Mislaid Pieces in Finitely Additive Population Games

Maxwell B. Stinchcombe

Department of Economics, University of Texas at Austin

Workshop on Game Theory, Singapore, June 2018

1 Large Population Games

2 Finitely Additive Probabilities

3 PFAs in Population Games

4 PFAs in Economic Models

Basics

$$
\Gamma(\mu)=((T, \mathcal{T}, \mu), \mathbb{U}, \mathcal{G}) .
$$

Basics

$\Gamma(\mu)=((T, \mathcal{T}, \mu), \mathbb{U}, \mathcal{G})$.
$\square(T, \mathcal{T}, \mu)$, a non-atomic probability space.

Basics

$\Gamma(\mu)=((T, \mathcal{T}, \mu), \mathbb{U}, \mathcal{G})$.
■ (T, \mathcal{T}, μ), a non-atomic probability space.
■ $(A, d), \Delta(A), \mathbb{U}$ the closed unit ball in $C(A \times \Delta(A))$.

Basics

$\Gamma(\mu)=((T, \mathcal{T}, \mu), \mathbb{U}, \mathcal{G})$.
■ (T, \mathcal{T}, μ), a non-atomic probability space.

- $(A, d), \Delta(A), \mathbb{U}$ the closed unit ball in $C(A \times \Delta(A))$.
$■ \operatorname{Or} \mathbb{U} \subset C(A \times M), M=\{q \in \Delta(T \times A): q(E \times A)=\mu(E)\}$.

Basics

$\Gamma(\mu)=((T, \mathcal{T}, \mu), \mathbb{U}, \mathcal{G})$.
■ (T, \mathcal{T}, μ), a non-atomic probability space.

- $(A, d), \Delta(A), \mathbb{U}$ the closed unit ball in $C(A \times \Delta(A))$.
$■ \operatorname{Or} \mathbb{U} \subset C(A \times M), M=\{q \in \Delta(T \times A): q(E \times A)=\mu(E)\}$.
$■ \mathcal{G}: T \rightarrow \mathbb{U}, P=\mathcal{G}(\mu) \in \Delta(\mathbb{U})$.

Population-Wide Maximizing Behavior

If $a: T \rightarrow \Delta(A)$ is the population strategy, the distribution is $\nu_{a}(E)=\int a(t)(E) d \mu(t)$, and agent t receives utility $\mathcal{G}(t)\left(a(t), \nu_{a}\right)$.

Population-Wide Maximizing Behavior

If $a: T \rightarrow \Delta(A)$ is the population strategy, the distribution is $\nu_{a}(E)=\int a(t)(E) d \mu(t)$, and agent t receives utility $\mathcal{G}(t)\left(a(t), \nu_{a}\right)$.

A strategy $a(\cdot)$ is an ϵ-equilibrium if

$$
\begin{equation*}
\mu\left(\left\{t: \mathcal{G}(t)\left(a(t), \nu_{a}\right) \geq \max _{b \in A} \mathcal{G}(t)\left(b, \nu_{a}\right)-\epsilon\right\}\right) \geq 1-\epsilon, \tag{1}
\end{equation*}
$$

and is an equilibrium if it is a 0 -equilibrium.

Definitions

A probability is finitely additive if $\mu\left(E_{1} \cup E_{2}\right)=\mu\left(E_{1}\right)+\mu\left(E_{2}\right)$ for $E_{1} \cap E_{2}=\emptyset$.

Definitions

A probability is finitely additive if $\mu\left(E_{1} \cup E_{2}\right)=\mu\left(E_{1}\right)+\mu\left(E_{2}\right)$ for $E_{1} \cap E_{2}=\emptyset$.

A probability μ is countably additive iff

$$
\left[E_{n} \downarrow \emptyset\right] \Rightarrow\left[\mu\left(E_{n}\right) \downarrow 0\right] .
$$

Definitions

A probability is finitely additive if $\mu\left(E_{1} \cup E_{2}\right)=\mu\left(E_{1}\right)+\mu\left(E_{2}\right)$ for $E_{1} \cap E_{2}=\emptyset$.

A probability μ is countably additive iff

$$
\left[E_{n} \downarrow \emptyset\right] \Rightarrow\left[\mu\left(E_{n}\right) \downarrow 0\right] .
$$

Countable additivity is not "just a technical assumption."

Definitions

Dfn: the deficiency of a finitely additive μ is

$$
\sup \left\{\delta \geq 0: \exists E_{n} \downarrow \emptyset \text { and } \mu\left(E_{n}\right) \geq \delta\right\}
$$

Definitions

Dfn: the deficiency of a finitely additive μ is

$$
\sup \left\{\delta \geq 0: \exists E_{n} \downarrow \emptyset \text { and } \mu\left(E_{n}\right) \geq \delta\right\}
$$

If the deficiency is 1 , then μ is purely finitely additive. A probability is pfa iff there exists a strictly positive g with $\int g d \mu=0$.

Weak* Compactness

Banach space theory: $\mu_{\alpha} \rightarrow_{w^{*}} \mu$ iff $\int g d \mu_{\alpha} \rightarrow \int g d \mu$ for all bounded measurable g.

