate e¤ort of party j (Tullock)



CES Team Production
I party j has i = 1, ..., n candidates

I ability aij � 0 a parameter� observable
I e¤ort eij � 0
I payo¤ from getting a seat in the parliament V > 0 (common)

I CES team production function (σ 2 (0, 1))

Ej =

"
n

∑
i=1
aije1�σ

ij

# 1
1�σ

as in Ray Baland Dangnelie (2007) + heterogeneous abilities
I candidate i�s cost function (common)

Cij (eij ) =
1
β
eβ
ij



Probability of getting k seats in the parliament
I if pj is the probability of winning a seat with i .i .d .,

Pkj (pj ) = C (n, k)p
k
j (1� pj )

n�k

I in general, the probability of party j�s getting k seats:
(Pkj (pj ))

n
k=0 continuous function of e¤ort share pj

I ∑nk=0 P
k
j (pj ) = 1 for each pj



Probability of getting k seats in the parliament

I �rst-order stochastic dominance (FOSD): ∑n
k=m

dP kj
dpj

� 0
for all m = 1, ..., n

I this condition must be satis�ed.

I single-crossingness in winning probabilities: there exists
k�(pj ) such that

1.
dP kj
dpj

� 0 for all k < k�(pj )

2.
dP kj
dpj

> 0 for all k � k�(pj )

I when i .i .d ., single-crossingness is satis�ed with
k�(pj ) = bnpjc+ 1:

dPkj
dpj

= C (n, k)pk�1j (1� pj )n�k�1 (k � npj )



Assignment Rules

List rules

I if k seats are won, then the top k candidates on the list go to
the parliament

General assignment rule

I Let S(k,Nj ) = fSj � Nj : jS j = kg be the set of subsets of
cardinality k.

I Let qkj : S(k,Nj )! [0, 1] with ∑S2S(k ,Nj ) q
k
j (S) = 1 be

party j�s assignment function: which k candidates go to the
parliament when k seats are won.

I An assignment rule is a list of functions qkj s:
qj = (q1j , ..., q

k
j , ..., q

n
j ).

I The optimal assignment rule is the rule that maximizes pj (to
be justi�ed).



E¤ort Optimization

Candidate i in party j has the following payo¤

Bij � Cij = V
n

∑
k=1

∑
S2Si (k )

qkj (S)P
k
j (pj )�

1
β
eβ
ij ,

where Si (k) = fS 2 S(k,Nj ) : i 2 Sg.
I candidate i goes to the parliament with probability

∑S2Si (k ) q
k
j (S) when k seats are won by party j



E¤ort Optimization

Candidate i chooses eij given E�j and e�ij :

∂Bij
∂eij

� ∂Cij
∂eij

= V
n

∑
k=1

∑
S2Si (k )

qkj (S)
dPkj
dpj

E�j
(E�j + Ej )

2

∂Ej
∂eij

� eβ�1
ij

=
aijV
eij

�
eij
Ej

�1�σ
"

n

∑
k=1

 
∑

S2Si (k )
qkj (S)

!
dPkj
dpj

(1� pj ) pj

#
� eβ�1

ij

I r ki = ∑S2Si (k ) q
k
j (S): probability of i gets a seat when k seats

are won by party j
I Note that the above has an interior solution i¤ the contents of
the bracket is positive (otherwise, eij = 0)



Equilibrium E¤ort under an Assignment Rule

The optimal e¤ort under assignment rule qj = (qkj )
n
k=1 and pj is:

eij =

"
aijV

�
1
Ej

�1�σ

max

(
n

∑
k=1

 
∑
Si (k )

qkj (S)

!
dPkj
dpj

(1� pj ) pj , 0
)# 1

σ+β�1

Equilibrium aggregate party e¤ort under qj = (qkj )
n
k=1 and pj is,

Ej =

8>><>>:V
0@ n

∑
i=1

αij

"
max

(
n

∑
k=1

r ki
dPkj
dpj

(1� pj ) pj , 0
)# 1�σ

σ+β�1
1A

σ+β�1
1�σ

9>>=>>;
1
β

where αij = a
β

σ+β�1
ij and r ki = ∑S2Si (k ) q

k
j (S) 2 [0, 1].

I Note Ej is a function of pj only. (This is the key.)



