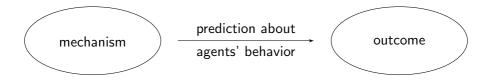
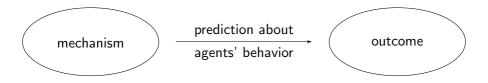


Tilman Börgers¹ Jiangtao Li²

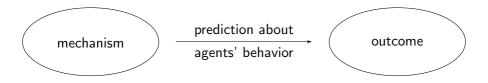
¹University of Michigan

²University of New South Wales

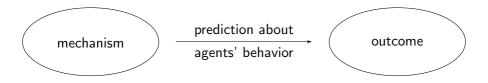




make it more likely that the designer's predictions are correct;



- make it more likely that the designer's predictions are correct;
- make it easier to persuade people to participate;



- make it more likely that the designer's predictions are correct;
- make it easier to persuade people to participate;
- don't discriminate on the basis of cognitive ability.

Strategic simplicity:

• the strategic thinking required to find an optimal strategy is simple.

Strategic simplicity:

• the strategic thinking required to find an optimal strategy is simple.

Now imagine you are writing this paper...

Strategic simplicity:

• the strategic thinking required to find an optimal strategy is simple.

Now imagine you are writing this paper...

How would you model strategic simplicity?



In this paper, we

- propose a definition of strategic simplicity,
- and characterize all strategically simple mechanisms.

Possible Definition of Strategic Simplicity:

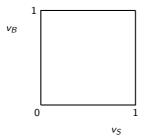
Strategic Simplicity = Dominant Strategy Mechanisms

Examples

The set of dominant strategy mechanisms is small in some problems.

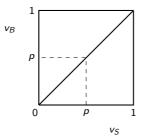
Example: Bilateral Trade (Myerson and Satterthwaite (1983)):

• Dominant strategy mechanisms - posted price mechanisms



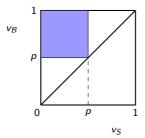
Example: Bilateral Trade (Myerson and Satterthwaite (1983)):

• Dominant strategy mechanisms - posted price mechanisms



Example: Bilateral Trade (Myerson and Satterthwaite (1983)):

• Dominant strategy mechanisms - posted price mechanisms



• The designer first chooses a price *p*.

- The designer first chooses a price *p*.
- The seller may:
 - refuse trade;
 - propose trade at $p' \leq p$.

- The designer first chooses a price *p*.
- The seller may:
 - refuse trade;
 - propose trade at $p' \leq p$.
- If the seller has proposed trade at p', the buyer may:
 - reject trade;
 - accept trade at p'.

Introduction	Definition	Examples	Characterization	Related Literature	Further Research

In this paper:

Strategic simplicity = Only first order beliefs matter

In this paper:

Strategic simplicity = Only first order beliefs matter

Relevant:

• beliefs about other agents' preferences and certainty of their rationality.

In this paper:

Strategic simplicity = Only first order beliefs matter

Relevant:

• beliefs about other agents' preferences and certainty of their rationality.

Irrelevant:

. . .

beliefs about beliefs about other agents' preferences and their rationality;

- Dominant strategy mechanisms:
 - posted price mechanisms.

- Dominant strategy mechanisms:
 - posted price mechanisms.
- A strategically simple mechanism:
 - ultimatum bargaining (possibly with a price cap).

- Dominant strategy mechanisms:
 - posted price mechanisms.
- A strategically simple mechanism:
 - ultimatum bargaining (possibly with a price cap).
- Not strategically simple mechanism:
 - $\frac{1}{2}$ -double auction.

Introduction	Definition	Examples	Characterization	Related Literature	Further Research
Outline					

- Definition
- Examples
- Characterization
- Related Literature
- Further Research

Introduction	Definition	Examples	Characterization	Related Literature	Further Research
Definitio	n				

- *n* agents: $i \in I = \{1, 2, ..., n\}$.
- A finite set A of outcomes.
- A mechanism:
 - finite strategy sets S_i for each agent i,
 - a function $g: S_1 \times S_2 \times \ldots \times S_n \to A$.

