Equal-quantiles rules in resource allocation with uncertain needs

Yan Long (NYU Abu Dhabi), Jay Sethuraman (Columbia U), and Jingyi Xue (SMU)

NUS Game Theory Workshop

Motivation

- Pre-committed division with uncertain needs
- Examples: allocation of public service; division of rescue forces/medical supplies; capacity allocation in a network
- Ex post reallocation may not be possible
- Departure from the literature: waste vs deficit

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The model

- $\mathcal{N}:$ the set of all finite subsets of $\mathbb N$
- $I \in \mathcal{N}$: a finite population of agents
- *F_i*: a probability measure on \mathbb{R}_+ with convex and compact support
- $T \in \mathbb{R}_+$: total endowment
- A problem: $(F, T) \in \mathcal{P}'$, $I \in \mathcal{N}$
- An allocation: $t \in \mathbb{R}^{l}_{+}$ s.t. $\sum t_{i} \leq T$ and for each $i, t_{i} \in [0, \max \operatorname{supp} F_{i}]$

• A rule
$$r: \bigcup_{I} P^{I} \to \bigcup_{I} \mathbb{R}^{I}_{+}: r(F, T) = t$$

Cost of an assignment to a single agent i

Suppose that $u_i > u_0 > 0$. Agent 0 generates deterministic welfare and is outside the model.

Utility maximization \iff cost minimization

$$\int_{x_i < t_i} u_i x_i + u_0 (T - x_i) - [u_i x_i + u_0 (T - t_i)] dF_i(x_i)$$

$$+ \int_{x_i > t_i} u_i x_i + u_0 (T - x_i) - [u_i t_i + u_0 (T - t_i)] dF_i(x_i)$$

$$= \int_{x_i < t_i} u_0 (t_i - x_i) dF_i(x_i)$$

$$+ \int_{x_i > t_i} (u_i - u_0) (x_i - t_i) dF_i(x_i)$$

$$= c^w \cdot ew(F_i, t_i) + c_i^d \cdot ed(F_i, t_i)$$

Optimal assignment to a single agent i

$$\min_{t_i} c^w \cdot ew(F_i, t_i) + c_i^d \cdot ed(F_i, t_i)$$

Unconstrained solution: $t_i = F_i^{-1}(\frac{c_i^d}{c^w + c_i^d})$ Constrained solution: $t_i = T$

Discussion 1: Resource may not be exhausted.

Given $i \in \mathbb{N}$ with F_i , it could be that

$$t_{F_i}^* := \sup_{T \in \mathbb{R}_+} r_i(F_i, T) < \max \operatorname{supp} F_i.$$

Given $I \in \mathcal{N}$ with F, it could be that for each $i \in I$, $\sup_{T \in \mathbb{R}_+} r_i(F, T) < \max \operatorname{supp} F_i.$

Recall: an allocation $t \in \mathbb{R}_+^l$ is s.t. $\sum t_i \leq T$ and for each $i, t_i \in [0, \max \operatorname{supp} F_i]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Discussion 1: Maximum assignment

Our contribution: We find that some existing axioms, when extended from deterministic to the uncertain context, imply that for each $I \in \mathcal{N}$ and each $(F, T) \in \mathcal{P}^{I}$,

$$T \leq \sum_{i \in I} t^*_{F_i} \Rightarrow \sum_{i \in I} r_i(F, T) = T;$$

 $T > \sum_{i \in I} t^*_{F_i} \Rightarrow ext{for each } i, r_i(F, T) = t^*_{F_i}.$

Note: The maximum assignment of an agent does not depend on the number of other agents and their claims.

Discussion 2: Newsvendor problem — Similarity

Each unit of a perishable product can be purchased at price c and sold at price p where p > c > 0.

$$\min_{t_i} c^w \cdot ew(F_i, t_i) + c_i^d \cdot ed(F_i, t_i)$$
$$= \min_{t_i} c \cdot ew(F_i, t_i) + (p - c) \cdot ed(F_i, t_i)$$

Unconstrained solution:

$$t_i = F_i^{-1}(rac{c_i^d}{c^w + c_i^d}) = F_i^{-1}(rac{p-c}{p})$$

Critical fractile formula (operations management) Littlewood's rule (revenue management)

Discussion 2: Newsvendor problem — Difference

Unlimited resource vs limited resource (multiple agents)

Maximize a utility function vs social choice function

Profit vs social welfare (single agent/multiple agents)

Our contribution: Axiomatize a family of division rules selecting allocations according to

$$\min_{t} \sum_{i \in I} [c^{w} \cdot ew(F_i, t_i) + c^{d} \cdot ed(F_i, t_i)].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equal-quantile rules

An equal-quantile rule associated with $\lambda \in (0, 1]$ selects for each $I \in \mathcal{N}$ and each $(F, T) \in \mathcal{P}'$ the allocation that solves

$$\min_{t} \sum_{i \in I} [c^{w} \cdot ew(F_i, t_i) + c^{d} \cdot ed(F_i, t_i)],$$

where $c^w, c^d > 0$ are such that $\lambda = \frac{c^d}{c^w + c^d}$.