Existence of Equilibrium

Theorem 1. For any party pro�le ((aij )ni=1, σj , βj )
J
j=1, and any

assignment functions (qkj )
n
k=1 for any party j, there exists an

equilibrium.

I Ej (pj ) is continuous in pj

I Let ϕ : ∆J ! ∆J be such that ϕj (p) =
Ej (pj )

∑J
`=1 E`(p`)

for all

j = 1, ..., J.
I There is ϕ(p�) = p� (Brouwer�s �xed point theorem)



System of Equations

An equilibrium is described by the following system of equations:

0BBBBBB@
p1
...
pj
...
pJ

1CCCCCCA =

0BBBBBBBB@

E1(p1)
E1(p1)+E�1(p�1)

...
Ej (pj )

Ej (pj )+E�j (p�j )
...

EJ (pJ )
EJ (pJ )+E�J (p�J )

1CCCCCCCCA
Comparative statics: impact on pj by an increase in aij (ability of
candidate i in party j)

I total di¤erentiation of the system of equations



Comparative Statics

0BBBBBB@
dp1
...
dpj
...

dpJ�1

1CCCCCCA =



Comparative Statics

0BBBBBBBBBB@

∂E1
∂p1
E �

E1
∂E1
∂p1
E 2 � � � �

E1
∂Ej
∂pj

E 2 � � � �
E1

∂EJ�1
∂pJ�1
E 2

...
. . .

...
...

�
Ej

∂E1
∂p1
E 2 � � �

∂Ej
∂pj
E �

Ej
∂Ej
∂pj

E 2 � � � �
Ej

∂EJ�1
∂pJ�1
E 2

...
...

. . .
...

�
EJ�1

∂E1
∂p1

E 2 � � � �
EJ�1

∂Ej
∂pj

E 2 � � �
∂EJ�1
∂pJ�1
E �

EJ�1
∂EJ�1
∂pJ�1
E 2

1CCCCCCCCCCA

�

0BBBBBB@
dp1
...
dpj
...

dpJ�1

1CCCCCCA+

0BBBBBBBBBBB@

0
...
0

∂Ej
∂αij

0
...
0

1CCCCCCCCCCCA
dαij



Stability of Equilibrium
I Let ηj (pj ) =

pj
Ej

∂Ej
∂pj
be party j�s winning-prob elasticity of

aggregate e¤ort.

Lemma 2. Suppose that candidate i�s ability is increased slightly.
Then, we have

dpj
dαij

=

24�1� ηj

�
+

(1� pj ) ηj

∑J�1
i=1, i 6=j

�
(1�pi )ηi
1�ηi

�
35�1 ∂Ej

∂αij

where ∂Ej
∂αij
= A

�
max

�
∑n
k=1 r

k
i µk (pj ), 0

	� 1�σ
σ+β�1 � 0.

I When ηj (pj ) < 1 for all j (individually stable),
dpj
dαij

� 0 holds
(with equality when ∑n

k=1 r
k
i µk (pj ) � 0: no incentive to make

e¤ort) � the system is well-behaved.
I From now on, we assume that each party j chooses to
maximize Ej .



E¤ort-Maximizing Party

Party j chooses assignment rule (qkj )
n�1
k=1 to maximize Ej =8>><>>:V

0@ n

∑
i=1

αij

"
max

(
n

∑
k=1

 
∑
Si (k )

qkj (S)

!
dPkj
dpj

(1� pj ) pj , 0
)# 1�σ

σ+β�1
1A

σ+β�1
1�σ

9>>=>>;
1
β

This can be written as

max
(r ki )

n

∑
i=1

αij

"
max

(
n

∑
k=1

r ki µkj , 0

)# 1�σ
σ+β�1

where r ki = ∑S2Si (k ) q
k
j (S) 2 [0, 1] and µkj =

dP kj
dpj
(1� pj ) pj .

I weights (incentives to make e¤ort) µs satisfy
µ1j , ..., µ

k ��1
j � 0, and 0 < µk

�
j , ..., µ

n
j

I a1j � a2j � ... � aij � ... � anj (or α1j � ... � αnj )



Two Issues in Optimization

max
(r ki )

n

∑
i=1

αij

"
max

(
n

∑
k=1

r ki µkj , 0

)# 1�σ
σ+β�1

where r ki = ∑S2Si (k ) q
k
j (S) 2 [0, 1] and µkj =

dP kj
dpj
(1� pj ) pj .