We are going to define the following:

- Utility function
- Utility belief
- Strategic belief
- Compatible strategic belief
- Best response
- Strategically simple mechanism

- $u_i : A \to \mathbb{R}$: a utility function of agent *i*.
- $\mathcal{U}:$ set of all utility functions.

 $\mathbf{U}_i \subseteq \mathcal{U}$: set of all admissible utility functions of agent *i*.

 $\mathbf{U} \equiv \prod_{i \in I} \mathbf{U}_i \quad \mathbf{U}_{-i} \equiv \prod_{j \neq i} \mathbf{U}_i.$

- μ_i : a utility belief of agent *i*; a probability measure on \mathbf{U}_{-i} .
- $\mathbf{M}_i \subseteq \Delta(\mathbf{U}_{-i})$: set of all admissible utility beliefs of agent *i*.

- μ_i : a utility belief of agent *i*; a probability measure on \mathbf{U}_{-i} .
- $\mathbf{M}_i \subseteq \Delta(\mathbf{U}_{-i})$: set of all admissible utility beliefs of agent *i*.

 $\hat{\mu}_i$: a strategic belief of agent *i* (a probability measure on S_{-i}).

- μ_i : a utility belief of agent *i*; a probability measure on \mathbf{U}_{-i} .
- $\mathbf{M}_i \subseteq \Delta(\mathbf{U}_{-i})$: set of all admissible utility beliefs of agent *i*.

 $\hat{\mu}_i$: a strategic belief of agent *i* (a probability measure on S_{-i}).

 $UD_i(u_i)$: set of strategies of *i* that are not weakly dominated given u_i .

Introduction	Definition	Examples	Characterization	Related Literature	Further Research

Definition

A strategic belief $\hat{\mu}_i$ on S_{-i} is compatible with a utility belief μ_i if there is a probability measure ν_i on

$$\prod_{j\neq i} \left\{ (u_j, s_j) \in \mathcal{U}_j \times S_j | s_j \in UD_j(u_j) \right\}$$

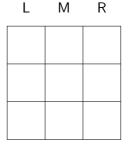
that has marginal μ_i on \mathcal{U}_{-i} and marginal $\hat{\mu}_i$ on S_{-i} .

Introduction	Definition	Examples	Characterization	Related Literature	Further Research

A strategic belief $\hat{\mu}_i$ on S_{-i} is compatible with a utility belief μ_i if there is a probability measure ν_i on

$$\prod_{j\neq i} \left\{ (u_j, s_j) \in \mathcal{U}_j \times S_j | s_j \in UD_j(u_j) \right\}$$

that has marginal μ_i on \mathcal{U}_{-i} and marginal $\hat{\mu}_i$ on S_{-i} .



L

$UD_j(u_j) = \{L, M\}.$
$UD_j(u_j') = \{M, R\}.$

Introduction	Definition	Examples	Characterization	Related Literature	Further Research

A strategic belief $\hat{\mu}_i$ on S_{-i} is compatible with a utility belief μ_i if there is a probability measure ν_i on

$$\prod_{j\neq i} \left\{ (u_j, s_j) \in \mathcal{U}_j \times S_j | s_j \in UD_j(u_j) \right\}$$

L

that has marginal μ_i on \mathcal{U}_{-i} and marginal $\hat{\mu}_i$ on S_{-i} .

 $\hat{\mu}_i^1$

$$UD_j(u_j) = \{L, M\}.$$

 $UD_j(u'_j) = \{M, R\}.$

Μ

R

compatible

Introduction	Definition	Examples	Characterization	Related Literature	Further Research

A strategic belief $\hat{\mu}_i$ on S_{-i} is compatible with a utility belief μ_i if there is a probability measure ν_i on

$$\prod_{j\neq i} \left\{ (u_j, s_j) \in \mathcal{U}_j \times S_j | s_j \in UD_j(u_j) \right\}$$

that has marginal μ_i on \mathcal{U}_{-i} and marginal $\hat{\mu}_i$ on S_{-i} .

