Obvious Dominance and Random Priority

Marek Pycia¹ Peter Troyan²

¹University of Zurich and UCLA

²University of Virginia

National University of Singapore June 8th, 2018

Motivation

Social choice without transfers:

- School choice (Abdulkadiroğlu & Sönmez 2003)
- ▶ Public housing (Kaplan 1987, Bloch & Cantala 2014)
- Course allocation (Budish & Cantillon 2012)
- Military branching (Sönmez & Switzer 2013)
- Organ transplants (Roth, Sönmez, & Ünver 2014)
- ► Food banks (Prendergast 2017)
- ▶ Refugee resettlement (Roth 2015, Jones & Teytelboym 2016)
- Voting (Arrow 1963)
- Myriad informal settings (professors to offices, children to chores)

Motivation

- ► Design objectives: efficiency, fairness, good incentives
- "Standard" approach: apply revelation principle, use strategy-proof (SP) direct revelation mechanism
- ► Depends on agents *understanding* that a mechanism is SP
 - ▶ Sealed-bid vs. ascending auctions (Kagel et al. 1987, Ausubel 2004)
 - Mistakes under deferred acceptance/serial dictatorships (Chen and Sönmez 2003, Hassidim et al. 2016, Chen and Pereyra 2016, Rees-Jones 2017)
- Additional design goal: "simplicity"
- Want a definition of simplicity that:
 - gives a formal game-theoretic benchmark
 - is analytically tractable
 - is useful

Contributions

- 1. Introduce a new concept of simplicity for mechanisms: strong obvious strategy-proofness (SOSP)
 - Refinement of obvious strategy-proofness (OSP; Li, 2017)
- 2. Fully characterize the class of simple mechanisms for social choice problems without transfers
 - OSP mechanisms = "millipede games"; may be complex, require extensive foresight
 - ► SOSP mechanisms: need to look at most one step ahead
- 3. Show that there is a **unique** mechanism that is efficient, fair, and simple (SOSP): Random Priority (RP)
 - ► RP is widespread in practical applications
 - First general characterization that explains its popularity

Related Literature

- Obvious strategy-proofness: Li (2017), Ashlagi and Gonczarowski (2015), Troyan (2016), Bade and Gonczarowski (2016), Zhang and Levin (2016), Milgrom and Segal (2016) Arribillaga, Masso, and Neme (2017), Mackenzie (2017), Levin and McGee (2017)
- Large literature on social choice without transfers: Gibbard (1973, 1977), Sattherthwaite (1975), Shapley and Scarf (1974), Hylland and Zeckhauser (1979), Abdulkadiroglu and Sönmez (1998), Papai (2000), Pycia and Ünver (2016)
- Random Priority as the unique incentive compatible, efficient, and fair mechanism...

...in small markets (N = 3): Bogolmolnaia and Moulin (2001) ...asymptotically ($N \rightarrow \infty$): Liu and Pycia (2011)

Model

Paper: General social choice model without transfers

- $\mathcal{X} = \{x, y, z, \ldots\}$ finite set of outcomes
- $\mathcal{N} = \{i, j, k, \ldots\}$ finite set of agents
- ▶ \gtrsim_i agent *i*'s preference ranking over outcomes
- ► Key assumption: "rich" preference domain

Talk: Object allocation with single-unit demand

- \mathcal{N} =agents, \mathcal{O} =objects; $|\mathcal{N}| = |\mathcal{O}|$
- ▶ $\succ_i i$'s (strict) preference ranking over O
- $\mathcal{X} =$ all possible allocations (care only about own assignment)
- ▶ Richness: every strict ranking of objects is possible

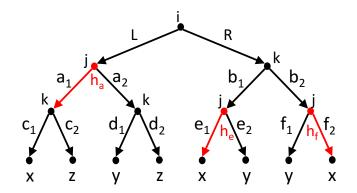
Notation

 Γ : finite extensive game form (or "mechanism")

h: generic history in Γ

A(h): set of actions available at h

 S_i : strategy for agent *i* (complete contingent plan of action)



 $u_i(S_i, S_{-i}, \succ_i)$: type \succ_i 's utility when play follows (S_i, S_{-i}) in Γ

 $u_i(S_i, S_{-i}, \succ_i)$: type \succ_i 's utility when play follows (S_i, S_{-i}) in Γ