Weak* Compactness

Banach space theory: $\mu_{\alpha} \rightarrow_{w^{*}} \mu$ iff $\int g d \mu_{\alpha} \rightarrow \int g d \mu$ for all bounded measurable g.

Alaoglu's Theorem: the set of finitely additive probabilities is weak*-compact.

An Implication

Kingman (1967). There is a purely finitely additive μ on the set of polynomials with the same finite dimensional distributions as a Poisson process.

An Implication

Kingman (1967). There is a purely finitely additive μ on the set of polynomials with the same finite dimensional distributions as a Poisson process.

■ \mathbb{P} is the set of polynomials on $[0, \infty)$.

An Implication

Kingman (1967). There is a purely finitely additive μ on the set of polynomials with the same finite dimensional distributions as a Poisson process.

- \mathbb{P} is the set of polynomials on $[0, \infty)$.

■ For $0=: t_{0} \leq t_{1}<\cdots<t_{n}$ and $f \in \mathbb{P}$, $\operatorname{proj}_{t_{1}, \ldots, t_{n}}(f):=\left(f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right)$.

An Implication

Kingman (1967). There is a purely finitely additive μ on the set of polynomials with the same finite dimensional distributions as a Poisson process.
$■ \mathbb{P}$ is the set of polynomials on $[0, \infty)$.
■ For $0=: t_{0} \leq t_{1}<\cdots<t_{n}$ and $f \in \mathbb{P}$, $\operatorname{proj}_{t_{1}, \ldots, t_{n}}(f):=\left(f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right)$.
$■ \mathcal{P}^{\circ}:=\left\{\operatorname{proj}_{t_{1}, \ldots, t_{n}}^{-1}\left(B^{n}\right): B^{n} \subset \mathbb{R}^{n}\right.$ measurable $\}, \mathcal{P}:=\sigma\left(\mathcal{P}^{\circ}\right)$.

An Implication

Kingman (1967). There is a purely finitely additive μ on the set of polynomials with the same finite dimensional distributions as a Poisson process.

■ \mathbb{P} is the set of polynomials on $[0, \infty)$.
■ For $0=: t_{0} \leq t_{1}<\cdots<t_{n}$ and $f \in \mathbb{P}$, $\operatorname{proj}_{t_{1}, \ldots, t_{n}}(f):=\left(f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right)$.
$■ \mathcal{P}^{\circ}:=\left\{\operatorname{proj}_{t_{1}, \ldots, t_{n}}^{-1}\left(B^{n}\right): B^{n} \subset \mathbb{R}^{n}\right.$ measurable $\}, \mathcal{P}:=\sigma\left(\mathcal{P}^{\circ}\right)$.

- FIDI's - define $\mu^{\prime}: \mathcal{P}^{\circ} \rightarrow[0,1]$ by
$\mathcal{L}\left(\left\{\operatorname{proj}_{t_{m}}\left(\mu^{\prime}\right)-\operatorname{proj}_{t_{m-1}}\left(\mu^{\prime}\right): m=1, \ldots n\right\}\right)$ to be independent Poissons with parameters $\left(\lambda \cdot\left(t_{m}-t_{m-1}\right)\right)$.

An Implication

For any finite set $0=: t_{0} \leq t_{1}<\cdots<t_{n}$, there is a non-empty, weak*-closed/compact set of probabilities μ^{\prime} on \mathbb{P} with these FIDIs.

An Implication

For any finite set $0=: t_{0} \leq t_{1}<\cdots<t_{n}$, there is a non-empty, weak*-closed/compact set of probabilities μ^{\prime} on \mathbb{P} with these FIDIs.

Compactness implies non-emptiness of the intersection over all finite $0=: t_{0} \leq t_{1}<\cdots<t_{n}$. Any μ in the intersection is purely finitely additive.

Infinitely Steep Polynomials

Fix a Poisson realization $h:[0, \infty) \rightarrow\{0,1, \ldots\}$ with jumps at $\tau_{1}<\cdots<\tau_{k}<\cdots$.

Infinitely Steep Polynomials

Fix a Poisson realization $h:[0, \infty) \rightarrow\{0,1, \ldots\}$ with jumps at $\tau_{1}<\cdots<\tau_{k}<\cdots$.

Fix arbitrary $\epsilon>0$ and interval $[0,1 / \epsilon]$. There exists K such that $\tau_{K} \leq(1 / \epsilon)<\tau_{K+1}$. There exists an $f \in \mathbb{P}$ with slope at least $1 / \epsilon$ such that for $1 \leq k \leq K$,

$$
\begin{aligned}
{[k \leq h(t)<(k+1)] } & \Rightarrow[k \leq f(t)<(k+1)] \\
{\left[d\left(t, \tau_{k}\right) \geq \epsilon, 0 \leq t \leq 1 / \epsilon\right] } & \Rightarrow[|h(t)-f(t)|<\epsilon] .
\end{aligned}
$$

Infinitely Steep Polynomials

Fix a Poisson realization $h:[0, \infty) \rightarrow\{0,1, \ldots\}$ with jumps at $\tau_{1}<\cdots<\tau_{k}<\cdots$.

