Structural Rationality in Dynamic Games

Marciano Siniscalchi
Northwestern University

National University of Singapore, June 2018

Prelude: Credible Threats

Prelude: Credible Threats

" "Bob will play S"

(Out, (S, S))
Threat: On-path beliefs about off-path play

Prelude: Credible Threats

(Out, (S, S))
Threat: On-path beliefs about off-path play Credible: Off-path beliefs

This Paper

Behavioral content of assumptions on beliefs

Testable implications of solution concepts
in dynamic games

Benchmark: Simultaneous-Move Games

- Luce-Raiffa: elicit beliefs via incentive-compatible side bets

- Also practical: e.g. Van Huyck, Battalio, and Beil, 1990; Nyarko and Schotter, 2002. (See also Aumann-Dreze, 2009)

Objective: do the same for dynamic games

Eliciting Bob's beliefs in the subgame

- If subgame reached, could offer side bets on B vs. S
- But in this SPE, the subgame is not reached

Eliciting Bob's beliefs in the subgame

- Could elicit Bob's prior beliefs, then condiiton on "In"
- But in this SPE, "In" has zero prior probability

Ex-ante conditional bets? (de Finetti)

p close to 1 ; randomization picks game vs. bet payoff for Bob

Ex-ante conditional bets? (de Finetti)

p close to 1 ; randomization picks game vs. bet payoff for Bob

- Now Bob's bet is always observed

Ex-ante conditional bets? (de Finetti)

p close to 1 ; randomization picks game vs. bet payoff for Bob

- Now Bob's bet is always observed
- Sequential rationality: Bob is indifferent between p and b

Ex-ante conditional bets? (de Finetti)

p close to 1 ; randomization picks game vs. bet payoff for Bob

- Now Bob's bet is always observed
- Sequential rationality: Bob is indifferent between p and b
- (Out, $p,(S, S)$) a sequential equilibrium

The role of sequential rationality

Sequential rationality: Bob

- reacts optimally to surprises: e.g., if In, expect $S \Rightarrow$ play S

The role of sequential rationality

Sequential rationality: Bob

- reacts optimally to surprises: e.g., if In, expect $S \Rightarrow$ play S
- but need not take into account potential future surprises

The role of sequential rationality

Sequential rationality: Bob

- reacts optimally to surprises: e.g., if In, expect $S \Rightarrow$ play S
- but need not take into account potential future surprises e.g., p sequentially rational despite Bob's beliefs following In

Structural Rationality

Structural Rationality

Every action choice

- takes into account beliefs at all unexpected events
- in a principled way

Structural Rationality

Structural Rationality

Every action choice

- takes into account beliefs at all unexpected events
- in a principled way

Loosely inspired by evidence on strategy method (Selten, 1967)

Structural Rationality

Structural Rationality

Every action choice

- takes into account beliefs at all unexpected events
- in a principled way

Loosely inspired by evidence on strategy method (Selten, 1967)

Results:

- Implies sequential rationality (generically equivalent)
- Coincides with EU in simultaneous-move games
- Justifies the elicitation of all conditional beliefs
- Characterization via "minimally invasive" trembles

Dynamic games with perfect recall

- Information sets (or nodes): $I, J \ldots \in \mathcal{I}_{i}$. Root: ϕ, in every \mathcal{I}_{i}
- Strategies $S_{a}=\{$ Out B, OutS, $\operatorname{In} B, \ln S\} ; S_{b}=\{B, S\}$
- Payoff function: $U_{i}\left(s_{i}, s_{-i}\right)$; usual linear extension to $\Delta\left(S_{-i}\right)$
- Ann's strategies allowing $J: S_{a}(J)=\{\ln B, \ln S\}$; $S_{a}(\phi)=S_{a}, S_{a}(J)$ are conditioning events

Dynamic games with perfect recall

- Information sets (or nodes): $I, J \ldots \in \mathcal{I}_{i}$. Root: ϕ, in every \mathcal{I}_{i}
- Strategies $S_{a}=\{$ Out B, OutS, $\operatorname{In} B, \ln S\} ; S_{b}=\{B, S\}$
- Payoff function: $U_{i}\left(s_{i}, s_{-i}\right)$; usual linear extension to $\Delta\left(S_{-i}\right)$
- Ann's strategies allowing $J: S_{a}(J)=\{\ln B, \ln S\}$; $S_{a}(\phi)=S_{a}, S_{a}(J)$ are conditioning events

