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Basics

Γ(µ) = ((T , T , µ),U,G).

(T , T , µ), a non-atomic probability space.

(A, d), ∆(A), U the closed unit ball in C (A×∆(A)).

Or U ⊂ C (A×M), M = {q ∈ ∆(T ×A) : q(E ×A) = µ(E )}.

G : T → U, P = G(µ) ∈ ∆(U).
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Population-Wide Maximizing Behavior

If a : T → ∆(A) is the population strategy, the distribution is
νa(E ) =

∫
a(t)(E ) dµ(t), and agent t receives utility

G(t)(a(t), νa).

A strategy a(·) is an ε-equilibrium if

µ({t : G(t)(a(t), νa) ≥ max
b∈A
G(t)(b, νa)− ε}) ≥ 1− ε, (1)

and is an equilibrium if it is a 0-equilibrium.

Maxwell B. Stinchcombe Mislaid Pieces in Finitely Additive Population Games



Large Population Games Finitely Additive Probabilities PFAs in Population Games PFAs in Economic Models

Population-Wide Maximizing Behavior

If a : T → ∆(A) is the population strategy, the distribution is
νa(E ) =

∫
a(t)(E ) dµ(t), and agent t receives utility

G(t)(a(t), νa).

A strategy a(·) is an ε-equilibrium if

µ({t : G(t)(a(t), νa) ≥ max
b∈A
G(t)(b, νa)− ε}) ≥ 1− ε, (1)

and is an equilibrium if it is a 0-equilibrium.

Maxwell B. Stinchcombe Mislaid Pieces in Finitely Additive Population Games



Large Population Games Finitely Additive Probabilities PFAs in Population Games PFAs in Economic Models

Definitions

A probability is finitely additive if µ(E1 ∪ E2) = µ(E1) + µ(E2) for
E1 ∩ E2 = ∅.

A probability µ is countably additive iff

[En ↓ ∅]⇒ [µ(En) ↓ 0].

Countable additivity is not “just a technical assumption.”
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Definitions

Dfn: the deficiency of a finitely additive µ is

sup{δ ≥ 0 : ∃En ↓ ∅ and µ(En) ≥ δ}.

If the deficiency is 1, then µ is purely finitely additive. A
probability is pfa iff there exists a strictly positive g with∫
g dµ = 0.
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Weak∗ Compactness

Banach space theory: µα →w∗ µ iff
∫
g dµα →

∫
g dµ for all

bounded measurable g .

Alaoglu’s Theorem: the set of finitely additive probabilities is
weak∗-compact.
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An Implication

Kingman (1967). There is a purely finitely additive µ on the set of
polynomials with the same finite dimensional distributions as a
Poisson process.

P is the set of polynomials on [0,∞).

For 0 =: t0 ≤ t1 < · · · < tn and f ∈ P,
projt1,...,tn(f ) := (f (t1), . . . , f (tn)).

P◦ := {proj−1t1,...,tn(Bn) : Bn ⊂ Rn measurable}, P := σ(P◦).

FIDI’s — define µ′ : P◦ → [0, 1] by
L({projtm(µ′)− projtm−1

(µ′) : m = 1, . . . n}) to be
independent Poissons with parameters (λ · (tm − tm−1)).
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An Implication

For any finite set 0 =: t0 ≤ t1 < · · · < tn, there is a non-empty,
weak∗-closed/compact set of probabilities µ′ on P with these FIDIs.

Compactness implies non-emptiness of the intersection over all
finite 0 =: t0 ≤ t1 < · · · < tn. Any µ in the intersection is purely
finitely additive.
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Infinitely Steep Polynomials

Fix a Poisson realization h : [0,∞)→ {0, 1, . . .} with jumps at
τ1 < · · · < τk < · · · .

Fix arbitrary ε > 0 and interval [0, 1/ε]. There exists K such that
τK ≤ (1/ε) < τK+1. There exists an f ∈ P with slope at least 1/ε
such that for 1 ≤ k ≤ K ,

[k ≤ h(t) < (k + 1)]⇒ [k ≤ f (t) < (k + 1)]

[d(t, τk) ≥ ε, 0 ≤ t ≤ 1/ε]⇒ [|h(t)− f (t)| < ε].

