Self-Evident Events and the Value of Linking

Jimmy Chan Wenzhang Zhang

Chinese University of Hong Kong Zhejiang University

July 2018

Introduction

- Linking independent and identical copies of the same private-information problem makes them easier to solve.
- Repeated games with imperfect monitoring.
- Long-term contracting Radner (1985), Fuchs (2007),
- Repeated hidden-information problems (Jackson and Sonnenschein (2007), Escobar and Toikka (2013))
- Intuition: the law of large number reduces the degree of information asymmetry between players.

Repeated Games

- A large literature of repeated games are driven by two observations:
- Providing incentives is costly when actions are imperfectly monitored (Green and Porter 1984)
- Linking incentives across periods may reduce efficiency loss (Abreu, Milgrom, and Pearce, 1991)

Abreu, Milgrom, and Pearce (1991)

- 1 Repeated Prisoners' Dilemma with a noisy public signal
- ② Two scenarios: 1. the public signal observed at the end of each period; 2. the public signals in every T period block observed at the end of the block.
- Linking has no value in Case 1. The second best can be achieved by a stationary trigger-strategy equilibrium.
- Linking improves efficiency in Case 2. Efficiency loss goes to zero as T goes to infinity.
- Sannikov and Skrzypacz (2007)—reverse AMP. As information arrives faster and faster, collusion becomes impossible.

Follow up

- Identify the deviator: Kandori and Matsushima (1998): pair-wise identifiability; Rahman and Obara (2010): attributability (weak identifiability).
- Endogenous Delay with private signals: Compte (1998) with independent private signals and Obara (2009) with correlated signals
- Endogenous Delay through correlated strategies: Rahman (2014), Sugaya (2016)

Questions

- Linking is useful (not useful) if the signals are private and independent (public).
- What if players observe both private and public signals?

Overview of results

- Generalize the insights of AMP to general stage games.
- Show that any efficiency loss results from a logic similar to the public signal case.
- Provide a tight bound on the per-period efficiency loss in enforcing a particular action profile in a T period contracting game when T becomes large.
- Characterize the efficiency loss in terms the primitives of the stage game, combining linking with Obara and Rahman (2010).
- Show that for any strictly enforceable action profile, there is a correlated action profile close to it that can enforced with arbitrarily small long-term efficiency loss. Simila to Rahman (2014), Sugaya (2016) is similar, but weaker (?)

Outline

- AMP
- Self-evident events
- Oharacterize the long-run per period efficiency loss.

AMP

Noisy Prisoners' Dilemma

Actions

	С	D
С	1, 1	-h, 1+d
D	1+d,-h	0,0

Public Signal Dist.

	Н	L	
CC	р	1 - p	
CD	q	1-q	

$$1 > p > q$$
, h , $d > 0$.

- If players observe the public signal immediately at the end of each period, the average symmetric equilibrium payoff must be less than (1,1).
- **1** If players observe the public signals in all previous T periods once every T periods, the average symmetric equilibrium payoff of the best equilibrium approaches (1,1) at T becomes large.

Stage game

- **1** $n \ge 2$ players. $A = A_1 \times ... \times A_n$.
- In each period,
 - **1** A mediator picks $\tilde{a}(t)$ according to η and informs player i of $\tilde{a}_i(t)$.
 - **2** Each player i chooses $a_i(t)$ from A_i .
 - **3** A profile of signals $y(t) = (y_1(t), ...y_n(t))$ realized with p(y|a). Player i observes $y_i(t)$.

What do the players know at the end of a stage game?

- **1** $(A \times Y)(\eta)$ the set of (\tilde{a}, y) that is possible given η and p.
- \bigcirc P_i is the information partition of i.
- **3** For each $(\widetilde{a}'_i, y'_i) \in (A_i \times Y_i)(\eta)$, $P_i(\widetilde{a}'_i, y'_i)$ is the subset of $(A \times Y)(\eta)$ consistent with (\widetilde{a}'_i, y'_i) .
- Player i "knows" E at (\widetilde{a}_i, y_i) if $P_i(\widetilde{a}_i, y_i) \subseteq E$.
- **3** A subset E of $(A \times Y)(\eta)$ is self-evident if E is common knowledge at any $(\widetilde{a}, y) \in E$.
- \bullet P is the meet of $P_1, ..., P_n$.
- **②** Each $\omega \in P$ is self-evident. Each proper subset of ω is not.