 $UD_i(u_i) = \{L, M\}.$

 $UD_i(u'_i) = \{M, R\}.$

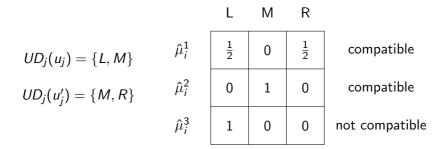
$$\begin{array}{c|ccccc}
L & M & R \\
\hat{\mu}_i^1 & \frac{1}{2} & 0 & \frac{1}{2} \\
\hat{\mu}_i^2 & 0 & 1 & 0 \\
\hline
\end{array}$$
compatible

Introduction	Definition	Examples	Characterization	Related Literature	Further Research

A strategic belief $\hat{\mu}_i$ on S_{-i} is compatible with a utility belief μ_i if there is a probability measure ν_i on

$$\prod_{j\neq i} \left\{ (u_j, s_j) \in \mathcal{U}_j \times S_j | s_j \in UD_j(u_j) \right\}$$

that has marginal μ_i on \mathcal{U}_{-i} and marginal $\hat{\mu}_i$ on S_{-i} .



A strategic belief $\hat{\mu}_i$ on S_{-i} is compatible with a utility belief μ_i if there is a probability measure ν_i on

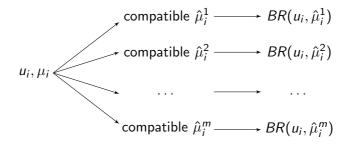
$$\prod_{j\neq i} \left\{ (u_j, s_j) \in \mathcal{U}_j \times \mathcal{S}_j | s_j \in \mathit{UD}_j(u_j) \right\}$$

that has marginal μ_i on \mathcal{U}_{-i} and marginal $\hat{\mu}_i$ on S_{-i} .

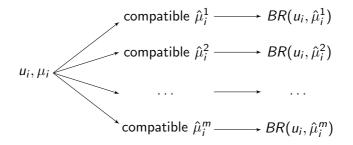
Notation: $\mathcal{M}_i(\mu_i)$: set of strategic beliefs of *i* compatible with utility belief μ_i .

 $BR_i(u_i, \hat{\mu}_i)$: set of strategies of *i* that maximize expected utility if *i* has utility function u_i and strategic belief $\hat{\mu}_i$.

 $BR_i(u_i, \hat{\mu}_i)$: set of strategies of *i* that maximize expected utility if *i* has utility function u_i and strategic belief $\hat{\mu}_i$.



 $BR_i(u_i, \hat{\mu}_i)$: set of strategies of *i* that maximize expected utility if *i* has utility function u_i and strategic belief $\hat{\mu}_i$.



Definition

A mechanism is strategically simple if for all agents $i \in I$, utility functions $u_i \in \mathbf{U}_i$, and utility beliefs $\mu_i \in \mathbf{M}_i$:

$$\bigcap_{\hat{\mu}_i \in \mathcal{M}_i(\mu_i)} BR_i(u_i, \hat{\mu}_i) \neq \emptyset.$$

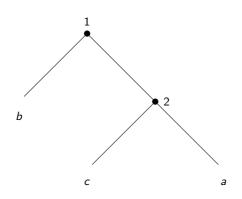
Introduction	Definition	Examples	Characterization	Related Literature	Further Research

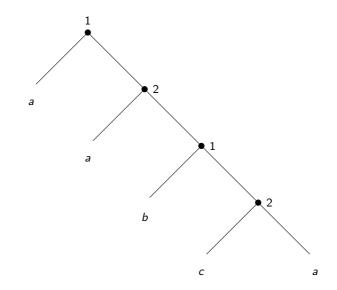
• Built In Robustness: higher order beliefs don't matter.

