Gradual Bargaining in Decentralized Asset Markets

Hu, In, Lebeau, and Rocheteau

Game Theory Workshop at NUS 6th June, 2018

Background

Models of decentralized asset markets

• to explain asset/market liquidity

Two approaches

- New Monetarist approach: Assets as media of exchange
- Finance approach: Illiquid assets traded over the counter

Based on search paradigm with two core components:

search frictions and pairwise meetings

2 bargaining

This paper is about **bargaining**

Background: 2nd generation of models

Restricted asset holdings: $a \in \{0, 1\}$

Background: 3rd generation of models

Portfolio of divisible assets: $\mathbf{a} \in \mathbf{R}^J_+$

(日)

Background: How is bargaining handled?

Bargaining with $\mathbf{a} \in \mathbf{R}_+^J$ like with $\mathbf{a} \in \{0, 1\}$

- Generalized Nash or Kalai solution
- Agents negotiate their portfolio all at once

Background: How is bargaining handled?

Bargaining with $\mathbf{a} \in \mathbf{R}_+^J$ like with $\mathbf{a} \in \{0, 1\}$

- Generalized Nash or Kalai solution
- Agents negotiate their portfolio all at once

Questions

- Is this agenda (all-at-once bargaining) restrictive?
- Is it the agenda that agents/society would choose?
- Does the agenda matter for allocations and prices?

Insights

Bargaining theory

Extensive-form bargaining games, endogenous agenda

Asset prices

Negotiability premia, distributions of asset returns and velocities

Onetary theory

rate-of-return dominance, exchange rate determination, OMOs

Time, goods, agents

- Time: $t = 0, 1, 2..., \infty$
 - Each period has two stages:
 - Decentralized market (DM) for goods and assets, with pairwise meetings and bargaining
 - 2 Centralized market (CM) for goods and assets
 - DM good is perishable, and CM good taken as numeraire

Time, goods, agents

- Time: $t = 0, 1, 2..., \infty$
 - Each period has two stages:
 - Decentralized market (DM) for goods and assets, with pairwise meetings and bargaining
 - 2 Centralized market (CM) for goods and assets
 - DM good is perishable, and CM good taken as numeraire

Agents: divided into two types, unit measure of each

- **(**) Consumers: consume DM good and produce numeraire
- Producers: produce DM good and consume numeraire

In DM, $\alpha \in (0,1]$ pairwise meetings b/w consumers and producers

- Discount factor $\beta = 1/(1+\rho)$
- Efficient DM output: $u'(y^*) = v'(y^*)$

э

Assets

- Lucas trees: pay off $d \ge 0$ in the CM
 - Fiat money: d = 0
- Exogenous supply: $A_{t+1} = (1 + \pi)A_t$

• if
$$d > 0, \pi = 0$$

- Asset price in terms of the numeraire: ϕ_t
- No private IOUs: no record-keeping and no commitment

Bargaining game

Game has N rounds

- Asset owner has z units of assets (in terms of numeraire)
- Divided into N equal sizes: z/N
- In each round, agents negotiate sale of z/N assets for some output y

Alternative ultimatum offer game

N two-stage rounds, identity of the proposer alternates

- Stage 1: One player makes an offer
- Stage 2: Other player accepts/rejects

Intermediate Pareto frontier

• Denote
$$au\equiv nz/N$$
 where $n=1,...,N$

• For each au, feasibility constraint on asset sales: $p(au) \leq au$

• For each τ , a Pareto frontier:

Image: A matrix and a matrix

・ロト・西ト・ヨト・ヨー うへぐ

Subgame Perfect Equilibrium

(日)

gradual bargaining

Solution to alternating ultimatum offer bargaining game

Take the limit as N approaches ∞

• SPE exists with $\{u^b(\tau), u^s(\tau)\}$ converging to solution to:

$$u^{\chi\prime}(\tau) = -\frac{1}{2} \underbrace{\frac{\partial H(u^b, u^s, \tau) / \partial \tau}{\partial H(u^b, u^s, \tau) / \partial u^{\chi}}}_{\text{expressed in utils of player } \chi}, \quad \chi \in \{b, s\}$$