This talk: "Nested Strategic Information" (paper generalizes)

Beliefs in Dynamic Games

Ann holds beliefs about S_{b} at each infoset

Definition (Myerson, 1986; Ben-Porath 1997)

A conditional probability system (CPS) for i is a collection $\mu=\left\langle\mu\left(\cdot \mid S_{-i}(I)\right)\right\rangle_{I \in \mathcal{I}_{i}}$ such that
(1) for all $I \in \mathcal{I}_{i}, \mu\left(\cdot \mid S_{-i}(I)\right) \in \Delta\left(S_{-i}\right)$ and $\mu\left(S_{-i}(I) \mid S_{-i}(I)\right)=1$
(2) for all $I, J \in \mathcal{I}_{i}$ and $E \subseteq S_{-i}$ with $E \subseteq S_{-i}(I) \subseteq S_{-i}(J)$:

$$
\mu\left(E \mid S_{-i}(J)\right)=\mu\left(E \mid S_{-i}(I)\right) \cdot \mu\left(S_{-i}(I) \mid S_{-i}(J)\right)
$$

"Chain rule whenever possible"

Sequential Rationality

Definition (Sequential Rationality à la Reny - Rubinstein)

Fix a CPS μ for player i.
A strategy s_{i} is sequentially rational (for μ) iff, for all $I \in \mathcal{I}_{i}$ allowed by s_{i}, and all t_{i} that also allow I,

$$
U_{i}\left(s_{i}, \mu\left(\cdot \mid S_{-i}(I)\right)\right) \geq U_{i}\left(t_{i}, \mu\left(\cdot \mid S_{-i}(I)\right)\right)
$$

Structural Rationality

Basic beliefs

Chain rule: if $S_{-i}(I) \subset S_{-i}(J)$ and $\mu\left(S_{-i}(I) \mid S_{-i}(J)\right)>0$, beliefs at I derived from beliefs at J

Definition

Fix a CPS μ for i.
$I \in \mathcal{I}_{i}$ is μ-basic if $\mu\left(S_{-i}(I) \mid S_{-i}(J)\right)=0$ for all $J \in \mathcal{I}_{i}$ with $S_{-i}(J) \supset S_{-i}(I)$

Belief $\mu\left(\cdot \mid S_{-i}(I)\right)$ not derived from "earlier" beliefs

Basic beliefs

Chain rule: if $S_{-i}(I) \subset S_{-i}(J)$ and $\mu\left(S_{-i}(I) \mid S_{-i}(J)\right)>0$, beliefs at I derived from beliefs at J

Definition

Fix a CPS μ for i.
$I \in \mathcal{I}_{i}$ is μ-basic if $\mu\left(S_{-i}(I) \mid S_{-i}(J)\right)=0$ for all $J \in \mathcal{I}_{i}$ with $S_{-i}(J) \supset S_{-i}(I)$

Belief $\mu\left(\cdot \mid S_{-i}(I)\right)$ not derived from "earlier" beliefs
$S_{-i}(J) \supset S_{-i}(I), \mu\left(S_{-i}(I) \mid S_{-i}(J)\right)=0$ also suggest J infinitely more likely than I

Structural Preferences

Definition (Structural Preferences over strategies)

Fix a CPS μ for i. Strategy s_{i} is structurally (weakly) preferred to strategy $t_{i}\left(s_{i} \succcurlyeq^{\mu} t_{i}\right)$ if, for every μ-basic $I \in \mathcal{I}_{i}$ with

$$
U\left(s_{i}, \mu\left(\cdot \mid S_{-i}(I)\right)\right)<U\left(t_{i}, \mu\left(\cdot \mid S_{-i}(I)\right)\right)
$$

there is another μ-basic $J \in \mathcal{I}_{i}$ with $S_{-i}(J) \supset S_{-i}(I)$ and

$$
U\left(s_{i}, \mu\left(\cdot \mid S_{-i}(J)\right)\right)>U\left(t_{i}, \mu\left(\cdot \mid S_{-i}(J)\right)\right)
$$

" s_{i} infinitely more likely to be better than to be worse vs. t_{i} "

Structural Preferences

Definition (Structural Preferences over strategies)