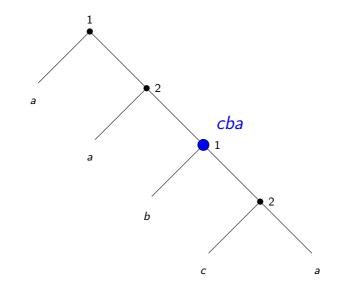
- Built In Robustness: higher order beliefs don't matter.
- Simplicity with Complete Robustness: large sets **U**_i and **M**_i.

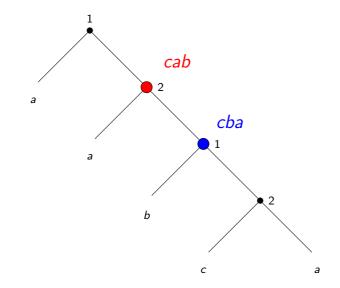
- Built In Robustness: higher order beliefs don't matter.
- Simplicity with Complete Robustness: large sets **U**_i and **M**_i.
- Simplicity without Complete Robustness: small sets **U**_i and **M**_i.

Introduction	Definition	Examples	Characterization	Related Literature	Further Research
Examples					

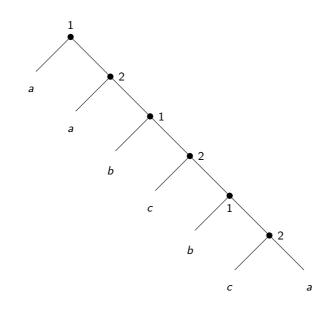




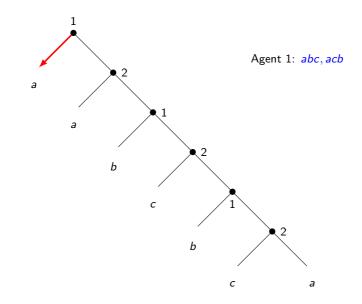




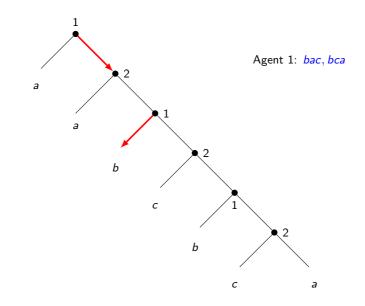
Introduction	Definition	Examples	Characterization	Related Literature	Further Research



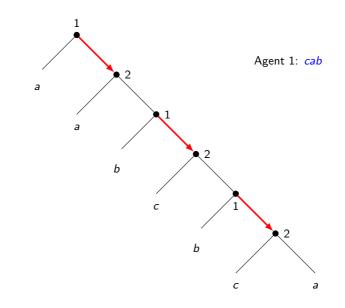
Introduction	Definition	Examples	Characterization	Related Literature	Further Research



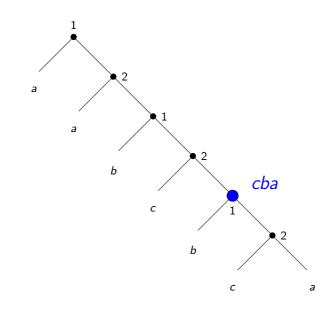
Introduction	Definition	Examples	Characterization	Related Literature	Further Research



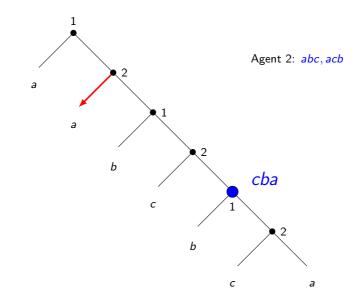
Introduction	Definition	Examples	Characterization	Related Literature	Further Research



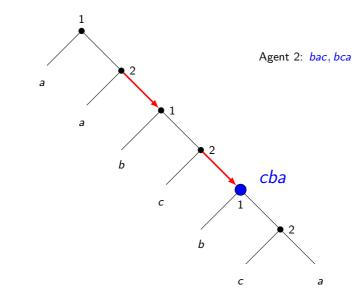
Introduction	Definition	Examples	Characterization	Related Literature	Further Research