• S_i weakly dominates S'_i (for type \succ_i) if:

$$u_i(S_i, S_{-i}; \succ_i) \ge u_i(S'_i, S_{-i}; \succ_i)$$
 for all S_{-i}

 $u_i(S_i, S_{-i}, \succ_i)$: type \succ_i 's utility when play follows (S_i, S_{-i}) in Γ

• S_i weakly dominates S'_i (for type \succ_i) if:

$$u_i(S_i, S_{-i}; \succ_i) \ge u_i(S'_i, S_{-i}; \succ_i)$$
 for all S_{-i}

S_i obviously dominates S'_i (for type ≻_i) if, starting from any earliest h at which S_i and S'_i differ:

$$\min_{S_{-i}} u_i(S_i, S_{-i}; \succ_i) \geq \max_{S_{-i}} u_i(S'_i, S_{-i}; \succ_i)$$

 $u_i(S_i, S_{-i}, \succ_i)$: type \succ_i 's utility when play follows (S_i, S_{-i}) in Γ

• S_i weakly dominates S'_i (for type \succ_i) if:

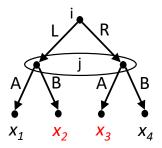
$$u_i(S_i, S_{-i}; \succ_i) \ge u_i(S'_i, S_{-i}; \succ_i)$$
 for all S_{-i}

S_i obviously dominates S'_i (for type ≻_i) if, starting from any earliest h at which S_i and S'_i differ:

$$\min_{S_{-i}} u_i(S_i, S_{-i}; \succ_i) \geq \max_{S_{-i}} u_i(S'_i, S_{-i}; \succ_i)$$

A mechanism Γ is (obviously) strategy-proof if every type ≻_i has an (obviously) dominant strategy

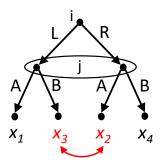
Say $x_1 \succ_i x_2 \succ_i x_3 \succ_i x_4$



▶ Here, *L* is obviously dominant (and also weakly dominant)

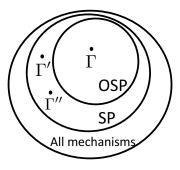
- ▶ Worst case from *L*: *x*₂
- ▶ Best case from *R*: *x*₃

Say $x_1 \succ_i x_2 \succ_i x_3 \succ_i x_4$



- L is not obviously dominant, but is weakly dominant
 - ▶ Requires contingent reasoning ("If j plays A, I should play L b/c x₁ ≻_i x₂; if j plays B, I should play L b/c x₃ ≻_i x₄")
 - Often difficult for people, even in single-agent decision problems (Charness and Levin 2009; Esponda and Vespa 2014)

Classifying Mechanisms

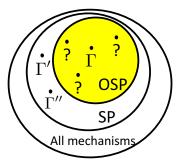


In our no-transfer setting, e.g.:

$$\label{eq:Gamma} \begin{split} \Gamma &= \text{extensive-form serial dictatorship} \\ \Gamma' &= \text{normal-form serial dictatorship} \\ \Gamma'' &= \text{top trading cycles, deferred} \\ \text{acceptance, } \dots \end{split}$$

- According to revelation principle: $\Gamma = \Gamma'$.
- Real-world agents much more likely to play dominant strategies in Γ (Li 2017, Chen and Pereyra 2016)

Classifying Mechanisms



In our no-transfer setting, e.g.:

- $\Gamma = extensive$ -form serial dictatorship
- $\Gamma'=$ normal-form serial dictatorship
- $\Gamma''=$ top trading cycles, deferred acceptance, \ldots

Question: What else is in the shaded area? Of interest because:

- 1. Might discover new simple mechanisms
- 2. "Stress test" of OSP does it conform with our intuitive understanding of simplicity?

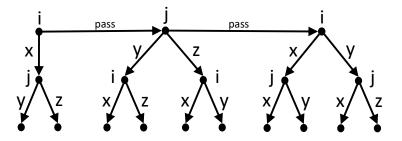
Millipede Games

Q1: Can we find anything else that is OSP?

Millipede Games

Q1: Can we find **anything** else that is OSP?

A: Yes. Consider the following game (x, y, z are objects):



Two types of actions: clinching and passing

Clinch-or-pass structure analogous to famous centipede game, but more "legs" \longrightarrow millipede game

Q2 (harder): Can we find everything else that is OSP?

Q2 (harder): Can we find everything else that is OSP?

Theorem

A mechanism Γ is obviously strategy-proof if and only if it is equivalent to a millipede game.

More formal definitions will follow.