Fix arbitrary $\epsilon>0$ and interval $[0,1 / \epsilon]$. There exists K such that $\tau_{K} \leq(1 / \epsilon)<\tau_{K+1}$. There exists an $f \in \mathbb{P}$ with slope at least $1 / \epsilon$ such that for $1 \leq k \leq K$,

$$
\begin{aligned}
{[k \leq h(t)<(k+1)] } & \Rightarrow[k \leq f(t)<(k+1)] \\
{\left[d\left(t, \tau_{k}\right) \geq \epsilon, 0 \leq t \leq 1 / \epsilon\right] } & \Rightarrow[|h(t)-f(t)|<\epsilon] .
\end{aligned}
$$

The finitely additive μ is "trying to" put mass 1 on polynomials having slopes at least $1 / \epsilon$ for every $\epsilon>0$.

Representing Infinitely Steep Functions

Let *P be the nonstandard version of the polynomials. By overspill, there exists a strictly positive $\epsilon \simeq 0$ such that for every Poisson realization h, there is an $f \in{ }^{*} \mathbb{P}$ such that for $1 \leq k \leq K$,

$$
\begin{aligned}
{[k \leq h(t)<(k+1)] } & \Rightarrow[k \leq f(t)<(k+1)] \\
{\left[d\left(t, \tau_{k}\right)\right.} & \geq \epsilon, 0 \leq t \leq 1 / \epsilon]
\end{aligned} \Rightarrow[|h(t)-f(t)|<\epsilon] .
$$

Representing Infinitely Steep Functions

Let *P be the nonstandard version of the polynomials. By overspill, there exists a strictly positive $\epsilon \simeq 0$ such that for every Poisson realization h, there is an $f \in{ }^{*} \mathbb{P}$ such that for $1 \leq k \leq K$,

$$
\begin{aligned}
{[k \leq h(t)<(k+1)] } & \Rightarrow[k \leq f(t)<(k+1)] \\
{\left[d\left(t, \tau_{k}\right) \geq \epsilon, 0 \leq t \leq 1 / \epsilon\right] } & \Rightarrow[|h(t)-f(t)|<\epsilon] .
\end{aligned}
$$

${ }^{*} \mu$ or $L\left({ }^{*} \mu\right)$ is a probability on ${ }^{*} \mathbb{P}$ having the FIDIs of a Poisson process.

A Lightning Fast Introduction to NSA

- Let η be a pfa probability on \mathbb{N} with $\eta(E)=0$ or $\eta(E)=1$ for all $E \subset \mathbb{N}$.

A Lightning Fast Introduction to NSA

- Let η be a pfa probability on \mathbb{N} with $\eta(E)=0$ or $\eta(E)=1$ for all $E \subset \mathbb{N}$.
- For arbitrary non-empty set X and $\left(x_{m}\right),\left(y_{m}\right) \in X^{\mathbb{N}}$, define $\left(x_{m}\right) \sim\left(y_{m}\right)$ if $\eta\left(\left\{m \in \mathbb{N}: x_{m}=y_{m}\right\}\right)=1$, let $\left\langle x_{m}\right\rangle$ denote the equivalence class of $\left(x_{m}\right)$, and define ${ }^{*} X=X^{\mathbb{N}} / \sim$ as the set of equivalence classes.

A Lightning Fast Introduction to NSA

- Let η be a pfa probability on \mathbb{N} with $\eta(E)=0$ or $\eta(E)=1$ for all $E \subset \mathbb{N}$.
- For arbitrary non-empty set X and $\left(x_{m}\right),\left(y_{m}\right) \in X^{\mathbb{N}}$, define $\left(x_{m}\right) \sim\left(y_{m}\right)$ if $\eta\left(\left\{m \in \mathbb{N}: x_{m}=y_{m}\right\}\right)=1$, let $\left\langle x_{m}\right\rangle$ denote the equivalence class of $\left(x_{m}\right)$, and define ${ }^{*} X=X^{\mathbb{N}} / \sim$ as the set of equivalence classes.
- If $\epsilon=\left\langle\epsilon_{m}\right\rangle$ in ${ }^{*} \mathbb{R}$ and $\epsilon_{m} \downarrow 0$, then we say that ϵ is infinitesimal because, for all $r>0, \eta\left(\left\{m: 0<\epsilon_{m}<r\right\}\right)=1$, so $0<\epsilon<r$.

A Lightning Fast Introduction to NSA

■ For $E_{n} \downarrow \emptyset$ and each $E_{n} \neq \emptyset$, we do not have ${ }^{*} E_{n} \downarrow \emptyset$, a form of compactness.

A Lightning Fast Introduction to NSA

■ For $E_{n} \downarrow \emptyset$ and each $E_{n} \neq \emptyset$, we do not have ${ }^{*} E_{n} \downarrow \emptyset$, a form of compactness.

- For measurable $E,{ }^{*} \mu\left({ }^{*} E\right)=\mu(E)$, so $E_{n} \downarrow \emptyset$ and $\mu\left(E_{n}\right) \equiv 1$ yield ${ }^{*} \mu\left(\cap_{n}{ }^{*} E_{n}\right)=\langle 1,1,1, \ldots\rangle$.

A Lightning Fast Introduction to NSA

■ For $E_{n} \downarrow \emptyset$ and each $E_{n} \neq \emptyset$, we do not have ${ }^{*} E_{n} \downarrow \emptyset$, a form of compactness.