Fix a CPS μ for i. Strategy s_{i} is structurally (weakly) preferred to strategy $t_{i}\left(s_{i} \succcurlyeq^{\mu} t_{i}\right)$ if, for every μ-basic $I \in \mathcal{I}_{i}$ with

$$
U\left(s_{i}, \mu\left(\cdot \mid S_{-i}(I)\right)\right)<U\left(t_{i}, \mu\left(\cdot \mid S_{-i}(I)\right)\right)
$$

there is another μ-basic $J \in \mathcal{I}_{i}$ with $S_{-i}(J) \supset S_{-i}(I)$ and

$$
U\left(s_{i}, \mu\left(\cdot \mid S_{-i}(J)\right)\right)>U\left(t_{i}, \mu\left(\cdot \mid S_{-i}(J)\right)\right)
$$

" s_{i} infinitely more likely to be better than to be worse vs. t_{i} " "Break ties along each path"

Structural Preferences

Definition (Structural Preferences over strategies)

Fix a CPS μ for i. Strategy s_{i} is structurally (weakly) preferred to strategy $t_{i}\left(s_{i} \succcurlyeq^{\mu} t_{i}\right)$ if, for every μ-basic $I \in \mathcal{I}_{i}$ with

$$
U\left(s_{i}, \mu\left(\cdot \mid S_{-i}(I)\right)\right)<U\left(t_{i}, \mu\left(\cdot \mid S_{-i}(I)\right)\right)
$$

there is another μ-basic $J \in \mathcal{I}_{i}$ with $S_{-i}(J) \supset S_{-i}(I)$ and

$$
U\left(s_{i}, \mu\left(\cdot \mid S_{-i}(J)\right)\right)>U\left(t_{i}, \mu\left(\cdot \mid S_{-i}(J)\right)\right)
$$

" s_{i} infinitely more likely to be better than to be worse vs. t_{i} " "Break ties along each path"
"Extensive-form analog of lexicographic preferences"

Structural Rationality

Definition (Structural Rationality)

Strategy s_{i} is structurally rational for μ if there is no strategy t_{i} such that $t_{i} \succ^{\mu} s_{i}$ (that is, $t_{i} \succcurlyeq^{\mu} s_{i}$ and not $s_{i} \succcurlyeq^{\mu} t_{i}$).
\succcurlyeq^{μ} possibly incomplete, but transitive: existence guaranteed.

Structural preferences in action

s_{a}	$[\phi]$	$[I]$
D_{1}	2	2
$A_{1} D_{2}$	1	4
$A_{1} A_{2}$	1	3

Structural preferences in action

s_{a}	$[\phi]$	$[I]$
D_{1}	2	2
$A_{1} D_{2}$	1	4
$A_{1} A_{2}$	1	3

Centipede. $D_{1} \succ^{\mu} A_{1} D_{2} \succ^{\mu} A_{1} A_{2}$
D_{1} also unique sequential best reply to μ

Structural preferences in action

s_{a}	$[\phi]$	$[I]$
D_{1}	2	2
$A_{1} D_{2}$	2	4
$A_{1} A_{2}$	2	3

Extra power!. $A_{1} D_{2} \succ^{\mu} A_{1} A_{2} \succ^{\mu} D_{1}$
Both D_{1} and $A_{1} D_{2}$ sequential best replies to μ

"Extensive-form analog of lexicographic preferences"

Features of beliefs	Lexicographic	Structural
Representation	LPS	CPS
Ordering of probabilities	arbitrary	set inclusion
Richness of ordering	complete	partial
Related to extensive form?	no	yes (CPS, basic events)

Main Result 1: Structural implies Sequential

Theorem
Fix a CPS μ for player i. If $s_{i} \in S_{i}$ is structurally rational for μ, then it is sequentially rational for μ.

Main Result 1: Structural implies Sequential

Theorem
Fix a CPS μ for player i. If $s_{i} \in S_{i}$ is structurally rational for μ, then it is sequentially rational for μ.

In static games, structural preferences coincide with EU. Aligned with experimental evidence!

Main Result 1: Structural implies Sequential

Theorem

Fix a CPS μ for player i. If $s_{i} \in S_{i}$ is structurally rational for μ, then it is sequentially rational for μ.

In static games, structural preferences coincide with EU. Aligned with experimental evidence!