Detour: Equivalence

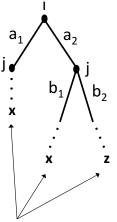
Two mechanisms Γ and $\hat{\Gamma}$ are **equivalent** if there exist (obviously dominant) strategies $(S_{\succ_i})_{i\in\mathcal{N}}$ and $(\hat{S}_{\succ_i})_{i\in\mathcal{N}}$ such that for all type profiles $(\succ_i)_{i\in\mathcal{N}}$, the outcome when agents play $(S_{\succ_i})_{i\in\mathcal{N}}$ in Γ is the same as when agents play $(\hat{S}_{\succ_i})_{i\in\mathcal{N}}$ in $\hat{\Gamma}$

A warm-up result:

Lemma (Ashlagi and Gonczarowski, 2016)

Every obviously strategy-proof game of imperfect-information is equivalent to an obviously strategy-proof game of perfect information.

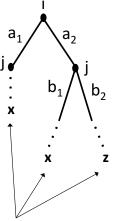
Clinching vs. Passing



- $a_1 = \text{clinching action}$
- a₂ = passing action (*i*'s outcome depends on *j*'s choice)

i's assignment

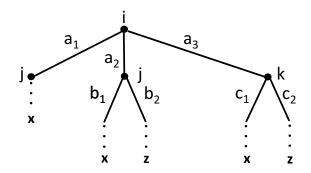
Clinching vs. Passing



i's assignment

- $a_1 = \text{clinching action}$
- ► a₂ = passing action (*i*'s outcome depends on *j*'s choice)
- Both types (x ≻_i z and z ≻_i x) have a obviously dominant strategy:
 - $x \succ_i z$: a_1 obviously dominant
 - $z \succ_i x$: a_2 obviously dominant

Multiple Passing Actions?

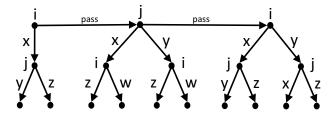


- ▶ a_2 does not obviously dominate a_3 for type $z \succ_i x$ (and vice-versa)
- Implication: OSP games can have at most one passing action at each history

When Is It Obviously Dominant to Pass?

Example: Say $y \succ_i x \succ_i z \succ_i w$ for *i*.

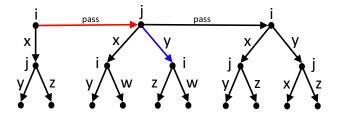
- Clinching x is not obviously dominant
- Worst case from passing depends on j's choice



When Is It Obviously Dominant to Pass?

Example: Say $y \succ_i x \succ_i z \succ_i w$ for *i*.

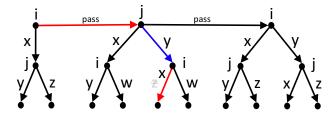
- Clinching x is not obviously dominant
- Worst case from passing depends on j's choice



When Is It Obviously Dominant to Pass?

Example: Say $y \succ_i x \succ_i z \succ_i w$ for *i*.

- Clinching x is not obviously dominant
- Worst case from passing depends on j's choice



More generally, following a pass, must guarantee:

- If something that was possible, but not clinchable, disappears, must offer everything that was clinchable
- If something that was clinchable disappears, must offer everything that was previously possible, but not clinchable

Millipede Games: Formal Definition

Definition

A **millipede game** is a finite game of perfect information such that, at any history h

- (a) At most one action in A(h) is a passing action.
- (b) For all x, one of the following holds:

(i)
$$x \in P_i(h)$$

(ii) $x \notin P_i(\tilde{h})$ for some $\tilde{h} \in \mathcal{H}_i(h)$
(iii) $x \in \bigcup_{\tilde{h} \in \mathcal{H}_i(h)} C_i(\tilde{h})$
(iv) $\bigcup_{\tilde{h} \in \mathcal{H}_i(h)} C_i(\tilde{h}) \subseteq C_i(h)$

where

- $P_i(h)$: outcomes that are possible for *i* at *h*
- $C_i(h)$: outcomes that *i* can clinch at *h*
- $\mathcal{H}_i(h)$: histories prior to *h* where *i* moves.

Characterizing Obvious Strategy-Proofness

Theorem

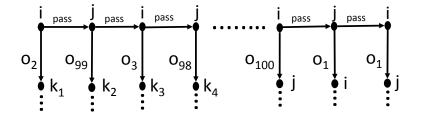
Every millipede game is obviously strategy-proof. If a mechanism Γ is obviously strategy-proof, then it is equivalent to a millipede game.