■ For measurable $E,{ }^{*} \mu\left({ }^{*} E\right)=\mu(E)$, so $E_{n} \downarrow \emptyset$ and $\mu\left(E_{n}\right) \equiv 1$ yield ${ }^{*} \mu\left(\cap_{n}{ }^{*} E_{n}\right)=\langle 1,1,1, \ldots\rangle$.
\square For $E=\left\langle E_{n}\right\rangle,{ }^{*} \mu(E)=\left\langle\mu\left(E_{n}\right)\right\rangle$, so domain of ${ }^{*} \mu$ is large.

Nonstandard Polynomials

A quick look at $* \mathbb{P}$.

Nonstandard Polynomials

A quick look at *P.
■ Fix a Poisson realization $h:[0, \infty) \rightarrow\{0,1, \ldots\}$. with jumps at $\tau_{1}<\cdots$.

Nonstandard Polynomials

A quick look at *P.

- Fix a Poisson realization $h:[0, \infty) \rightarrow\{0,1, \ldots\}$. with jumps at $\tau_{1}<\cdots$.

■ For each m and K jumps of h in [$0, m$], let f_{m} be a polynomial with, for $k=1, \ldots, K$,

$$
\begin{aligned}
{[k \leq h(t)<(k+1)] } & \Rightarrow\left[k \leq f_{m}(t)<(k+1)\right] \\
{\left[d\left(t, \tau_{k}\right) \geq \epsilon, 0 \leq t \leq m\right] } & \Rightarrow[|h(t)-f(t)|<1 / m] .
\end{aligned}
$$

Nonstandard Polynomials

A quick look at *P.
■ Fix a Poisson realization $h:[0, \infty) \rightarrow\{0,1, \ldots\}$. with jumps at $\tau_{1}<\cdots$.

■ For each m and K jumps of h in [$0, m$], let f_{m} be a polynomial with, for $k=1, \ldots, K$,

$$
\begin{aligned}
{[k \leq h(t)<(k+1)] } & \Rightarrow\left[k \leq f_{m}(t)<(k+1)\right] \\
{\left[d\left(t, \tau_{k}\right) \geq \epsilon, 0 \leq t \leq m\right] } & \Rightarrow[|h(t)-f(t)|<1 / m] .
\end{aligned}
$$

- Let $f=\left\langle f_{m}\right\rangle$.

Nonstandard Polynomials

A quick look at ${ }^{*} \mathbb{P}$.

- Fix a Poisson realization $h:[0, \infty) \rightarrow\{0,1, \ldots\}$. with jumps at $\tau_{1}<\cdots$.
- For each m and K jumps of h in [$0, m$], let f_{m} be a polynomial with, for $k=1, \ldots, K$,

$$
\begin{aligned}
{[k \leq h(t)<(k+1)] } & \Rightarrow\left[k \leq f_{m}(t)<(k+1)\right] \\
{\left[d\left(t, \tau_{k}\right) \geq \epsilon, 0 \leq t \leq m\right] } & \Rightarrow[|h(t)-f(t)|<1 / m] .
\end{aligned}
$$

- Let $f=\left\langle f_{m}\right\rangle$.

Claim: ${ }^{*} \mu$ puts mass 1 on the infinitely steep polynomials.

Overview

Recall $\Gamma(\mu)=((T, \mathcal{T}, \mu), \mathbb{U}, \mathcal{G})$.

Overview

Recall $\Gamma(\mu)=((T, \mathcal{T}, \mu), \mathbb{U}, \mathcal{G})$.
Two pfa examples from Khan, Kiao, Rath, Sun. The first has approximate equilibria but no equilibrium, the second has no approximate equilibria.

Overview

Recall $\Gamma(\mu)=((T, \mathcal{T}, \mu), \mathbb{U}, \mathcal{G})$.
Two pfa examples from Khan, Kiao, Rath, Sun. The first has approximate equilibria but no equilibrium, the second has no approximate equilibria.

In the first, the pfa $\mathcal{G}(\mu) \in \Delta(\mathbb{U})$ is "trying to" put mass 1 on a single utility function.

Overview

Recall $\Gamma(\mu)=((T, \mathcal{T}, \mu), \mathbb{U}, \mathcal{G})$.
Two pfa examples from Khan, Kiao, Rath, Sun. The first has approximate equilibria but no equilibrium, the second has no approximate equilibria.

In the first, the pfa $\mathcal{G}(\mu) \in \Delta(\mathbb{U})$ is "trying to" put mass 1 on a single utility function.

In the second, $\mathcal{G}(\mu)$ is "trying to" put mass 1 on infinitely steep continuous functions.

Overview

Recall $\Gamma(\mu)=((T, \mathcal{T}, \mu), \mathbb{U}, \mathcal{G})$.
Two pfa examples from Khan, Kiao, Rath, Sun. The first has approximate equilibria but no equilibrium, the second has no approximate equilibria.

In the first, the pfa $\mathcal{G}(\mu) \in \Delta(\mathbb{U})$ is "trying to" put mass 1 on a single utility function.

In the second, $\mathcal{G}(\mu)$ is "trying to" put mass 1 on infinitely steep continuous functions.

