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Random Matching Markets
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Reliance on Continuous-Time Random Matching

▶ Many researchers have worked with continuous-time models that assume a large number
of agents who meet their partners randomly according to a Poisson process with a given
arrival rate.

▶ The intuition is that when a large number of agents conduct searches without explicit
coordination, random searches by different agents can be considered to be independent.

▶ By the law of large numbers, there should be an almost-sure constant cross-sectional
distribution of types, which will simplify the analysis dramatically.
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Infinite Agent Space

▶ However, the matching processes cannot be mathematically independent, as long as there
are only finitely many agents in the economy.

▶ This naturally leads to the consideration of infinitely many agents in random matching
models.
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Why Continuum?

▶ If the agent space is countable, the measure can not be countably additive.

▶ Failure of convergence theorems.

▶ Non-existence of equilibrium of simple models in games and economies:
Khan, Qiao, Rath and Sun (working paper)
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Reliance on Continuous-Time Random Matching

▶ Monetary theory. Hellwig (1976), Diamond-Yellin (1990), Diamond (1993), Trejos-Wright
(1995), Shi (1997), Zhou (1997), Postel-Vinay-Robin (2002), Moscarini (2005).

▶ Labor markets. Pissarides (1985), Hosios (1990), Mortensen-Pissarides (1994), Acemoglu-Shimer
(1999), Shimer (2005), Flinn (2006), Kiyotaki-Lagos (2007).

▶ Over-the-counter financial markets. Duffie-Garleanu-Pedersen (2005), Weill (2008),
Vayanos-Wang (2007), Vayanos-Weill (2008), Weill (2008), Lagos-Rocheteau (2009),
Hugonnier-Lester-Weill (2014), Lester, Rocheteau, Weill (2015).

▶ Biology (genetics and epidemiology). Hardy-Weinberg (1908), Crow-Kimura (1970), Eigen
(1971), Shashahani (1978), Schuster-Sigmund (1983), Bomze (1983).

▶ Game theory. Mortensen (1982), Foster-Young (1990), Binmore-Samuelson (1999),
Battalio-Samuelson-Van Huycjk (2001), Burdzy-Frankel-Pauzner (2001), Bena m-Weibull (2003),
Currarini-Jackson-Pin (2009), Hofbauer-Sandholm (2007).
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Static Random Matching

▶ Let (I, I, λ) be an atomless probability space of agents.

▶ S = {1, . . . ,K} a set of finite types.

▶ α : I → S a type function with type distribution p on S.

▶ (Ω,F , P ), another probability space modeling randomness in matching.
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Static Random Matching II

▶ A mapping π from I to I is called a (deterministic) matching if for any i ∈ I,
π(π(i)) = i. If π(i) = i, then i is not matched.

▶ A mapping π from I × Ω to I is called a random matching if for any ω ∈ Ω, πω is a
(deterministic) matching.

▶ For k, l ∈ S, let qkl ∈ R be the matching probability for a type-k agent to meet a type-l
agent. Assume that pkqkl = plqlk for any k, l ∈ S and

∑K
l=1 qkl ≤ 1 for each k ∈ S.

▶ Measurability problem of a continuum of independent random variables.

Duffie-Qiao-Sun Continuous Time Random Matching 8



Fubini Extension

Let (I × Ω,W, Q) be a probability space extending the usual product (I × Ω, I ⊗ A, λ× P ).
The extension is said to be a Fubini extension of the usual product probability space if it
retains the Fubini property, i.e., for any real-valued W-integrable function f on T × Ω,∫

I×Ω
fdQ =

∫
I

(∫
Ω
ftdP

)
dλ

=

∫
Ω

(∫
I
fωdλ

)
dP.

The extension is denoted by (I × Ω, I ⊠A, λ⊠ P ).
Exact Law of Large Numbers [Sun 1998, 2006]: Let f be a process defined on a Fubini
extension. If f is essentially pairwise independent, then for P -almost all ω ∈ Ω,

Pf−1
ω = (λ⊠ P ) f−1.
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Static Random Matching III

Let π be a mapping from a Fubini extension (I × Ω, I ⊠ F , λ⊠ P ) to I. π is said to be a
independent random matching if:

▶ For any ω ∈ Ω, πω is a (deterministic) matching.

▶ Let

g(i, ω) =

{
α(π(i, ω)) π(i, ω) ̸= i

J π(i, ω) = i,

and g is I ⊠ F measurable.

▶ For any type-k agent i ∈ I, P (gi = l) = qkl.

▶ The process g is essentially pairwise independent in the sense that for λ-almost all
i, j ∈ I, gi and gj are independent.
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Static Random Matching IV

Proposition (Duffie, Qiao and Sun, 2018)

(a) Let π be an independent random matching with parameters (p, q). Then, for P -almost
every ω ∈ Ω, we have λ({i : α(i) = k, gω(i) = l}) = pkqkl for any k, l ∈ S.