Generic equivalence with sequential rationality

Main Result 2
Elicitation

Back to the Battle of the Sexes

Back to the Battle of the Sexes

s_{b}	S_{a}	$S_{a}(J)=S_{a}(K)$
$p B$	$\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 0$	$\frac{1}{2} \cdot 0+\frac{1}{2} \cdot p$
$p S$	$\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 0$	$\frac{1}{2} \cdot 3+\frac{1}{2} \cdot p$
$b B$	$\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 0$	$\frac{1}{2} \cdot 0+\frac{1}{2} \cdot 1$
$b S$	$\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 0$	$\frac{1}{2} \cdot 3+\frac{1}{2} \cdot 1$

Main Result 2: Eliciting Off-Path Beliefs (Bob)

Theorem (Elicitation - Bob's beliefs in the subgame)
Fix Ann's CPS μ and Bob's CPS ν in the original game.
In the elicitation game, assume same beliefs about coplayer, independent of Chance's move. Then, given these beliefs:

- s_{a} is structurally rational in the elicitation game iff s_{a} is structurally rational in the original game
- if $\left(s_{b}, b\right)$ [resp. $\left(s_{b}, p\right)$] is structurally rational, then s_{b} is structurally rational and $\mu\left(S \mid S_{-i}(J)\right) \geq p(r e s p . \leq p)$

Main Result 2: Eliciting Off-Path Beliefs (Bob)

Theorem (Elicitation - Bob's beliefs in the subgame)

Fix Ann's CPS μ and Bob's CPS ν in the original game.
In the elicitation game, assume same beliefs about coplayer, independent of Chance's move. Then, given these beliefs:

- s_{a} is structurally rational in the elicitation game iff s_{a} is structurally rational in the original game
- if $\left(s_{b}, b\right)$ [resp. $\left(s_{b}, p\right)$] is structurally rational, then s_{b} is structurally rational and $\mu\left(S \mid S_{-i}(J)\right) \geq p(r e s p . \leq p)$
- Initial, simultaneous choices reveal bound on Bob's beliefs.

Main Result 2: Eliciting Off-Path Beliefs (Bob)

Theorem (Elicitation - Bob's beliefs in the subgame)

Fix Ann's CPS μ and Bob's CPS ν in the original game.
In the elicitation game, assume same beliefs about coplayer, independent of Chance's move. Then, given these beliefs:

- s_{a} is structurally rational in the elicitation game iff s_{a} is structurally rational in the original game
- if $\left(s_{b}, b\right)$ [resp. $\left(s_{b}, p\right)$] is structurally rational, then s_{b} is structurally rational and $\mu\left(S \mid S_{-i}(J)\right) \geq p(r e s p . \leq p)$
- Initial, simultaneous choices reveal bound on Bob's beliefs.
- Anaologous result in general games

Eliciting Ann's initial beliefs

- Could offer Ann side bets at ϕ on Bob's choices
- But in this SPE, Ann plays Out
- Incentives???

Elicitation and the strategy method

Main Result 2: Eliciting On-path Beliefs (Ann)

Theorem (Elicitation - Ann's initial beliefs)

Fix Ann's CPS μ and Bob's CPS ν in the original game.
In the elicitation game, assume same beliefs about coplayers, independent of Chance's move. Then:

- s_{b} is structurally rational in the elicitation game iff s_{b} is structurally rational in the original game
- if $\left(s_{a}, b\right)$ [resp. $\left(s_{a}, p\right)$] is structurally rational, then s_{a} is structurally rational and $\mu(S \mid[[\phi]]) \geq p(r e s p . \leq p)$
- Initial, simultaneous choices reveal bound on Ann's beliefs.
- Again, anaologous result for general games

Main Result 3

Structural Rationality and Trembles

Perturbations and Spurious Beliefs (1)

- Ann's CPS: $\mu\left(t \mid S_{b}\right)=1$. Then $D T \succ^{\mu} U$.
- Perturbation: $p_{\epsilon}(t)=1-\epsilon-\epsilon^{2}, p_{\epsilon}(m)=\epsilon, p_{\epsilon}(b)=\epsilon^{2}$.
- Then $U_{a}\left(U, p_{\epsilon}\right)>U_{a}\left(D T, p_{\epsilon}\right)$

Perturbations and Spurious Beliefs (2)