Will then analyze the equilbria of the games

$$
{ }^{*} \Gamma(\mu):=\left(\left({ }^{*} T, \sigma\left({ }^{*} \mathcal{T}\right),{ }^{\circ} \mu\right), \operatorname{st}_{\mathrm{V}}\left({ }^{*} \mathbb{U}\right), \operatorname{st}_{\mathrm{V}}\left({ }^{*} \mathcal{G}\right)\right)
$$

Approximate Equilibria

$T=[1, \infty), \mathcal{T}$ is the (usual) Borel σ-field, and μ is a non-atomic, pfa probability on T with $\mu([t, \infty)) \equiv 1$. the common space of actions is $A=\{0,1\}, \mathbb{U}$ is the closed unit ball in $C(A \times[0,1])$ where $[0,1]$ representing $\nu(a=1)$.

Approximate Equilibria

$T=[1, \infty), \mathcal{T}$ is the (usual) Borel σ-field, and μ is a non-atomic, pfa probability on T with $\mu([t, \infty)) \equiv 1$. the common space of actions is $A=\{0,1\}, \mathbb{U}$ is the closed unit ball in $C(A \times[0,1])$ where $[0,1]$ representing $\nu(a=1)$.

Example 1: $\mathcal{G}(t)=a \cdot\left(\frac{1}{t}-\nu\right)$.

Approximate Equilibria

$T=[1, \infty), \mathcal{T}$ is the (usual) Borel σ-field, and μ is a non-atomic, pfa probability on T with $\mu([t, \infty)) \equiv 1$. the common space of actions is $A=\{0,1\}, \mathbb{U}$ is the closed unit ball in $C(A \times[0,1])$ where $[0,1]$ representing $\nu(a=1)$.
Example 1: $\mathcal{G}(t)=a \cdot\left(\frac{1}{t}-\nu\right)$.
■ If $\nu_{a}>0$ is equilibrium, then $a^{*}=1$ is only a best response for t in the null set $\left(0,1 / \nu_{a}\right]-\left[\nu_{a}>0\right] \Rightarrow\left[\nu_{a}=0\right]$.

- If $\nu_{a}=0$ is equilibrium, then for all $t \in T, \frac{1}{t}>\nu_{a}$, so everyone should (apparently) play the action 1 , making $\nu_{a}=1$.

■ For ϵ-equilibria, any tiny set of people play $a=1$.

But the Equilibria Involve

$$
\begin{gather*}
V(a, \nu):=-a \cdot \nu, \mathcal{G}(t)=a \cdot \frac{1}{t}+V(a, \nu) \text {, for any } \delta>0 \text {, we have } \\
\mu(\{t \in T:\|\mathcal{G}(t)-V\|<\delta\})=1, \tag{2}
\end{gather*}
$$

But the Equilibria Involve

$$
\begin{gather*}
V(a, \nu):=-a \cdot \nu, \mathcal{G}(t)=a \cdot \frac{1}{t}+V(a, \nu), \text { for any } \delta>0, \text { we have } \\
\mu(\{t \in T:\|\mathcal{G}(t)-V\|<\delta\})=1, \tag{2}
\end{gather*}
$$

hence $\int\|\mathcal{G}(t)-V\| d \mu(t)=0$ even though $f(t):=\|\mathcal{G}(t)-V\|$, is strictly positive on T.

But the Equilibria Involve

$V(a, \nu):=-a \cdot \nu, \mathcal{G}(t)=a \cdot \frac{1}{t}+V(a, \nu)$, for any $\delta>0$, we have

$$
\begin{equation*}
\mu(\{t \in T:\|\mathcal{G}(t)-V\|<\delta\})=1 \tag{2}
\end{equation*}
$$

hence $\int\|\mathcal{G}(t)-V\| d \mu(t)=0$ even though $f(t):=\|\mathcal{G}(t)-V\|$, is strictly positive on T.

If $\mu(\{t: \mathcal{G}(t)=V\})=1$, then equilibria have $\mu(\{t: a(t)=0\})=1$.

NO Approximate Equilibria

$\mathcal{G}(t)=a \cdot u(t, \nu)$ where

$$
u(t, \nu)= \begin{cases}1 & \text { if } \nu \leq \frac{1}{2}, \\ 1-t\left(\nu-\frac{1}{2}\right) & \text { if } \frac{1}{2} \leq \nu \leq \frac{1}{2}+\frac{2}{t}, \text { and } \\ -1 & \text { if } \frac{1}{2}+\frac{2}{t} \leq \nu .\end{cases}
$$

NO Approximate Equilibria

$\mathcal{G}(t)=a \cdot u(t, \nu)$ where

$$
u(t, \nu)= \begin{cases}1 & \text { if } \nu \leq \frac{1}{2}, \\ 1-t\left(\nu-\frac{1}{2}\right) & \text { if } \frac{1}{2} \leq \nu \leq \frac{1}{2}+\frac{2}{t}, \text { and } \\ -1 & \text { if } \frac{1}{2}+\frac{2}{t} \leq \nu .\end{cases}
$$

Maximal absolute slope for t is $t . \mu([t, \infty)) \equiv 1$ is "trying to" put mass 1 on infinitely steep utility functions.