(b) For any given (p, q), there exists an independent random matching .
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Continuous-Time Random Matching

In our most basic model:

▶ S = {1, . . . ,K} is a set of finite types.

▶ α0 : (I, I, λ) → S is the initial a type function.

▶ p0 is the distribution of α0.
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Continuous-Time Random Matching

▶ α(i, t) is the random type of agent i at time t.

▶ φ(i, t) is the last partner of agent i up to time t.

▶ h(i, t) is the type of the last partner of agent i up to time t.
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Continuous-Time Random Matching

▶ dni is the n-th matching time for agent i.

▶ For any agent i and any matching time dni for agent i, if φ(i, dni ) = j,
then φ(j, dni ) = i P -almost surely,
or equivalently

φ(φ(i, dni ), d
n
i ) = i

P -almost surely.
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Continuous-Time Random Matching

▶ Mutation intensity ηkl.

▶ Matching intensity θkl : ∆(S) → R+, continuous, satisfying the balance identity
pkθkl(p) = plθlk(p).

▶ Match-induced type changing probability distribution γkl ∈ ∆(S).
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Random Matching with Enduring Partnership
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Continuous-Time Random Matching: Theorem

Fixing any parameters (p0, η, θ, γ), there exists a continuous-time dynamical system with
random mutation, matching and type changing such that

▶ The expected cross-sectional type distribution p̄tsatisfies

dp̄t

dt
= p̄tRt, p̄0 = p0,

where

Rt
kl = ηkl +

K∑
l=1

θkr(p̄
t)γkr(l)

for any k ̸= l, and Rt
kk = −

∑
l∈S,l ̸=k R

t
kl.
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Continuous-Time Random Matching: Theorem

▶ With probability one, the realized cross-sectional type ptω is equal to the expected
cross-sectional type distribution p̄t.

▶ {αi}i∈I forms a continuum of independent continuous-time Markov chains with transition
intensity matrix Rt at time t, where

Rt
kl = ηkl +

K∑
l=1

θkr(p̄
t)γkr(l)

for any k ̸= r, and Rt
kk = −

∑
l∈S,l ̸=k R

t
kl.
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Continuous-Time Random Matching: Theorem

▶ {(αi, hi)}i∈I forms a continuum of independent continuous-time Markov chains.

▶ For any (η, θ, γ), there exists p0 such that with probability one, the realized
cross-sectional type distribution ptω = p0 for all t ≥ 0.
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Continuous-Time Random Matching: Theorem

▶ Let Nikl(t) be the number of matches by agent i up to time t, when of type k, to an
agent of type l.

▶ Then the cumulative total quantity Θkl(ω, t) of matches can be defined as∫
I Nikl(ω, t) dλ(i).

▶ For P -almost all ω ∈ Ω, for any types k and l, the cumulative total quantity Θkl(ω, t)
equals to its expectation E(Θkl(t)) and grows at the rate Θ̇kl(ω, t) = p̄tkθkl(p̄

t).
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Random Matching with Enduring Partnership
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Transition Intensity Matrix for Extended Types
{(αi, gi)}i∈I forms a continuum of independent continuous-time Markov chains with transition
intensity matrix Qt at time t, where

Qt
(k1l1)(k2l2)

= ηk1k2δl1(l2) + ηl1l2δk1(k2),

Qt
(k1l1)(k2J)

= βk1l1γk1l1(k2),

Qt
(k1J)(k2l2)

=

K∑
l1=1

θk1l1(p̌(t))ξk1l1σk1l1(k2, l2),

Qt
(k1J)(k2J)

= ηk1k2 +
K∑

l1=1

θk1l1(p̌(t))(1− ξk1l1)γk1l1(k2),

Qt
(kl)(kl) = −

∑
(k′,l′ )̸=(k,l)

Qt
(kl)(k′l′),

where p̌(t) = E (p̂(t))
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Compact Type Space

▶ S is a compact metric space.

▶

Qt
(kl)(Â) = ηk(Âl) + ηl(Â

T
k ) + ϑS

kl(ÂJ)

Qt
(kJ)(B̂) = ηk(B̂J) +

∫
l′∈S

ξkl′σkl′(B̂ ∩ (S × S))dθ(k, p̌(t))

+

∫
l′∈S

(1− ξkl′)ς
S
kl′(B̂J)dθ(k, p̌(t))

▶ dp̌t

dt =
∫
Ŝ Qt

kldp̌
t, p̌0 = p̂0.
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σ-Compact Type Space

▶ S is a σ-compact metric space.

▶ Boundedness: η(·)(S), θ(·, ·)(S), ϑ(·, ·) are bounded.

▶ Compact Tightness: For any t ∈ R+, for any ϵ > 0 and any compact K ∈ S, there
exists a compact K ′ in S , such that

ηk(K
′) > 1− ϵ,

σS
kl(K

′) > 1− ϵ,

ςkl(K
′) > 1− ϵ

for any k ∈ K, l ∈ S.

Duffie-Qiao-Sun Continuous Time Random Matching 24



——————

Thanks!

——————
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