- Ann's CPS: $\mu\left(t \mid S_{b}\right)=1$. Then $D T \sim^{\mu} U$.
- Perturbation: $p_{\epsilon}(t)=1-\epsilon-\epsilon^{2}, p_{\epsilon}(m)=\epsilon^{2}, p_{\epsilon}(b)=\epsilon$.
- Then $U_{a}\left(U, p_{\epsilon}\right)>U_{a}\left(D T, p_{\epsilon}\right)$

Perturbations and Spurious Beliefs (3)

- Ann's CPS: $\mu\left(t \mid S_{b}\right)=\mu\left(m \mid S_{b}\right)=\frac{1}{2}$. Then $D T \succ^{\mu} U$.
- Perturbation: $p_{\epsilon}(t)=\frac{1}{2}, p_{\epsilon}(m)=\frac{1}{2}-\epsilon, p_{\epsilon}(b)=\epsilon$.
- Then $U_{a}\left(U, p_{\epsilon}\right)>U_{a}\left(D T, p_{\epsilon}\right)$

Main Result 3: Structural Rationality and Trembles

Definition

$\left(p^{n}\right)_{n \geq 1} \subset \Delta\left(S_{-i}\right)$ is a structural perturbation of μ if
(i) for all $\left.I \in \mathcal{I}_{i}, p^{n}\left(S_{-i}\right)(I)\right)>0$ and $p^{n}\left(\cdot \mid S_{-i}(I)\right) \rightarrow \mu\left(\cdot \mid S_{-i}(I)\right)$;
(ii) $\operatorname{supp} p^{n}=\bigcup_{I \in \mathcal{I}_{i}} \mu\left(\cdot \mid S_{-i}(I)\right)$; and
(iii) $\frac{p^{n}\left(\left\{s_{-i}\right\}\right)}{p^{n}\left(\left\{t_{-i}\right\}\right)}=\frac{\mu\left(\left\{s_{-i}\right\} \mid S_{-i}(I)\right)}{\mu\left(\left\{t_{-i}\right\} \mid S_{-i}(I)\right)} \forall I \in \mathcal{I}_{i}, s_{-i}, t_{-i} \in \operatorname{supp} \mu\left(\cdot \mid S_{-i}(I)\right)$.

Main Result 3: Structural Rationality and Trembles

Definition

$\left(p^{n}\right)_{n \geq 1} \subset \Delta\left(S_{-i}\right)$ is a structural perturbation of μ if
(i) for all $\left.I \in \mathcal{I}_{i}, p^{n}\left(S_{-i}\right)(I)\right)>0$ and $p^{n}\left(\cdot \mid S_{-i}(I)\right) \rightarrow \mu\left(\cdot \mid S_{-i}(I)\right)$;
(ii) $\operatorname{supp} p^{n}=\bigcup_{I \in \mathcal{I}_{i}} \mu\left(\cdot \mid S_{-i}(I)\right)$; and
(iii) $\frac{p^{n}\left(\left\{s_{-i}\right\}\right)}{p^{n}\left(\left\{t_{-i}\right\}\right)}=\frac{\mu\left(\left\{s_{-i}\right\} \mid S_{-i}(I)\right)}{\mu\left(\left\{t_{-i}\right\} \mid S_{-i}(I)\right)} \forall I \in \mathcal{I}_{i}, s_{-i}, t_{-i} \in \operatorname{supp} \mu\left(\cdot \mid S_{-i}(I)\right)$.

Theorem

$s_{i} \in S_{i}$ is structurally rational for μ iff, for every $t_{i} \in S_{i}$, there is a structural perturbation $\left(p^{n}\right)$ of μ such that $U\left(s_{i}, p^{n}\right) \geq U_{i}\left(t_{i}, p^{b}\right)$ for all $n \geq 1$.

Conclusions

New optimality criterion: Structural Rationality

- Implies sequential rationality: the extensive form matters!
- Allows the elicitation of all conditional beliefs
- Also justifies the strategy method
- As a bonus, sometimes refines sequential rationality
- Characterization via "minimally invasive" trembles
- General games: Newcomb paradox, KW consistency
- Easy to add payoff uncertainty and higher-order beliefs

Papers

Now at http://faculty.wcas.northwestern.edu/~msi661
Sequential Rationality and Elicitation (this talk): "Structural Preferences and Sequential Rationality"

Axiomatics:
"Foundations for Structural Preferences"

Ask me:
Forward induction
"Structural Preferences in Epistemic Game Theory"
THANK YOU!

