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Outline of talk

I Nonlinear case (ctn), application to stochastic growth

I MFG with a major player

I Mean field social optimization

I Relation of two approaches in the fundamental diagram

I References
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In Part I, main materials have been organized around this diagram:

Problem     :     player Nash game

states:

strategies:

costs:  

A large-scale coupled 

equation system

Example:      coupled dynamic 

programming equations

Problem     :   Optimal control of a

single player

state:         control: 

mean field      is fixed and not

controlled by    

MFG equation system:

1 equation of optimal control;

1 equation of mean field

dynamics (for   )

Example: HJB PDE; FPK PDE (or

McKean-Vlasov SDE)
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HJB-McKV/FPK
Stochastic growth

For nonlinear diffusion models –

I We may formalize a single agent optimal control problem; we
further elaborate below

I Lasry and Lions (2007) solve the N player games and show the
solutions converge along a subsequence to a limiting HJB-FPK
equation system

− σ2

2
∆ν(x) = H(x ,▽ν) + λ = V [x ,m],

− σ2

2
∆m − div(

∂H

∂p
(x ,▽ν)m) = 0,

where
∫
Q
ν(x)dx = 0,

∫
Q
m(x) = 1, density m ≥ 0. Q = [0, 1]d .

H: Hamiltonian, λ: long run average cost, ν(x): differential cost
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How to construct the optimal control problem?

Dynamics and costs for N agents:

dxi =
1

N

N∑
j=1

f (xi , ui , xj)dt +
1

N

N∑
j=1

σ(xi , ui , xj)dwi , each xj ∈ Rn

Ji (ui , u−i ) = E

∫ T

0

1

N

N∑
j=1

L(xi , ui , xj)dt, 1 ≤ i ≤ N.

Assume i.i.d. initial states. (u−i : controls of all other players)
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Write δ
(N)
x = 1

N

∑N
j=1 δxj . Approximate δ

(N)
x by a deterministic meas. µt .

The idea is to approximate summation by integration

The optimal control problem:

dxi = f [xi , ui , µt ]dt + σ[xi , ui , µt ]dwi ,

J̄i (ui ) = E

∫ T

0

L[xi , ui , µt ]dt,

where µt is called the mean field. For instance,

f [xi , ui , µt ] =

∫
y

f (xi , ui , y)µt(dy)

I The solution gives an HJB equation

I By the fixed point approach, apply the consistency condition

I This can be generalized to multiple classes/types of agents
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HJB–McKV/FPK for the nonlinear diffusion model:

I HJB equation (scaler state for simplicity):

∂V

∂t
= inf

u∈U

{
f [x , u, µt ]

∂V

∂x
+ L[x , u, µt ]

}
+

σ2

2

∂2V

∂x2

V (T , x) = 0, (t, x) ∈ [0,T )× R.
⇓

Best Response : ut = φ(t, x |µ·), (t, x) ∈ [0,T ]× R.

I Closed-loop McK-V equation (which can be written as a
Fokker-Planck equation):

dxt = f [xt , φ(t, x |µ·), µt ]dt + σdwt , 0 ≤ t ≤ T .

Find a solution (xt , µt) in McK-V sense, i.e., Law(xt) = µt .
Show ϵ-Nash equilibrium
Refs. Huang, Caines and Malhame’06, Lasry and Lions (06, 07), Cardaliaguet’12

7 / 33



MFG with nonlinear diffusion models
MFG with a major player

Social optimization
Relation of two fundamental approaches: LQ case

HJB-McKV/FPK
Stochastic growth

Now we apply the fixed point approach to solve the

stochastic growth problem with relative performance

as described in Example 3 of Part I.
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The idea of relative performance in economic literature:

I Abel (1990), Amer. Econ. Rev.

I Hori and Shibata (2010), J. Optim. Theory Appl.

I Turnovsky and Monterio (2007), Euro. Econ. Rev.