1. 1�σ
σ+β�1 R 1: If this power is higher than 1 (β < 2 (1� σ)),
the objective function is convex, so highest possible
∑n
k=1 r

k
i µkj should be given to high ability is. (we will focus

on this case� deterministic case)

2. Can we choose r ki s freely as long as (i) r
k
i 2 [0, 1] for all i and

k, and (ii) ∑n
i=1 r

k
i = k for all k?



Assignment Matrix

n� n matrix (row candidates; column when k seats are won)

R =

0BBBBBB@
r11 � � � r k1 � � � rn1
...

. . .
...

. . .
...

r1i � � � r ki � � � rni
...

. . .
...

. . .
...

r1n � � � r kn � � � rnn

1CCCCCCA
I ∑n

i=1 r
k
i = k for all k = 1, ..., n

I r ki = ∑S2Si (k ) q
k
j (S) 2 [0, 1]



Assignment Matrix

n� n matrix (row candidates; column when k seats are won)

R =

0BBBBBB@
r11 � � � r k1 � � � rn1
...

. . .
...

. . .
...

r1i � � � r ki � � � rni
...

. . .
...

. . .
...

r1n � � � r kn � � � rnn

1CCCCCCA
I ∑n

i=1 r
k
i = k for all k = 1, ..., n

I r ki = ∑S2Si (k ) q
k
j (S) 2 [0, 1]

Q. For any R with (i) r ki 2 [0, 1] and (ii) ∑n
i=1 r

k
i = k for all k,

can we �nd allocation rule qj = (qkj )
n
k=1?



Assignment Matrix

n� n matrix (row candidates; column when k seats are won)

R =

0BBBBBB@
r11 � � � r k1 � � � rn1
...

. . .
...

. . .
...

r1i � � � r ki � � � rni
...

. . .
...

. . .
...

r1n � � � r kn � � � rnn

1CCCCCCA
I ∑n

i=1 r
k
i = k for all k = 1, ..., n

I r ki = ∑S2Si (k ) q
k
j (S) 2 [0, 1]

Q. For any R with (i) r ki 2 [0, 1] and (ii) ∑n
i=1 r

k
i = k for all k,

can we �nd allocation rule qj = (qkj )
n
k=1?

A. Yes! (by induction)



Freedom of Choosing Assignment Matrix (1)

Q. For any R with (i) r ki 2 [0, 1] and (ii) ∑n
i=1 r

k
i = k for all k,

can we �nd allocation rule qj = (qkj )
n
k=1?

When n = 3:

R =

0@ r11 r21 r31
r12 r22 r32
r13 r23 r33

1A
I r11 + r

1
2 + r

1
3 = 1 (one goes to the parliament () choosing

one candidate)
I r21 + r

2
2 + r

2
3 = 2 (two go to the parliament () excluding

one candidate)
I r31 + r

3
2 + r

3
3 = 3 (three go to the parliament ()

r31 = r
3
2 = r

3
3 = 1)

A. Yes!



Freedom of Choosing Assignment Matrix (2)

Q. For any R with (i) r ki 2 [0, 1] and (ii) ∑n
i=1 r

k
i = k for all k,

can we �nd allocation rule qj = (qkj )
n
k=1?

Supposing that it works for n = m � 3, when n = m+ 1,

R =

0BBBBBBBB@

r11 � � � r k1 � � � rm1 rm+1
...

. . .
...

. . .
...

...
r1i � � � r ki � � � rmi rm+1i
...

. . .
...

. . .
...

...
r1m � � � r km � � � rmm rm+1m
r1m+1 � � � r km+1 � � � rmm+1 rm+1m+1

1CCCCCCCCA
Is there an allocation rule (qkj )

m+1
k=1 such that

r ki = ∑
S2Si (k )

qkj (S) 2 [0, 1]

for all i = 1, ...,m+ 1 and k = 1, ...,m+ 1?



Freedom of Choosing Assignment Matrix (3)

Q. Is there an allocation rule (qkj )
m+1
k=1 such that

r ki = ∑
S2Si (k )

qkj (S) 2 [0, 1]

for all i = 1, ...,m+ 1 and k = 1, ...,m+ 1?