NO Approximate Equilibria

$\mathcal{G}(t)=a \cdot u(t, \nu)$ where

$$
u(t, \nu)= \begin{cases}1 & \text { if } \nu \leq \frac{1}{2}, \\ 1-t\left(\nu-\frac{1}{2}\right) & \text { if } \frac{1}{2} \leq \nu \leq \frac{1}{2}+\frac{2}{t}, \text { and } \\ -1 & \text { if } \frac{1}{2}+\frac{2}{t} \leq \nu .\end{cases}
$$

Maximal absolute slope for t is $t . \mu([t, \infty)) \equiv 1$ is "trying to" put mass 1 on infinitely steep utility functions.

To represent steepness $=\infty$, the domain, $\Delta(\{0,1\})=[0,1]$, must expand.

NO Approximate Equilibria

$$
\mathcal{G}(t)=a \cdot u(t, \nu) \text { with }
$$

$$
u(t, \nu)= \begin{cases}1 & \text { if } \nu \leq \frac{1}{2}, \\ 1-t\left(\nu-\frac{1}{2}\right) & \text { if } \frac{1}{2} \leq \nu \leq \frac{1}{2}+\frac{2}{t}, \text { and } \\ -1 & \text { if } \frac{1}{2}+\frac{2}{t} \leq \nu .\end{cases}
$$

- $\left[\nu \leq \frac{1}{2}\right] \Rightarrow(\forall t)\left[a^{b r}(t)=1\right]$ so ϵ-best responses put mass at least $1-\epsilon$ on $a=1$.

NO Approximate Equilibria

$$
\mathcal{G}(t)=a \cdot u(t, \nu) \text { with }
$$

$$
u(t, \nu)= \begin{cases}1 & \text { if } \nu \leq \frac{1}{2}, \\ 1-t\left(\nu-\frac{1}{2}\right) & \text { if } \frac{1}{2} \leq \nu \leq \frac{1}{2}+\frac{2}{t}, \text { and } \\ -1 & \text { if } \frac{1}{2}+\frac{2}{t} \leq \nu .\end{cases}
$$

- $\left[\nu \leq \frac{1}{2}\right] \Rightarrow(\forall t)\left[a^{b r}(t)=1\right]$ so ϵ-best responses put mass at least $1-\epsilon$ on $a=1$. Therefore, $\left[\nu_{a} \leq \frac{1}{2}\right.$ an ϵ-equilibrium $] \Rightarrow\left[\nu_{a} \geq(1-\epsilon)^{2}\right]$.

NO Approximate Equilibria

$\mathcal{G}(t)=a \cdot u(t, \nu)$ with

$$
u(t, \nu)= \begin{cases}1 & \text { if } \nu \leq \frac{1}{2}, \\ 1-t\left(\nu-\frac{1}{2}\right) & \text { if } \frac{1}{2} \leq \nu \leq \frac{1}{2}+\frac{2}{t}, \text { and } \\ -1 & \text { if } \frac{1}{2}+\frac{2}{t} \leq \nu .\end{cases}
$$

- $\left[\nu \leq \frac{1}{2}\right] \Rightarrow(\forall t)\left[a^{b r}(t)=1\right]$ so ϵ-best responses put mass at least $1-\epsilon$ on $a=1$. Therefore, $\left[\nu_{a} \leq \frac{1}{2}\right.$ an ϵ-equilibrium $] \Rightarrow\left[\nu_{a} \geq(1-\epsilon)^{2}\right]$.
- $\left[\nu>\frac{1}{2}\right] \Rightarrow\left[\mu\left(\left\{t: \frac{1}{2}+\frac{2}{t}<\nu_{a}\right\}\right)=1\right]$. A mass 1 set of players loses utility of 1 by playing $a=1$, so ϵ-best responses must put mass at least $1-\epsilon$ on $a=0$.

NO Approximate Equilibria

$\mathcal{G}(t)=a \cdot u(t, \nu)$ with

$$
u(t, \nu)= \begin{cases}1 & \text { if } \nu \leq \frac{1}{2}, \\ 1-t\left(\nu-\frac{1}{2}\right) & \text { if } \frac{1}{2} \leq \nu \leq \frac{1}{2}+\frac{2}{t}, \text { and } \\ -1 & \text { if } \frac{1}{2}+\frac{2}{t} \leq \nu .\end{cases}
$$

- $\left[\nu \leq \frac{1}{2}\right] \Rightarrow(\forall t)\left[a^{b r}(t)=1\right]$ so ϵ-best responses put mass at least $1-\epsilon$ on $a=1$. Therefore, $\left[\nu_{a} \leq \frac{1}{2}\right.$ an ϵ-equilibrium $] \Rightarrow\left[\nu_{a} \geq(1-\epsilon)^{2}\right]$.
- $\left[\nu>\frac{1}{2}\right] \Rightarrow\left[\mu\left(\left\{t: \frac{1}{2}+\frac{2}{t}<\nu_{a}\right\}\right)=1\right]$. A mass 1 set of players loses utility of 1 by playing $a=1$, so ϵ-best responses must put mass at least $1-\epsilon$ on $a=0$. Therefore, $\left[\nu_{a}>\frac{1}{2}\right.$ an ϵ-equilibrium $] \Rightarrow\left[\nu_{a} \leq \epsilon(1-\epsilon)\right]$.