Nested Strategic Information (1)

Recall: $S_{-i}(I)=$ strategies of opponents reaching I

Assumption (Nested strategic information)

For every real player i and infosets I, J of i,

$$
\text { either } S_{-i}(I) \cap S_{-i}(J)=\emptyset \text { or } S_{-i}(I) \subseteq S_{-i}(J) \text { or } S_{-i}(J) \subseteq S_{-i}(I)
$$

- Signalling games
- Games where a player moves only once on each path
- Games with centipede structure
- Ascending-clock auctions
- Event trees

Nested Strategic Information (2)

Rules out:

$$
S_{-i}(I)=\left\{t t^{\prime}, t b^{\prime}\right\} ; S_{-i}\left(I^{\prime}\right)=\left\{t t^{\prime}, b t^{\prime}\right\} . \text { Not nested. }
$$

How about trembles? Removing actions?

Mechanical trembles: no

- Change the game (a fortiori if remove actions-e.g. D_{1})
- Impact strategic reasoning (Reny, Ben-Porath, Bagwell)
- Also: which trembles (Binmore)? Details matter!

How about trembles? Removing actions?

Mechanical trembles: no

- Change the game (a fortiori if remove actions-e.g. D_{1})
- Impact strategic reasoning (Reny, Ben-Porath, Bagwell)
- Also: which trembles (Binmore)? Details matter!

Belief perturbations (Kreps - Wilson, 1982): yes!

- Proposed approach also models infinitesimal probabilities
- Paper: novel (to me) implications of KW-style consistency

Structural Rationality for General Games

The issue

Non-nested strategic information: $[I] \nsupseteq[J],[J] \nsupseteq[I]$

$$
\mu\left(o \mid S_{b}\right)=1 ; \quad \mu(t \mid[I])=\mu(m \mid[I])=\frac{1}{2} ; \quad \mu(m \mid[J])=\mu(b \mid[J])=\frac{1}{2}
$$

$R B$ is "structurally rational:" see payoff given $\mu(\cdot \mid[J])$
Yet, $R B$ is not sequentially rational!

Step 1: Likelihood ordering

$[J] \supset[I], \mu([I][J])=0$ suggests J "infinitely more likely" than I
Notice $\mu([J][[/])>0$ (indeed, 1) because $[J] \supset[/]$.
Generalize: even if $[/],[J]$ not nested, $\mu([J] \mid[/])>0$, suggests [J] "not infinitely less likely" than [I]

Likelihood should be transitive. Hence:

> Definition (Likelihood ordering)
> $[J] \geq^{\mu}[I]$ iff there are $I_{1}, \ldots, I_{L} \in \mathcal{I}_{i}$ with $I_{1}=I, I_{L}=J$, and

$$
\mu\left(\left[\ell_{\ell+1}\right][[/ \ell])>0 \quad \ell=1, \ldots, L-1 .\right.
$$

Step 2: Basic event - back to the example

$\mu\left(o \mid S_{b}\right)=1 ; \quad \mu(t \mid[I])=\mu(m \mid[I])=\frac{1}{2} ; \quad \mu(m \mid[J])=\mu(b \mid[J])=\frac{1}{2}$
Definition of likelihood implies $S_{b}>^{\mu}[I]=^{\mu}[J]$. Intuitive!
$\mu(\cdot \mid[I]), \mu(\cdot \mid[J])$ are updates of uniform prob on $[I] \cup[J]=\{t, m, b\}$
Take $[I] \cup[J]$ as basic event: prob uniqely identified from μ !

Step 2: Basic events - definition

Definition (CPS on general conditioning events)

Fix a CPS μ for i and consider \geq^{μ}. Let

$$
\mathcal{G}_{i}=\left\{\cup_{k=1}^{K}\left[I_{k}\right]: K \in \mathbb{N},,\left[I_{k}\right]={ }^{\mu}\left[I_{\ell}\right] \quad \forall \ell, k=1, \ldots, K\right\} .
$$

The extension of μ is a CPS ν on S_{-i} with conditioning events \mathcal{G}_{i} such that

$$
\forall I \in \mathcal{I}_{i}, \quad \nu(\cdot \mid[I])=\mu(\cdot \mid[I])
$$

Note: $[I] \in \mathcal{G}_{i}$ for all $I \in \mathcal{I}_{i}$.
Existence and uniqueness of basis: later, or ask me.