The finitely additive µ is “trying to” put mass 1 on polynomials
having slopes at least 1/ε for every ε > 0.
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Representing Infinitely Steep Functions

Let ∗P be the nonstandard version of the polynomials. By overspill,
there exists a strictly positive ε ' 0 such that for every Poisson
realization h, there is an f ∈ ∗P such that for 1 ≤ k ≤ K ,

[k ≤ h(t) < (k + 1)]⇒ [k ≤ f (t) < (k + 1)]

[d(t, τk) ≥ ε, 0 ≤ t ≤ 1/ε]⇒ [|h(t)− f (t)| < ε].

∗µ or L(∗µ) is a probability on ∗P having the FIDIs of a Poisson
process.
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A Lightning Fast Introduction to NSA

Let η be a pfa probability on N with η(E ) = 0 or η(E ) = 1 for
all E ⊂ N.

For arbitrary non-empty set X and (xm), (ym) ∈ XN, define
(xm) ∼ (ym) if η({m ∈ N : xm = ym}) = 1, let 〈xm〉 denote
the equivalence class of (xm), and define ∗X = XN/ ∼ as the
set of equivalence classes.

If ε = 〈εm〉 in ∗R and εm ↓ 0, then we say that ε is infinitesimal
because, for all r > 0, η({m : 0 < εm < r}) = 1, so 0 < ε < r .
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A Lightning Fast Introduction to NSA

For En ↓ ∅ and each En 6= ∅, we do not have ∗En ↓ ∅, a form
of compactness.

For measurable E , ∗µ(∗E ) = µ(E ), so En ↓ ∅ and µ(En) ≡ 1
yield ∗µ(∩n∗En) = 〈1, 1, 1, . . .〉.

For E = 〈En〉, ∗µ(E ) = 〈µ(En)〉, so domain of ∗µ is large.
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Nonstandard Polynomials

A quick look at ∗P.

Fix a Poisson realization h : [0,∞)→ {0, 1, . . .}. with jumps
at τ1 < · · · .

For each m and K jumps of h in [0,m], let fm be a polynomial
with, for k = 1, . . . ,K ,

[k ≤ h(t) < (k + 1)]⇒ [k ≤ fm(t) < (k + 1)]

[d(t, τk) ≥ ε, 0 ≤ t ≤ m]⇒ [|h(t)− f (t)| < 1/m].

Let f = 〈fm〉.

Claim: ∗µ puts mass 1 on the infinitely steep polynomials.
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Overview

Recall Γ(µ) = ((T , T , µ),U,G).

Two pfa examples from Khan, Kiao, Rath, Sun. The first has
approximate equilibria but no equilibrium, the second has no
approximate equilibria.

In the first, the pfa G(µ) ∈ ∆(U) is “trying to” put mass 1 on a
single utility function.

In the second, G(µ) is “trying to” put mass 1 on infinitely steep
continuous functions.

Will then analyze the equilbria of the games

∗Γ(µ) := ((∗T , σ(∗T ), ◦∗µ), stV(∗U), stV(∗G)).
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∗Γ(µ) := ((∗T , σ(∗T ), ◦∗µ), stV(∗U), stV(∗G)).
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Approximate Equilibria

T = [1,∞), T is the (usual) Borel σ-field, and µ is a non-atomic,
pfa probability on T with µ([t,∞)) ≡ 1. the common space of
actions is A = {0, 1}, U is the closed unit ball in C (A× [0, 1])
where [0, 1] representing ν(a = 1).

Example 1: G(t) = a · (1t − ν).

If νa > 0 is equilibrium, then a∗ = 1 is only a best response
for t in the null set (0, 1/νa] — [νa > 0]⇒ [νa = 0].

If νa = 0 is equilibrium, then for all t ∈ T , 1
t > νa, so everyone

should (apparently) play the action 1, making νa = 1.

For ε-equilibria, any tiny set of people play a = 1.
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But the Equilibria Involve

V (a, ν) := −a · ν, G(t) = a · 1t + V (a, ν), for any δ > 0, we have

µ({t ∈ T : ‖G(t)− V ‖ < δ}) = 1, (2)

hence
∫
‖G(t)− V ‖ dµ(t) = 0 even though f (t) := ‖G(t)− V ‖, is

strictly positive on T .