Example 1 (pure strategy, public monitoring)

$$y_i \in \{H, M, L\}$$

	Н	М	L
Н	+	0	0
М	0	+	0
L	0	0	+

$$P = \{(H, H)\}, \{(M, M), (L, M), (L, L)\}$$

Example 2 (pure strategy, private monitoring)

$$y_i \in \{H, M, L\}$$

	Н	М	L
Н	+	0	0
М	0	+	0
L	0	+	+

$$P = \{(H, H)\}, \{(M, M), (L, M), (L, L)\}$$

Example 3 (correlated strategy, public monitoring)

$$y \in \{H, L\}$$
, $A_1 = A_2 = \{C, D\}$
 $(\eta(CC), \eta(CD), \eta(DC), \eta(DD)) = (+, +, +, 0)$

	HC	HD	LC	LD
HC	+	+	0	0
HD	+	0	0	0
LC	0	0	+	+
LD	0	0	+	0

"H" =
$$\{HCC, HCD, HDC\}$$
, "L" = $\{LCC, LCD, LDC\}$
P = $\{"H", "L"\}$

Stage game incentives

- **1** At the end of a period, each player i report \hat{y}_i . Mediator reveals \tilde{a} .
- ② To enforce η , each player is paid $w_i(\widetilde{a},\widehat{y})$
- **3** Require: $\sum_{i=1}^{n} w_i \leq 0$. Incentives are costly.
- Player i's total payoff

$$\sum_{t=1}^{T} g_i(a(t)) + w_i(\widetilde{a}, \widehat{y}).$$

Decomposition of Incentives

We can decompose any incentives:

$$w_i(\widetilde{a},\widehat{y}) = w_{i,a}(\widetilde{a},\widehat{y}) + w_{i,b}(\widetilde{a},\widehat{y}),$$

where

$$\begin{array}{lcl} w_{i,a}(\widetilde{a},\widehat{y}) & \equiv & w_i(\widetilde{a},\widehat{y}) - w_{i,b}(\widetilde{a},\widehat{y}) \\ \\ w_{i,b}(\widetilde{a},\widehat{y}) & \equiv & E\left[w_i(\widetilde{a}',\widehat{y}') \middle| \sigma^*, P\left(\widetilde{a},\widehat{y}\right)\right] - \max_{\omega \in P} \sum_{i=1}^n E\left[w_i(\widetilde{a},\widehat{y})\middle| \sigma^*, \omega\right]. \end{array}$$

The decomposition divides w_i into a self-evident component, $w_{i,b}$, which depends solely on $P(\tilde{a}, \hat{y})$, and a residual private component, $w_{i,a}$.

Decomposition of incentives

Consider a two-player game. Signal distribution under a pure action profile η .

The expected transfer conditional on the first is -2, and that conditional on the second is -4. A player receives 0 if $\{(h_1,h_2)\}$ and -4+2=-2 if $\{(m_1,m_2),(l_1,m_2),(l_1,l_2)\}$. We can decompose the incentives into two components:

$$h_2$$
 m_2 l_2 h_2 m_2 l_2
 h_1 0 * * h_1 -2 * *

 m_1 * -2 * m_1 * +2 *

 l_1 * -2 -2 l_1 * -2 -4

◆ロト ◆卸 ▶ ◆ 恵 ▶ ◆ 恵 ● りへ○

Result

- The long-term efficiency loss depends only on the self-evident component.
- Efficiency loss associated with the residue can be eliminated through linking.

Intuition

- The first part extends AMP(1991)
- The secon part utilizes differential beliefs of the players within a non-reducible self-evident set.
- Original idea comes from Fong et. al. 2011.
- Chan and Zhang 2016 extend to full support.
- This paper extends to any irreducible self-evident set.