► A "revelation principle" for obvious dominance

How "Obvious" is Obvious Dominance?

Examples of games with obviously dominant strategies:

- ▶ (Extensive-form) serial dictatorships, Random Priority
- ► The game below (e.g., obviously dominant for type o₁ ≻_i o₂ ··· ≻_i o₁₀₀ to always pass):



How "Obvious" is Obvious Dominance?

Recall the definition of obvious dominance:

$$\min_{S_{-i}} u_i(S_i, S_{-i}; \succ_i) \geq \max_{S_{-i}} u_i(S'_i, S_{-i}; \succ_i)$$

- Min/max taken over S_{-i} , taking S_i as given
- Allows for agents who cannot contingently reason about actions of others
- Presumes they can with regard to their own future actions
- May still require significant foresight

Strong Obvious Dominance

- Natural refinement: take max/min over all possible future strategies of ALL agents
 - Includes all $j \neq i$ and *i*'s "future self"
- We call this strong obvious dominance
- If every type >_i of every agent has a strongly obviously dominant strategy, then Γ is strongly obviously strategy-proof (SOSP)
- Strongly obviously dominant strategies are those that can be recognized as weakly dominant by a cognitively limited agent who cannot distinguish between outcome-set equivalent games

Characterizing SOSP Mechanisms

► History *h* is **payoff-irrelevant** for *i* if either (i) |A(h)| = 1 or (ii) $|P_i(h)| = 1$. Otherwise, *h* is **payoff-relevant**

Theorem

Along any path of a SOSP mechanism, there is at most one payoff-relevant history for each agent.

- The unique payoff-relevant history (if it exists) is first time an agent is called to choose from among more than two actions
- May be called later, but choice cannot affect his own payoff
 Might affect payoffs of others
- Eliminates the more complex examples of millipede games

Characterizing SOSP Mechanisms

A curated dictatorship is a perfect-information game in which:

- Agents are called to play sequentially, with each agent called at most once
- The next agent to move and the set of objects offered to her are determined by the actions taken by prior agents
- ▶ If 3 or more objects are possible for agent *i*:
 - ► She is offered the opportunity to clinch any possible object
- ▶ If only 2 objects (say {*x*, *y*}) are possible for agent *i*, either:
 - She is offered the opportunity to clinch either x or y
 - She is offered the opportunity clinch one (say x) or pass. If she passes, outcome (x or y) determined by future agents

Characterizing SOSP Mechanisms

Theorem

A mechanism Γ is strongly obviously strategy-proof if and only if it is equivalent to a curated dictatorship.

Proof sketch:

- Take a SOSP game Γ.
- At most one payoff-relevant history for each *i*, denoted h_0^i
- If i is called to move again, construct equivalent Γ' where i is asked to make all future choices at hⁱ₀
- ► Since future choices payoff-irrelevant, SOSP preserved

Other desiderata

- ► Thus far, have focused on incentives
- Two other important desiderata when designing mechanisms: efficiency and fairness
- ► A mechanism Γ and strategy profile (S_{≻i})_{i∈N} are efficient if the final outcome is Pareto efficient for every type profile
- For fairness, we use equal treatment of equals (ETE): if ≻_i=≻_j, then i and j receive the same (distribution over) outcomes
- Curated dictatorships may violate both of these properties

SOSP and Efficient Mechanisms

Curated dictatorships allow agents to be "exogenously" denied some objects: may be inefficient

SOSP and Efficient Mechanisms

- Curated dictatorships allow agents to be "exogenously" denied some objects: may be inefficient
- An almost-sequential dictatorship is a curated dictatorship in which, at each history, every still-available object is possible for the agent called to act

SOSP and Efficient Mechanisms

- Curated dictatorships allow agents to be "exogenously" denied some objects: may be inefficient
- An almost-sequential dictatorship is a curated dictatorship in which, at each history, every still-available object is possible for the agent called to act

Theorem

A mechanism Γ is strongly obviously strategy-proof and efficient if and only if it is equivalent to an almost sequential dictatorship.