Robustness: coincides with axiomatic gradual bargaining solution by O'Neill et al. (2004)

• Pareto optimality, scale invariance, symmetry, directional continuity, time consistency

Gradual bargaining path

э

<ロト < 同ト < ヨト < ヨト

Solution in terms of allocations

Asset price (in terms of DM goods) solves:

$$y'(au) = rac{1}{2} \left(\overbrace{\frac{1}{\upsilon'(y)}}^{ ext{ask price}} + \overbrace{\frac{1}{u'(y)}}^{ ext{bid price}}
ight) ext{ for all } y < y^*$$

Suppose v'(y) = 1. Asset price is:

$$\frac{1}{2}\left(1+\frac{1}{u'(y)}\right).$$

• Price increases with the size of the trade

Alternative Extensive Game

Hu

э

< ∃⇒

Bundled vs gradual sales

• Intermediate output levels, $\{y_n\}_{n=1}^N$, solve:

Proposition: Consumers (asset owners) prefer $N = +\infty$ to any $N < +\infty$.

Hu

Asset negotiability

Agenda indexed by time, $\boldsymbol{\tau}$

• An implicit mapping between au and z

New asset characteristic: Negotiability

- $\delta > 0$ units of assets can be sold per unit of time
- What is negotiability in practice:
 - time to authenticate assets
 - time to value complex assets
 - time to execute trade and transfer ownership (e.g., blockchain technologies)

Random time to negotiate asset sales: $ar{ au} \sim \mathsf{Exp}(\lambda)$

negotiation breakdown, proxy for discounting

Formally:

Pricing of Lucas trees

Interest rate spread (liquid vs non-liquid):

where $\ell(y) \equiv u'(y) / \upsilon'(y) - 1$

- $e^{-\frac{\lambda}{\delta}p(y)}$ akin to a pledgeability coefficient
 - endogenous with \neq comparative statics
- s decreases with Ad but increases with δ and $1/\lambda$

Endogenous negotiability

Consumers choose δ when a match is formed but before $\bar{\tau}$ is realized

• Cost to enhance negotiability: $\psi(\delta)$

Proposition

- **()** If A is not too large, an increase in A reduces s, but raises δ .
- If A is not too large, asset negotiability is too low for all bargaining powers.
 - a pecuniary externality

Multiple assets

 ${\it J}$ one-period lived trees, one unit of each pays off one unit of numeraire

- Fiat money: j = 0; asset j has fixed supply A_j , j = 1, ..., J
- Negotiability of asset j is δ_j with $\delta_0 \ge \delta_1 \ge ... \ge \delta_J$
 - Pecking order: sell assets with high negotiability first

Asset prices:

OMOs: negotiability vs liquidity

• In Regime 3, increase in A_1 (bond supply) leads to reduction in output

Multiple fiat monies

Multiple cryptocurrencies: Bitcoins, Litecoin, Ethereum

- $\bullet\,$ Confirmation times vary across currencies, modeled as different $\delta\,$
- 2 currencies: 0 and 1, with inflation rates $\pi_0 > \pi_1$ but with $\delta_0 > \delta_1$

Dual currency equilibrium

- For intermediate $\bar{\tau}$'s a unique eq. exists with both currencies valued
- $\partial y / \partial \pi_0 < 0$ and $\partial y / \partial \pi_1 > 0$
- Currency 0 appreciates vis-a-vis currency 1 as α or θ increases or as $\bar{\tau}$ decreases
 - because agents put more weight on negotiability

Conclusion

New approach to bargaining over portfolios in decentralized asset markets

- Axiomatic and strategic foundations
- Tractable
- Encompasses Nash and Kalai solutions for specific agendas

Insights

- Normative: gradualism desirable individually and socially
- Positive: negotiability premia, distribution of asset returns, determinacy of exchange rate, OMOs