Axioms: *Continuity*

For each $I \in \mathcal{N}$, r is continuous on P^{I} .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Axioms: Strict Ranking

For each $I \in \mathcal{N}$, each $(F, T) \in \mathcal{P}^{I}$, and each pair $i, j \in I$, if F_{i} strictly first-order stochastically dominates F_{j} , then $r_{i}(F, T) > r_{j}(F, T)$.

◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Axioms: Ranking

For each $I \in \mathcal{N}$, each $(F, T) \in \mathcal{P}^{I}$, and each pair $i, j \in I$, if F_{i} first-order stochastically dominates F_{j} , then $r_{i}(F, T) \geq r_{j}(F, T)$.

Strict ranking and continuity imply ranking.

Ranking implies equal treatment of equals: For each $I \in \mathcal{N}$, each $(F, T) \in \mathcal{P}^{I}$, and each pair $i, j \in I$, if $F_{i} = F_{j}$, then $r_{i}(F, T) = r_{j}(F, T)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Axioms: *Consistency*

For each $I \in \mathcal{N}$, each $(F, T) \in \mathcal{P}^{I}$, each $J \subseteq I$, and each $i \in J$,

$$r_i(F, T) = r_i(F_J, \sum_{j \in J} r_j(F, T))$$
 and
 $r_i(F, T) = r_i(F_J, T - \sum_{j \in I \setminus J} r_j(F, T)),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where F_J is the restriction of F onto J.

Maximum assignment result

For each $i \in \mathbb{N}$ with F_i , recall $t^*_{F_i} := \sup_{T \in \mathbb{R}_+} r_i(F_i, T)$.

Theorem

If a rule r satisfies consistency and continuity, then for each $I \in \mathcal{N}$, each $(F, T) \in \mathcal{P}^{I}$, and each $i \in I$, $r_{i}(F, T) \leq t_{F_{i}}^{*}$, and if $T \leq \sum t_{F_{i}}^{*}$, $\sum r_{i}(F, T) = T$, and thus for each $i \in I$, $r_{i}(F, \sum t_{F_{i}}^{*}) = t_{F_{i}}^{*}$.

If a rule r satisfies consistency, continuity, and equal treatment of equals, then for each $I \in \mathcal{N}$, each $(F, T) \in \mathcal{P}^{I}$, and each $i \in I$, if $T > \sum t_{F_{i}}^{*}$, then $r_{i}(F, T) = t_{F_{i}}^{*}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Axioms: Ordinality

Independence of a (non-linear) transformation of the problem due to a common shock.

For each $I \in \mathcal{N}$, each $(F, T) \in \mathcal{P}^{I}$, each $\phi : \mathbb{R}_{+} \to \mathbb{R}_{+}$ that is strictly increasing and continuous, and each $i \in I$, $r_{i}(F^{\phi}, \sum \phi(r_{j}(F, T))) = \phi(r_{i}(F, T))$, where for each $j \in I$ and each $x_{j} \in \mathbb{R}_{+}$, $F_{j}^{\phi}(\phi(x_{j})) = F_{j}(x_{j})$.

D'Aspremont and Gevers (1977), Sprumont (1998), Chambers (2007)

Implication 1: Scale invariance

Independence of a uniform rescaling of the problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let
$$k > 0$$
 and for each $x_j \in \mathbb{R}_+$, $\phi^k(x_j) := kx_j$.

Implication 2: Coarse ETE

Agents with "coarsely" equal needs receive "coarsely" equal awards.

For each coarse transformation $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$, each $I \in \mathcal{N}$, each $(F, T) \in \mathcal{P}^I$, and each pair $i, j \in I$, $F_i^{\varphi} = F_j^{\varphi} \Rightarrow \varphi(r_i(F, T)) = \varphi(r_j(F, T)).$

Characterization Result

Theorem

A rule satisfies continuity, strict ranking, consistency, and ordinality if and only if it is an equal-quantile rule.

Equal-quantile rules

An equal-quantile rule associated with $\lambda \in (0, 1]$ selects for each $I \in \mathcal{N}$ and each $(F, T) \in \mathcal{P}'$ the allocation that solves

$$\min_{t} \sum_{i \in I} [c^{w} \cdot ew(F_i, t_i) + c^{d} \cdot ed(F_i, t_i)],$$

where $c^w, c^d > 0$ are such that $\lambda = \frac{c^d}{c^w + c^d}$.

Literature

Deterministic fair division: Moulin (2002), Thomson (2003, 2015)

Operations research: Rawls and Turnquist (2010), Wex, Schryen, Feuerriegel, Neumann (2014), etc.

Fair division under uncertainty: Ertemel and Kumar (2018), Xue (2018), Hougaard and Moulin (2018)

Literature: Fair allocation and welfare economics of risk

Fair allocation: axiomatize division rules (may or may not be rationalizable by some underlying social welfare function)

Welfare economics of risk: axiomatize social welfare functions under risk (Harsanyi (1955), Diamond (1967))

Open question: build a connection between them.