Fairness

- Serial dictatorships are a special case of almost-sequential dictatorships in which the agent ordering is fixed in advance
- In a serial dictatorship, the first mover always gets her favorite; last mover gets whatever is left
- Violates equal treatment of equals
- Standard solution: Randomization

Random Priority

Random Priority (RP)

- 1. Nature selects an ordering of the agents uniformly at random from all possible permutations of $\ensuremath{\mathcal{N}}$
- 2. Each agent moves once, in this order. At *i*'s turn, she is offered all still-available objects, and selects one

Equivalent formulation:

- 1. Nature randomly selects an agent from \mathcal{N} , say i_1 .
- 2. i_1 chooses an object from \mathcal{O} , say o_1
- 3. Nature randomly selects another agent from $\mathcal{N}-\{i_1\}$, say i_2
- 4. i_2 chooses an object from $\mathcal{O} \{o_1\}$, say o_2

5. . . .

Characterizing Random Priority

- ▶ RP is well-known to be efficient and fair (ETE)
- Easy to show that RP is SOSP
- ► In fact, it is the **unique** mechanism that satisfies these properties:

Theorem

A mechanism Γ is strongly obviously strategy-proof, efficient, and satisfies equal treatment of equals if and only if it is equivalent to Random Priority.

► SOSP + efficiency implies Γ equivalent to almost-sequential dictatorship (earlier result)

- ► SOSP + efficiency implies Γ equivalent to almost-sequential dictatorship (earlier result)
- ▶ First: all *i* have equal chance of being first mover
 - If not, consider o₁ ≻_i o₂ ≻_i · · · for all i. Some j has higher prob. to receive o₁ → violates ETE

- ► SOSP + efficiency implies Γ equivalent to almost-sequential dictatorship (earlier result)
- ▶ First: all *i* have equal chance of being first mover
 - If not, consider o₁ ≻_i o₂ ≻_i · · · for all i. Some j has higher prob. to receive o₁ → violates ETE
- ► Conditional on chosen i₁, all N {i₁} have equal chance of being second mover

▶ ...

- ► SOSP + efficiency implies Γ equivalent to almost-sequential dictatorship (earlier result)
- First: all i have equal chance of being first mover
 - ▶ If not, consider $o_1 \succ_i o_2 \succ_i \cdots$ for all *i*. Some *j* has higher prob. to receive $o_1 \rightarrow \text{violates ETE}$
- ► Conditional on chosen i₁, all N {i₁} have equal chance of being second mover
 - Consider $\succ_{i_1} = o_1 \succ_{i_1} x \cdots$ and $\succ_j = x \succ \cdots$ for all $j \neq i_1$

$$\underbrace{\Pr(j \text{ gets } x)}_{(A)} = \underbrace{\Pr(j \text{ moves 1st})}_{(B)} + \underbrace{\Pr(j \text{ moves 2nd}|i_1 \text{ moves 1st})}_{(C)}$$

- (A) & (B) are the same for all $j \neq i_1$ (by ETE and step 1)
- Therefore, (C) is the same for all $j \neq i_1$

Transfers

- With transfers (e.g., combinatorial auctions), SOSP mechanisms are (personalized) posted price mechanisms
- Einav et al. (2018) document a dramatic shift from auctions to posted prices on eBay
- In computer science: computational complexity of combinatorial auctions has led to interest in posted price mechanisms (e.g., Chawla et al. 2010, and Feldman et al. 2014)
- Our work provides an additional reason for the ubiquity of posted prices: besides being computationally simple, they are also strategically simple (in the sense of SOSP)

Conclusion

- In environments without transfers, even OSP mechanisms may not necessarily be "simple"
- Strong OSP: at most one payoff-relevant choice for each agent
 - An explanation for why some mechanisms used more than others, despite being equivalent according to revelation principle and OSP
 - ▶ Random Priority is the unique SOSP, efficient, and fair mechanism
- More generally, taking "simplicity" seriously as constraint is a new and interesting research agenda
 - ► Rapid expansion of OSP literature following Li (2017)
 - Borgers and Li (2017): introduce alternative notion of simplicity that is weaker than SP
 - 'Strength' needed depends on application: good to have a variety of definitions

Behavioral Agents and Strong Obvious Dominance

Say Γ and Γ' are outcome-set equivalent if there exists a bijection of histories φ : H → H' such that

$$P_i(h) = P'_i(\phi(h))$$
 for all i, h

Theorem

For all i, \succ_i , strategy S_i is strongly obviously dominant in Γ if and only if the corresponding strategy S'_i is weakly dominant in any outcome-set equivalent game Γ' .

- Consider an agent *i* who knows all possible outcomes, but cannot contingently reason about how they depend on her opponents or her own future actions
- Even such cognitively-limited agents will be able to recognize strongly obviously dominant strategies