If µ({t : G(t) = V }) = 1, then equilibria have
µ({t : a(t) = 0}) = 1.
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NO Approximate Equilibria

G(t) = a · u(t, ν) where

u(t, ν) =


1 if ν ≤ 1

2 ,

1− t(ν − 1
2) if 1

2 ≤ ν ≤
1
2 + 2

t , and

−1 if 1
2 + 2

t ≤ ν.

Maximal absolute slope for t is t. µ([t,∞)) ≡ 1 is “trying to” put
mass 1 on infinitely steep utility functions.

To represent steepness =∞, the domain, ∆({0, 1}) = [0, 1], must
expand.
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2 + 2
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[ν ≤ 1
2 ]⇒ (∀t)[abr (t) = 1] so ε-best responses put mass at

least 1− ε on a = 1.

Therefore, [νa ≤ 1
2 an

ε-equilibrium]⇒ [νa ≥ (1− ε)2].

[ν > 1
2 ]⇒ [µ({t : 1

2 + 2
t < νa}) = 1]. A mass 1 set of players

loses utility of 1 by playing a = 1, so ε-best responses must
put mass at least 1− ε on a = 0. Therefore, [νa >

1
2 an

ε-equilibrium]⇒ [νa ≤ ε(1− ε)].
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Equilibria with ∗µ

Now replace the spaces with their nonstandard extensions and
analyze the dependence of equilibrium distributions of actions and
utilities.

Example, let N ∈ ∗N \ N be an infinite integer. For any
Borel E ⊂ [1,∞), µ1(E ) := ◦∗Unif [N,N + 1](∗E ) with cdf is
F1(t) = x for N ≤ x ≤ N + 1.

Equilibrium involves everyone with t < (≤)tc playing a = 1 where
F1(tc) = 1

2 + 1
tc

, using the quadratic formula on tc = 1
2 + 1

tc
yields

tc = 1
2

[
(N + 1

2) +
√

(N + 1
2)2 + 4

]
,

which involves tc/(N + 1
2) = 1 + ε for an ε ' 0.
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Observations

Agents in [N, tc ], who have mass (a positive infinitesimal
greater than) 1

2 , play a = 1, and their utility is distributed
uniformly on [0, 1], agents in (tc ,N + 1] play a = 0 and
receive utility 0. No strategy in the original game achieves this
joint distribution of actions and utilities.

Related, ν = 1
2 + 1/tc is NOT an element of [0, 1], it is an

element of ∗[0, 1]. To find the equilibrium, the domain of the
utility functions, {0, 1} × [0, 1], was extended.
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Equilibrium Outcomes Depend on µ

Now suppose µ2 the weak∗ standard part of 1
4U[0,N] + 3

4U[0,N2]
for infinite N. Can solve for exact cutoff tc , it satisfies
tc/(N + 1

3N
2) ' 1.

Equilibrium outcomes: just over half of the agents, those in [0, tc ]
play a = 1, the rest play a = 0. Playing a = 0 yields utility 0. Half
of the a = 1 agents receive utility 1 and half of them have utility
uniformly distributed on [0, 1].

Again, no strategy in the original game achieves this joint
distribution of outcomes and actions.
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Examples

Fishburn (1970). A society’s preference ordering, %S satisfies
Arrow assumptions iff for some pfa point mass η we have

[x %S y ]⇔ (∃E ⊂ T )[η(E ) = 1 and E = {t ∈ T : x %t y}].

“Invisible dictators.”

Dubins (1975). Subjective priors that are not countably additive
are susceptible to a simple Dutch book. Missing the event that the
decision maker would have to be paid to give up the bet.

Harris et al. (2005). [f bounded]⇒ [maxη
∫
f dη has a solution],

extended this to a subset of games with infinite strategy sets.
Missing representations of approximate optima.
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Examples

Kingman (1967). Pfa probabilities on the polynomials model jump
process.

Missing the infinitely steep polynomials.

Khan et al. (2016). Pfa population measures ⇒ some population
games have no equilibria. Missing agents and their utility functions.
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Possible Reactions?

So what to think of purely finitely additive probabilities?

Flawed (?fatally?) tool.

But ∗µ finds the missing pieces.
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Other Results in the Paper

The equilibria of Γ∗(µ) are finitely approximable.

Can substitute compact Hausdorff spaces for the pieces of
Γ∗(µ).

The compactification of e.g. the unit ball in C ([0, 1]) is an
incredibly cool Hausdorff space.
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Anything Else?

FINIS
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