Equilibria with * μ

Now replace the spaces with their nonstandard extensions and analyze the dependence of equilibrium distributions of actions and utilities.

Equilibria with * μ

Now replace the spaces with their nonstandard extensions and analyze the dependence of equilibrium distributions of actions and utilities. Example, let $N \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$ be an infinite integer. For any Borel $E \subset[1, \infty), \mu_{1}(E):={ }^{\circ *} U n i f[N, N+1]\left({ }^{*} E\right)$ with $c d f$ is $F_{1}(t)=x$ for $N \leq x \leq N+1$.

Equilibria with * μ

Now replace the spaces with their nonstandard extensions and analyze the dependence of equilibrium distributions of actions and utilities. Example, let $N \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$ be an infinite integer. For any Borel $E \subset[1, \infty), \mu_{1}(E):={ }^{\circ *} U n i f[N, N+1]\left({ }^{*} E\right)$ with $c d f$ is $F_{1}(t)=x$ for $N \leq x \leq N+1$.

Equilibrium involves everyone with $t<(\leq) t_{c}$ playing $a=1$ where $F_{1}\left(t_{c}\right)=\frac{1}{2}+\frac{1}{t_{c}}$,

Equilibria with * μ

Now replace the spaces with their nonstandard extensions and analyze the dependence of equilibrium distributions of actions and utilities. Example, let $N \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$ be an infinite integer. For any Borel $E \subset[1, \infty), \mu_{1}(E):={ }^{\circ *} U n i f[N, N+1]\left({ }^{*} E\right)$ with $c d f$ is $F_{1}(t)=x$ for $N \leq x \leq N+1$.

Equilibrium involves everyone with $t<(\leq) t_{c}$ playing $a=1$ where $F_{1}\left(t_{c}\right)=\frac{1}{2}+\frac{1}{t_{c}}$, using the quadratic formula on $t_{c}=\frac{1}{2}+\frac{1}{t_{c}}$ yields

$$
t_{c}=\frac{1}{2}\left[\left(N+\frac{1}{2}\right)+\sqrt{\left(N+\frac{1}{2}\right)^{2}+4}\right],
$$

which involves $t_{c} /\left(N+\frac{1}{2}\right)=1+\epsilon$ for an $\epsilon \simeq 0$.

Observations

- Agents in [N, t_{c}], who have mass (a positive infinitesimal greater than) $\frac{1}{2}$, play $a=1$, and their utility is distributed uniformly on $[0,1]$, agents in $\left(t_{c}, N+1\right]$ play $a=0$ and receive utility 0 . No strategy in the original game achieves this joint distribution of actions and utilities.

Observations

- Agents in [N, t_{c}], who have mass (a positive infinitesimal greater than) $\frac{1}{2}$, play $a=1$, and their utility is distributed uniformly on $[0,1]$, agents in $\left(t_{c}, N+1\right]$ play $a=0$ and receive utility 0 . No strategy in the original game achieves this joint distribution of actions and utilities.
- Related, $\nu=\frac{1}{2}+1 / t_{c}$ is NOT an element of $[0,1]$, it is an element of ${ }^{*}[0,1]$. To find the equilibrium, the domain of the utility functions, $\{0,1\} \times[0,1]$, was extended.

Equilibrium Outcomes Depend on μ

Now suppose μ_{2} the weak* standard part of $\frac{1}{4} U[0, N]+\frac{3}{4} U\left[0, N^{2}\right]$ for infinite N. Can solve for exact cutoff t_{c}, it satisfies $t_{c} /\left(N+\frac{1}{3} N^{2}\right) \simeq 1$.

Equilibrium Outcomes Depend on μ

Now suppose μ_{2} the weak ${ }^{*}$ standard part of $\frac{1}{4} U[0, N]+\frac{3}{4} U\left[0, N^{2}\right]$ for infinite N. Can solve for exact cutoff t_{c}, it satisfies $t_{c} /\left(N+\frac{1}{3} N^{2}\right) \simeq 1$.
Equilibrium outcomes: just over half of the agents, those in $\left[0, t_{c}\right]$ play $a=1$, the rest play $a=0$. Playing $a=0$ yields utility 0 . Half of the $a=1$ agents receive utility 1 and half of them have utility uniformly distributed on $[0,1]$.

Equilibrium Outcomes Depend on μ

Now suppose μ_{2} the weak ${ }^{*}$ standard part of $\frac{1}{4} U[0, N]+\frac{3}{4} U\left[0, N^{2}\right]$ for infinite N. Can solve for exact cutoff t_{c}, it satisfies $t_{c} /\left(N+\frac{1}{3} N^{2}\right) \simeq 1$.
Equilibrium outcomes: just over half of the agents, those in $\left[0, t_{c}\right]$ play $a=1$, the rest play $a=0$. Playing $a=0$ yields utility 0 . Half of the $a=1$ agents receive utility 1 and half of them have utility uniformly distributed on $[0,1]$.

Again, no strategy in the original game achieves this joint distribution of outcomes and actions.