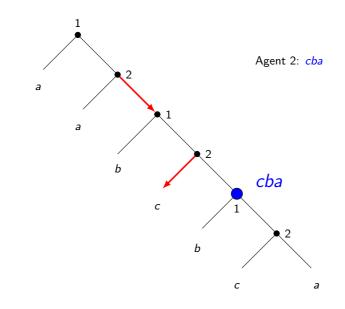
Introduction	Definition	Examples	Characterization	Related Literature	Further Research



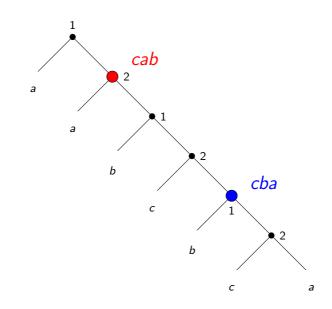
Introduction	Definition	Examples	Characterization	Related Literature	Further Research
Strate	gically Simpl	e			



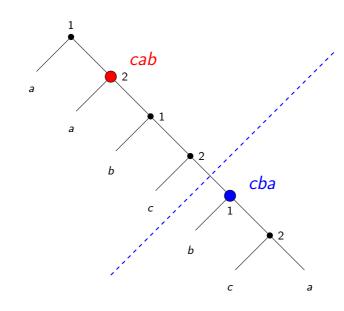
Introduction	Definition	Examples	Characterization	Related Literature	Further Research



Introduction	Definition	Examples	Characterization	Related Literature	Further Research



Introduction	Definition	Examples	Characterization	Related Literature	Further Research



 R_i : a linear order on A.

 R_i : a linear order on A.

 $\mathcal{U}(R_i) \subset \mathcal{U}$: the set of all utility functions that represent R_i .

 R_i : a linear order on A.

 $\mathcal{U}(R_i) \subset \mathcal{U}$: the set of all utility functions that represent R_i .

 \mathcal{R} : the set of all linear orders on A.

Let R_i be a linear order on A. A strategy $s_i \in S_i$ of agent i is weakly dominated given R_i if there is another strategy $\hat{s}_i \in S_i$ such that for all $s_{-i} \in S_{-i}$

$$g(\hat{s}_i, s_{-i})R_ig(s_i, s_{-i})$$
 or $g(\hat{s}_i, s_{-i}) = g(s_i, s_{-i})$.

and, for some $s_{-i} \in S_{-i}$

 $g(\hat{s}_i, s_{-i})R_ig(s_i, s_{-i}).$

Let R_i be a linear order on A. A strategy $s_i \in S_i$ of agent i is weakly dominated given R_i if there is another strategy $\hat{s}_i \in S_i$ such that for all $s_{-i} \in S_{-i}$

$$g(\hat{s}_i, s_{-i})R_ig(s_i, s_{-i})$$
 or $g(\hat{s}_i, s_{-i}) = g(s_i, s_{-i})$.

and, for some $s_{-i} \in S_{-i}$

$$g(\hat{s}_i, s_{-i})R_ig(s_i, s_{-i}).$$

 $UD_i(R_i) \subseteq S_i$: set of all strategies of agent *i* that are not weakly dominated given R_i .

Introduction	Definition	Examples	Characterization	Related Literature	Further Research
Theor	em				
Suppo	se for every a	agent i,			

• there is a set $\mathcal{R}_i \subseteq \mathcal{R}$ such that $\mathbf{U}_i = \bigcup_{R_i \in \mathcal{R}_i} \mathcal{U}(R_i)$,

Introduction	Definition	Examples	Characterization	Related Literature	Further Research
Theore	em				

Suppose for every agent i,

- there is a set $\mathcal{R}_i \subseteq \mathcal{R}$ such that $\mathbf{U}_i = \bigcup_{R_i \in \mathcal{R}_i} \mathcal{U}(R_i)$,
- $\mathbf{M}_i = \Delta(\mathbf{U}_{-i})$ for all $i \in I$.