I · · ·

MFG with relative performance (Espinosa and Touzi, 2013)

I Geometric BM dynamics for risky assets

I The performance of agent (manager) i (i = 1, 2, . . . ,N):

EU
[
(1− λ)X i

T + λ(X i
T − X

(−i)
T )

]
, X

(−i)
T =

1

N − 1

∑
j ̸=i

X j
T , 0 < λ < 1

Feature: This is difference-like comparison
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Growth with relative performance

Dynamics of N agents:

dX i
t =

[
A(X i

t )
α − δX i

t − C i
t

]
dt − σX i

t dW
i
t , 1 ≤ i ≤ N

I X i
t : capital stock, X i

0 > 0, EX i
0 < ∞, C i

t : consumption rate

I Axα, α ∈ (0, 1): Cobb-Douglas production function, 0 < α < 1, A > 0

I δdt + σdW i
t : stochastic depreciation (see e.g. Wälde’11, Feicht and

Stummer’10 for stochastic depreciation modeling)

I {W i
t , 1 ≤ i ≤ N} are i.i.d. standard Brownian motions. The i.i.d. initial states

{X i
0, 1 ≤ i ≤ N} are also independent of the N Brownian motions

I Take the standard choice γ = 1− α, i.e., equalizing the coefficient of the
relative risk aversion to capital share

See Huang and Nguyen (2016)
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The utility functional of agent i :

Ji (C
1, . . . ,CN) = E

[∫ T

0

e−ρtU(C i
t ,C

(N,γ)
t )dt + e−ρTS(XT )

]
,

where C
(N,γ)
t = 1

N

∑N
i=1(C

i
t )

γ , γ ∈ (0, 1). Take S(x) = ηxγ

γ , η > 0, and

U(C i
t ,C

(N,γ)
t ) =

1

γ
(C i

t )
γ(1−λ)

[
(C i

t )
γ

C
(N,γ)
t

]λ

(
=

[
1
γ (C

i
t )

γ
]1−λ [

1
γ

(C i
t )

γ

C
(N,γ)
t

]λ
=: U1−λ

0 Uλ
1

)
.

Interpretation of U: as a weighted geometric mean of U0 (own utility)
and U1 (relative utility).
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The infinite population limit:
i) A representative agent

dXt = (AX 1−γ
t − δXt − Ct)dt − σXtdWt , t ≥ 0.

No need of superscript i to label the agent. X0 > 0.
ii) The utility functional

J̄(C (·)) = E

[∫ T

0

e−ρtU(Ct , C̄
(γ)
t )dt + e−ρTS(XT )

]
,

U(Ct , C̄
(γ)
t ) =

1

γ

[
Cγ
t

]1−λ
[
Cγ
t

C̄
(γ)
t

]λ

, S(XT ) =
ηX γ

T

γ
.

Consider C̄ (γ)(·) ∈ C([0,T ];R+).

I C̄
(γ)
t is used to approximate C (N,γ) = 1

N

∑N
i=1(C

i
t )

γ

I The best responses of all agents regenerate C̄
(γ)
t (giving a fixed point)

I These two steps derive an appropriate fixed point equation (FPE)
bt = Γ (b)t , t ∈ [0,T ], where b ∈ C([0,T ],R+)
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Detail: The fixed point problem to determine C̄
(γ)
t . Define

Bt =
(
C̄

(γ)
t

)λ
and bt = B

1
γ−1

t . It is more convenient to work with b.

Then we derive a fixed point equation (FPE)

bt = Γ (b)t , t ∈ [0,T ].

Here Γ is obtained as follows:

Γ0(b)t = p
1

γ−1 (t) =
[
ea(t−T )η

1
1−γ + eat

∫ T

t

e−asbsds
]−1

Γ1(b)t = btΓ0(b)t

Λ(b)t = (EX γ
t )

1
γ , 0 ≤ t ≤ T .

a > 0 is a constant determined from (γ, σ2, δ, ρ). EX γ
t satisfies a linear

ODE! Finally

Γ (b)t = [Γ1(b)tΛ(b)t ]
λγ
γ−1
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The individual strategy is a linear feedback

Ĉ i
t = bt

[
ea(t−T )η

1
1−γ + eat

∫ T

t

e−asbsds
]−1

X i
t , 1 ≤ i ≤ N.

Theorem 1 Suppose that b ∈ C ([0,T ];R+) is a solution of FPE with
λ > 0 and the i.i.d. initial conditions X i

0 satisfy E |X i
0|2γ < ∞. Then

E |Ĉ (N,γ)
t − C̄

(γ)
t |2 = O

( 1

N

)
.

Theorem 2 (ϵ-Nash Equilibrium) Under the conditions of Theorem 1,
we have

Ji (Ĉ
i , Ĉ−i ) ≤ sup

C i (·)∈Ui

Ji (C
i , Ĉ−i ) ≤ Ji (Ĉ

i , Ĉ−i ) + εN ,

where εN = O(1/
√
N). Ui is the set of centralized strategies.