R =

0BBBBBBBB@

r11 � � � r k1 � � � rm1 rm+11
...

. . .
...

. . .
...

...
r1i � � � r ki � � � rmi rm+1i
...

. . .
...

. . .
...

...
r1m � � � r km � � � rmm rm+1m
r1m+1 � � � r km+1 � � � rmm+1 rm+1m+1

1CCCCCCCCA
By the same argument as n = 3 case, by choosing 1, excluding 1,
and assigning rm+1i = 1, we can achieve these three columns.



Freedom of Choosing Assignment Matrix (4)

Q. Is there an allocation rule qkj such that

r ki = ∑
S2Si (k )

qkj (S) 2 [0, 1]

for all i = 1, ...,m+ 1 and all k = 2, ...,m� 1?

R =

0BBBBBBBB@

r11 � � � rk1 � � � rm1 rm+11
...

. . .
...

. . .
...

...
r1i � � � rki � � � rmi rm+1i
...

. . .
...

. . .
...

...
r1m � � � rkm � � � rmm rm+1m
r1m+1 � � � rkm+1 � � � rmm+1 rm+1m+1

1CCCCCCCCA
I Let�s pick an arbitrary (r k1 , ..., r

k
i , ..., r

k
m , r

k
m+1) with

∑m+1
i=1 r

k
i = k and r

k
i 2 [0, 1] for all i .



Freedom of Choosing Assignment Matrix (5)

Q. For an arbitrary (r k1 , ..., r
k
i , ..., r

k
m , r

k
m+1) with ∑m+1

i=1 r
k
i = k and

r ki 2 [0, 1] for all i , is there an allocation rule qkj such that

r ki = ∑
S2Si (k )

qkj (S) 2 [0, 1]

for all i = 1, ...,m+ 1 and k = 2, ...,m� 1?

A. Yes, we can.

1. Let r km+1 � r ki (we can reshu e). Drop her.
2. Let r̃ k = (r̃ k1 , ..., r̃

k
i , ..., r̃

k
m) _ (r k1 , ..., r ki , ..., r km) with

∑m
i=1 r̃

k
i = k. (r̃

k
1 , ..., r̃

k
i , ..., r̃

k
m , 0) is supportable.

3. Let r̃ k�1 = (r̃ k�11 , ..., r̃ k�1i , ..., r̃ k�1m ) _ (r k1 , ..., r ki , ..., r km) with
∑m
i=1 r̃

k�1
i = k � 1. (r̃ k�11 , ..., r̃ k�1i , ..., r̃ k�1m , 1) is supportable.

4. A convex combination of 2 and 3 supports
(r k1 , ..., r

k
i , ..., r

k
m , r

k
m+1).



Optimal Assignment Matrix (convex case) (1)

When 1�σ
σ+β�1 > 1 (convex), or when we focus on

deterministic rule, �nd

R =

0BBBBBB@
r11 � � � r k1 � � � rn1
...

. . .
...

. . .
...

r1i � � � r ki � � � rni
...

. . .
...

. . .
...

r1n � � � r kn � � � rnn

1CCCCCCA
that maximizes

n

∑
i=1

αij

"
max

(
n

∑
k=1

r ki µkj , 0

)# 1�σ
σ+β�1

I weights µs satisfy µ1j , ..., µ
k ��1
j � 0, and 0 < µk

�
j , ..., µ

n
j

I αij = a
β

σ+β�1
ij : α1j � α2j � ... � αij � ... � αnj



Optimal Assignment Matrix (convex case) (2)
I starting from i = 1, we assign (r ki )

n
k=1 sequentially

(r ki 2 f0, 1g)

I ζ(i) � f1, ...k, ..., ng: k 2 ζ(i)() r ki = 1

I counter κ(i) = (κ1(i), ..., κk (i), ..., κn(i)) is the number of
seats still available for each k when i is to be assigned

I κ(1) = (κ1(1), ..., κk (1), ..., κn(1)) = (1, ..., k, ..., n)
I κk (i + 1) = κk (i)� 1 if k 2 ζ(i); κk (i + 1) = κk (i) otherwise

I M(i) � fk : κk (i) > 0g: the set of ks that party j can
assign to candidate i

I L(i) � fk : κk (i) = n� i + 1g: the set of ks that party j
must assign to candidate i