Step 3: General Structural Preferences

Definition (Structural Preferences over strategies)

Fix a CPS μ for player i that admits an extension μ. Strategy s_{i} is structurally (weakly) preferred to strategy $t_{i}\left(s_{i} \succcurlyeq^{\mu} t_{i}\right)$ if, for every $F \in \mathcal{G}_{i}$ with

$$
\int U\left(s_{i}, s_{-i}\right) d \nu\left(s_{-i} \mid F\right)<\int U\left(t_{i}, s_{-i}\right) d \nu\left(s_{-i} \mid F\right)
$$

there is $G \in \mathcal{G}_{i}$ with $G \geq^{\nu} F$ and

$$
\int U\left(s_{i}, s_{-i}\right) d \nu\left(s_{-i} \mid G\right)>\int U\left(t_{i}, s_{-i}\right) d \nu\left(s_{-i} \mid G\right)
$$

Same as before, but using extension ν instead of μ

Structural preferences in action

$\mu\left(o \mid S_{b}\right)=1 ; \quad \mu(t \mid[I])=\mu(m \mid[I])=\frac{1}{2} ; \quad \mu(m \mid[J])=\mu(b \mid[J])=\frac{1}{2}$
Likelihood: $S_{b}>^{\mu}[I], S_{b}>^{\mu}[J],[I]={ }^{\mu}[J]$
$\mathcal{G}_{a}=\left\{S_{b},[I],[J],[I] \cup[J]\right\}$. Extension: $\nu(\cdot \mid[I] \cup[J])$ uniform
Basic events for $\nu: S_{b},[I] \cup[J]$
$R T \succ^{\mu} R B \succ^{\mu} L T^{\prime} \succ^{\mu} L B^{\prime} . R T$ structurally rational; unique

Congruent CPSs and Extensions

A Newcombe Paradox for CPSs

Set of sequential best replies: $L T, R T$.
Kreps-Wilson consistency, Myerson complete CPSs:
$\{L T, R T\}$ cannot be the set of sequential best replies
Indeed μ does not admit an extension!

Main Result 3: Congruent CPSs

μ is congruent if, for every $\left(F_{m}\right)_{n=1}^{N}$ with $\mu\left(F_{n+1} \mid F_{n}\right)>0$,
$n=1, \ldots, N-1$, and every $E \subseteq F_{1} \cap F_{N}$,

$$
\mu\left(E \mid F_{1}\right) \cdot \prod_{n=1}^{N-1} \frac{\mu\left(F_{n} \cap F_{n+1} \mid F_{n+1}\right)}{\mu\left(F_{n} \cap F_{n+1} \mid F_{n}\right)}=\mu\left(E \mid F_{N}\right)
$$

Congruence implies the Chain Rule: take $F_{1} \subset F_{2}$.

Theorem

The following are equivalent:

- μ is congruent
- μ is generated by taking limits of strictly positive probabilities
- μ admits an extension, which is unique

Structural preferences in action: Extra Power!

s_{a}	S_{b}	$[I]=\{a\}$
D_{1}	2	2
$A_{1} D_{2}$	2	1
$A_{1} A_{2}$	2	0

$$
D_{1} \succ^{\mu} A_{1} D_{2} \succ^{\mu} A_{1} A_{2}
$$

Structural preferences in action: Extra Power!

s_{a}	S_{b}	$[I]=\{a\}$
D_{1}	2	2
$A_{1} D_{2}$	2	1
$A_{1} A_{2}$	2	0

Yet $A_{1} D_{2}$ sequentially rational: at I, no longer care about D_{1}

Structural preferences in action: Extra Power!

s_{a}	S_{b}	$[I]=\{a\}$
D_{1}	2	2
$A_{1} D_{2}$	2	1
$A_{1} A_{2}$	2	0

$D_{1} \succ^{\mu} A_{1} D_{2}$ reflects ex-ante view: at ϕ, can still choose D_{1}

Structural preferences in action: Extra Power!

$$
S_{b} \supset[I]=\{a\} ; \mu\left(d \mid S_{b}\right)=1 ; \mu(a \mid[/])=1 .
$$

s_{a}	S_{b}	$[I]=\{a\}$
D_{1}	2	2
$A_{1} D_{2}$	2	1
$A_{1} A_{2}$	2	0

($D_{1} \succ^{\nu} A_{1} D_{2}$ for any CPS ν - not just this μ)