Note: Existence of a solution to FPE is established under a contraction condition
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Numerics:

We solve the fixed equation b = Γ (b) with the following parameters

T = 2, A = 1, δ = 0.05, γ = 0.6, η = 0.2, ρ = 0.04, σ = 0.08

I λ will take three different values 0.1, 0.3, 0.5 for comparisons.

I See Feicht and Stummer (2010) for typical parameter values in
capital growth models with stochastic depreciation.

I Time is discretized with step size 0.01.
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Figure : Left: bt solved from b = Γ (b); right: btΓ0(b)t (as control gain)

When the agent is more concerned with the relative utility (i.e.,
taking larger λ), it tends to consume with more caution during the
late stage
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Figure : The computation of bt in the first 20 iterates by operator Γ ,
λ = 0.5.
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Model and decentralized strategies
Connection with common noise MFG

MFG with a major player – Dynamics:

dx0(t) =
[
A0x0(t) + B0u0(t) + F0x

(N)(t)
]
dt + D0dW0(t), t ≥ 0,

dxi (t) =
[
A(θi )xi (t) + Bui (t) + Fx (N)(t) + Gx0(t)

]
dt + DdWi (t),

x (N) = 1
N

∑N
i=1 xi mean field term (average state of minor players).

I Major player A0 with state x0(t), minor player Ai with state xi (t).

I W0,Wi are independent standard Brownian motions, 1 ≤ i ≤ N.

We introduce the following assumption:
(A1) θi takes its value from a finite set Θ = {1, . . . ,K} with an
empirical distribution F (N), which converges weakly when N → ∞.
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Model and decentralized strategies
Connection with common noise MFG

Individual costs:

The cost for A0:

J0(u0, ..., uN) = E

∫ ∞

0

e−ρt
{∣∣x0 − Φ(x (N))

∣∣2
Q0

+ uT0 R0u0
}
dt,

Φ(x (N)) = H0x
(N) + η0: cost coupling term

The cost for Ai , 1 ≤ i ≤ N:

Ji (u0, ..., uN) = E

∫ ∞

0

e−ρt
{∣∣xi − Ψ(x0, x

(N))
∣∣2
Q
+ uTi Rui

}
dt,

Ψ(x0, x
(N)) = Hx0 + Ĥx (N) + η: cost coupling term.

I The presence of x0 in the dynamics and cost of Ai shows the strong
influence of the major player A0.
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Connection with common noise MFG

A matter of “sufficient statistics”

One might conjecture asymptotic Nash equilibrium strategies of the form:

I x0(t) would be sufficient statistic for A0’s decision =⇒ u0(t, x0(t));

I (x0(t), xi (t)) would be sufficient statistics for Ai ’s decision
=⇒ ui (t, x0(t), xi (t)).

Fact: The above conjecture fails!

Theorem (ε-Nash equilibrium) Under some technical conditions, for
the N + 1 players, a set of decentralized strategies of the form

(u0[t, x0(t), z(t)], ui [t, x0(t), z(t), xi (t)], 1 ≤ i ≤ N)

is an ε-Nash equilibrium as N → ∞. (see Huang, SICON’10 for detail.)

See (Nguyen and Huang, 12) for continuum parameter θ; (Nourian and
Caines, 2013), (Carmona and Zhu, 2016) for nonlinear models.
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Model and decentralized strategies
Connection with common noise MFG

The model structure is very rich.

I It allows different information/interaction structures

I In particular, leadership can be addressed. Moon and Basar
(2014); Bensoussan et al (2016)

I Cooperation or partial cooperation: Buckdahn et al (2014),
Huang and Nguyen (2016)
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Other connections

The major player model has connection with the so-called common noise
model introduced in Lions’ lecture (see e.g. Gomes and Saude’14).