I n 2 L(i) for all i (to be feasible)
I choose ζ(i) from L(i) � ζ(i) �M(i)



Optimal Assignment Matrix (convex case) (Example)

n = 7 and k� = 3 0BBBBBBBB@

0 0 1 1 1 1 1
0 0 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 1 0 0 0 1 1
1 1 0 0 0 0 1

1CCCCCCCCA
κ(1) = (1, 2, 3, 4, 5, 6, 7),M(1) = f1, ..., 7g, L(1) = f7g
κ(2) = (1, 2, 2, 3, 4, 5, 6),M(2) = f1, ..., 7g, L(2) = f7g
κ(3) = (1, 2, 1, 2, 3, 4, 5),M(3) = f1, ..., 7g, L(3) = f7g
κ(4) = (1, 2, 0, 1, 2, 3, 4),M(4) = f1, 2, 4, ..., 7g, L(4) = f7g
κ(5) = (1, 2, 0, 0, 1, 2, 3),M(5) = f1, 2, 5, 6, 7g, L(5) = f7g
κ(6) = (1, 2, 0, 0, 0, 1, 2),M(6) = f1, 2, 6, 7g, L(6) = f2, 7g
κ(7) = (1, 1, 0, 0, 0, 0, 1),M(7) = f1, 2, 7g, L(7) = f1, 2, 7g



Optimal Monotonic Rule (convex case)

Monotonic Rule. For all i = 1, .., n, and all k = 1, .., n� 1,
r ki � r k+1i .

Proposition 4. Under any monotonic rule, every candidate exerts
e¤ort.

Proof. Rewriting candidate i�s incentive term, we have
n

∑
k=1

r ki µk (pj ) = r1i
n

∑
k=1

µk (pj )+
�
r2i � r1i

� n

∑
k=2

µk (pj )+ ...+
�
rni � rn�1i

�
µn(pj )

By monotonicity, r ki � r k�1i � 0 for all k = 1, ..., n (r k0 = 0).
Thus, the FOSD, ∑n

k=m µk (pj ) > 0 for all m = 1, ..., n, implies:

max

(
n

∑
k=1

r ki µk (pj ), 0

)
=

n

∑
k=1

r ki µk (pj ) > 0



Optimal Monotonic Rule (convex case)
I If k� = 1, the optimal rule is monotonic rule� the list rule
with the highest ability to the lowest.

I If not, the optimal rule is not monotonic.
I If we con�ne our attention to monotonic rules, one of the list
rules is the optimal.

I if a rule is monotonic, eij > 0 for all i = 1, ..., n (the �rst-order
stochastic dominance).

I the highest ability candidates gets ζ(1) = fk�, ..., ng
I the second is either fk� + 1, ..., ng or fk� � 1, ..., ng, and so
on (single-peaked at k�)



Optimal Monotonic Rule (convex case)

Proposition 6. Suppose β < 2 (1� σ). Then, the optimal
monotonic rule is a list rule.

Example: n = 7 and k� = 30BBBBBBBB@

0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 1 1 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
1 1 1 1 1 1 1
0 0 0 0 0 0 1

1CCCCCCCCA
optimal list: f6, 3, 1, 2, 4, 5, 7g
I If we consider only deterministic rules, then the optimal
deterministic monotonic rule is a list rule (no condition
needed).



Concave Case?

When β > 2 (1� σ), Ej is a concave function of candidates�
e¤orts eij s.

I This is a textbook exercise� proportional allocation.
I But depending on parameters, proportional allocation may not
be feasible.

I When β� 2 (1� σ) is small, with substantial ability di¤erence,
there is no way to have proportional allocation.

Proposition 7. Suppose β > 2 (1� σ). Then, whenever feasible,
the optimal assignment rule tries to allocate the chances of
candidates to get a seat in the parliament proportionally to

a
β

β�2(1�σ)

ij .



Summary
I A tractable model of team production with indivisible prizes.
I A list rule is the optimal monotonic rule, if

1. complementarity is not too strong and cost function is not too
convex, or

2. we con�ne our attention to deterministic rules only

I However, the optimal list is not in order of ability
I the highest ability candidate will be listed in the middle
I the highest ability candidate needs to make a lot of e¤ort

I optimal (nonmonotonic) rule is characterized