Introduction	Definition	Examples	Characterization	Related Literature	Further Research
Theo	orem				

Suppose for every agent i,

• there is a set $\mathcal{R}_i \subseteq \mathcal{R}$ such that $\mathbf{U}_i = \bigcup_{R_i \in \mathcal{R}_i} \mathcal{U}(R_i)$,

•
$$\mathbf{M}_i = \Delta(\mathbf{U}_{-i})$$
 for all $i \in I$.

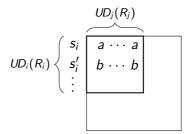
Then a mechanism is strategically simple if and only if: for every $R \in \bigotimes_{i \in I} \mathcal{R}_i$ there is a local dictator $i^* \in I$,

Suppose for every agent i,

- there is a set $\mathcal{R}_i \subseteq \mathcal{R}$ such that $\mathbf{U}_i = \bigcup_{R_i \in \mathcal{R}_i} \mathcal{U}(R_i)$,
- $\mathbf{M}_i = \Delta(\mathbf{U}_{-i})$ for all $i \in I$.

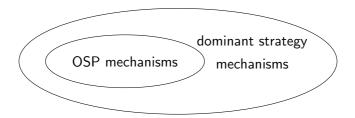
Then a mechanism is strategically simple if and only if: for every $R \in X_{i \in I} \mathcal{R}_i$ there is a local dictator $i^* \in I$, i.e. for every strategy $s_{i^*} \in UD_{i^*}(R_{i^*})$ there is an alternative $a \in A$ such that:

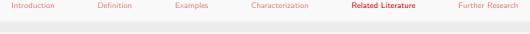
$$g(s_{i^*}, s_{-i^*}) = a \text{ for all } s_{-i^*} \in UD_{-i^*}(R_{-i^*}).$$



Li (2017) studies obviously strategy-proof (OSP) mechanisms.

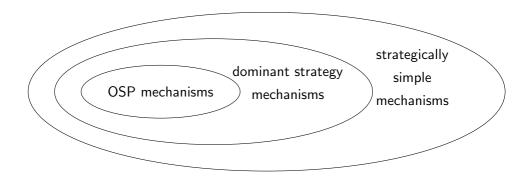
- A subset of the set of all dominant strategy mechanisms.
- What is obvious?
 - Agents immediately recognize optimal strategies.





We study strategically simple mechanisms.

- A superset of the set of dominant strategy mechanisms.
- What is strategically simple?
 - Agents can be offered a convincing explanation of optimal strategy choices.



For environments with quasilinear preferences.

Robust mechanism design:

- The design has no information about agents' beliefs.
- Chen and Li (2017)
- Yamashita and Zhu (2017)

For environments with quasilinear preferences.

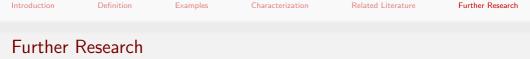
Robust mechanism design:

- The design has no information about agents' beliefs.
- Chen and Li (2017)
- Yamashita and Zhu (2017)

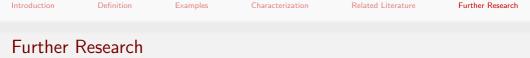
If attention is restricted to a narrow subset of beliefs:

• Cremer and Riordan (1985)

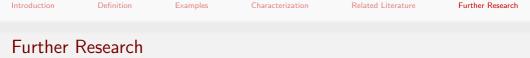
• Further characterizations of strategically simple mechanisms.



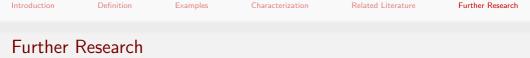
- Further characterizations of strategically simple mechanisms.
- Second order belief? Finite order belief?



- Further characterizations of strategically simple mechanisms.
- Second order belief? Finite order belief?
- Optimal strategically simple mechanism?



- Further characterizations of strategically simple mechanisms.
- Second order belief? Finite order belief?
- Optimal strategically simple mechanism?
- Testing strategic simplicity.



- Further characterizations of strategically simple mechanisms.
- Second order belief? Finite order belief?
- Optimal strategically simple mechanism?
- Testing strategic simplicity; Borgers, Calford, and Li (WIP).