Examples

Fishburn (1970). A society's preference ordering, $\succsim s$ satisfies Arrow assumptions iff for some pfa point mass η we have

$$
[x \succsim s y] \Leftrightarrow(\exists E \subset T)[\eta(E)=1 \text { and } E=\{t \in T: x \succsim t y\}] .
$$

Examples

Fishburn (1970). A society's preference ordering, $\succsim s$ satisfies Arrow assumptions iff for some pfa point mass η we have

$$
[x \succsim s y] \Leftrightarrow(\exists E \subset T)[\eta(E)=1 \text { and } E=\{t \in T: x \succsim t y\}] .
$$

"Invisible dictators."

Examples

Fishburn (1970). A society's preference ordering, $\succsim s$ satisfies Arrow assumptions iff for some pfa point mass η we have

$$
[x \succsim s y] \Leftrightarrow(\exists E \subset T)[\eta(E)=1 \text { and } E=\{t \in T: x \succsim t y\}] .
$$

"Invisible dictators."
Dubins (1975). Subjective priors that are not countably additive are susceptible to a simple Dutch book.

Examples

Fishburn (1970). A society's preference ordering, $\succsim s$ satisfies Arrow assumptions iff for some pfa point mass η we have

$$
[x \succsim s y] \Leftrightarrow(\exists E \subset T)[\eta(E)=1 \text { and } E=\{t \in T: x \succsim t y\}] .
$$

"Invisible dictators."
Dubins (1975). Subjective priors that are not countably additive are susceptible to a simple Dutch book. Missing the event that the decision maker would have to be paid to give up the bet.

Examples

Fishburn (1970). A society's preference ordering, $\succsim s$ satisfies Arrow assumptions iff for some pfa point mass η we have

$$
[x \succsim s y] \Leftrightarrow(\exists E \subset T)\left[\eta(E)=1 \text { and } E=\left\{t \in T: x \succsim_{t} y\right\}\right]
$$

"Invisible dictators."
Dubins (1975). Subjective priors that are not countably additive are susceptible to a simple Dutch book. Missing the event that the decision maker would have to be paid to give up the bet.

Harris et al. (2005). [f bounded] \Rightarrow [$\max _{\eta} \int f d \eta$ has a solution], extended this to a subset of games with infinite strategy sets.

Examples

Fishburn (1970). A society's preference ordering, $\succsim s$ satisfies Arrow assumptions iff for some pfa point mass η we have

$$
[x \succsim s y] \Leftrightarrow(\exists E \subset T)[\eta(E)=1 \text { and } E=\{t \in T: x \succsim t y\}] .
$$

"Invisible dictators."
Dubins (1975). Subjective priors that are not countably additive are susceptible to a simple Dutch book. Missing the event that the decision maker would have to be paid to give up the bet.

Harris et al. (2005). [f bounded] \Rightarrow [$\max _{\eta} \int f d \eta$ has a solution], extended this to a subset of games with infinite strategy sets. Missing representations of approximate optima.

Examples

Fishburn (1970). A society's preference ordering, $\succsim s$ satisfies Arrow assumptions iff for some pfa point mass η we have

$$
[x \succsim s y] \Leftrightarrow(\exists E \subset T)[\eta(E)=1 \text { and } E=\{t \in T: x \succsim t y\}] .
$$

"Invisible dictators."
Dubins (1975). Subjective priors that are not countably additive are susceptible to a simple Dutch book. Missing the event that the decision maker would have to be paid to give up the bet.

Harris et al. (2005). [f bounded] \Rightarrow [$\max _{\eta} \int f d \eta$ has a solution], extended this to a subset of games with infinite strategy sets. Missing representations of approximate optima.

Examples

Kingman (1967). Pfa probabilities on the polynomials model jump process.

Examples

Kingman (1967). Pfa probabilities on the polynomials model jump process. Missing the infinitely steep polynomials.

Examples

Kingman (1967). Pfa probabilities on the polynomials model jump process. Missing the infinitely steep polynomials.

Khan et al. (2016). Pfa population measures \Rightarrow some population games have no equilibria.

Examples

Kingman (1967). Pfa probabilities on the polynomials model jump process. Missing the infinitely steep polynomials.

Khan et al. (2016). Pfa population measures \Rightarrow some population games have no equilibria. Missing agents and their utility functions.

Possible Reactions?

So what to think of purely finitely additive probabilities?

Possible Reactions?

So what to think of purely finitely additive probabilities?

- Flawed (?fatally?) tool.

Possible Reactions?

So what to think of purely finitely additive probabilities?

- Flawed (?fatally?) tool.

■ But * μ finds the missing pieces.

Other Results in the Paper

- The equilibria of $\Gamma^{*}(\mu)$ are finitely approximable.

Other Results in the Paper

- The equilibria of $\Gamma^{*}(\mu)$ are finitely approximable.

■ Can substitute compact Hausdorff spaces for the pieces of $\Gamma^{*}(\mu)$.

Other Results in the Paper

- The equilibria of $\Gamma^{*}(\mu)$ are finitely approximable.

■ Can substitute compact Hausdorff spaces for the pieces of $\Gamma^{*}(\mu)$.

- The compactification of e.g. the unit ball in $C([0,1])$ is an incredibly cool Hausdorff space.

Anything Else?

Anything Else?

FINIS