The master equation is a useful tool for analyzing MFG equations,
particularly for models with common noise. The idea is to introduce a
single equation to describe the solution of the MFG. It can be viewed as
an abstract dynamic programming equation.
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Optimality
Efficiency loss in MFG

The LQ mean field social optimization problem

I Individual dynamics (N agents):

dxi = A(θi )xidt + Buidt + DdWi , 1 ≤ i ≤ N

I Individual costs:

Ji =E

∫ ∞

0

e−ρt
{
|xi − Φ(x (N))|2Q + uTi Rui

}
dt,

where Φ(x (N)) = Γ x (N) + η

I Specification

I θi , 1 ≤ i ≤ N: dynamic parameter with empirical distr.
FN → F weakly, Exi (0) = m0, ui : control, Wi : noise

I x (N) = (1/N)
∑N

i=1 xi : mean field coupling term

I The social cost: J
(N)
soc =

∑N
i=1 Ji

I The objective: minimize J
(N)
soc =⇒ Pareto optima
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Optimality
Efficiency loss in MFG

The SCE equation system

I The Social Certainty Equivalence (SCE) equation system:

ρsθ =
dsθ
dt

+ (AT
θ −ΠθBR

−1BT )sθ

− [(ΓTQ + QΓ − ΓTQΓ )x̄ + (I − ΓT )Qη],

dx̄θ
dt

= Aθ x̄θ − BR−1BT (Πθ x̄θ + sθ),

x̄ =

∫
x̄θdF (θ),

where x̄θ(0) = m0 and sθ is sought within Cρ/2([0,∞),Rn) (i.e.

continuous with a growth rate slower than eρt/2)

Πθ ≥ 0: uniquely solved from an Algebraic Riccati equation
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Optimality
Efficiency loss in MFG

How is the SCE equation system constructed?

I Different from the (Nash) MFG case since now agents are not selfish

I Key idea: the “right” balance of self interest and it social impact

I Indeed, agent i ’s effect on any other agent is negligible; however, its
social impact may be significant. Think of road resource usage by
selfish drivers; Wardrop equilibria
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Optimality
Efficiency loss in MFG

The social optimality theorem

Theorem Under technical conditions, the set of SCE based decentralized
control laws

ûi = −R−1BT (Πθi x̂i + sθi ), 1 ≤ i ≤ N

has asymptotic social optimality, i.e., for û = (û1, . . . , ûN),

|(1/N)J(N)
soc (û)− inf

u∈Uo

(1/N)J(N)
soc (u)| = O(1/

√
N + ϵ̄N),

where limN→∞ ϵ̄N = 0 (related to the weak convergence of FN(θ)) and
Uo is defined as a set of centralized information based controls
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Optimality
Efficiency loss in MFG

Once we have solved the social optimization problem, we can
return to the early question in Part I: efficiency loss in MFGs

0 0.5 1 1.5
0.8

0.85

0.9
Social cost per agent

0 0.5 1 1.5
0

2

4

6
NCE based cost

0 0.5 1 1.5
0

0.1

0.2

γ

Cost difference

Middle: per agent cost in MFG
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Another basic question:

What is the relation of the two approaches

I direct approach

I fixed point approach

in the fundamental diagram?
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Compare the two fundamental approaches

It is seen that the two approaches can be applied under various
sufficient conditions.
It is unlikely to have a definite comparison if no concrete model classes
are specified.

Here we consider symmetric LQ game models on [0,T ].

I The direct approach can be applied if and only if a nonsymmetric
Riccati equation is solvable on [0,T ]. This result is obtained by a
re-scaling technique (Huang and Zhou, 2018).

I The fixed point approach determines a unique solution if and only if
a certain algebraic equation is uniquely solvable.

I We compare their domains of applicability.
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The LQ model – Dynamics:

dXi (t) =
(
AXi (t) + Bui (t) + GX (N)(t)

)
dt + DdWi (t), 1 ≤ i ≤ N,

where the state Xi ∈ Rn, control ui ∈ Rn1 , X (N) = 1
N

∑N
k=1 Xk ,

Wi ∈ Rn2 : N independent Brownian motions (so, white noise).

Cost:

Ji = E

∫ T

0

(
|Xi (t)− ΓX (N)(t)− η|2Q + uTi (t)Rui (t)

)
dt

+ E |Xi (T )− Γf X
(N)(T )− ηf |2Qf

.

The matrices (or vectors) A, B, G , D, Γ , Q, R, Γf , Qf , η, ηf
have compatible dimensions, and Q ≥ 0, R > 0, Qf ≥ 0.
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Relation of the two approaches –

point approachFixed

Asymptotic solvability

(direct approach) Non-uniqueness

Theorem. Asymptotic solvability (i.e., the direct approach is
feasible) implies that the fixed point approach gives a unique
solution.
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Thank you!
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