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Priority-based allocation problem

We study allocation of indivisible objects to agents without
transfer; applications include school choice, house allocation,
course assignment, etc

In the language of school choice

• S : the set of schools (objects) to be assigned; each s ∈ S has
qs seats

• I : the set of students (agents)
• Pi : the strict preference of student i on S ∪ {∅}
• µ : I → S ∪ {∅} is an assignment if |µ−1(s)| ≤ qs , ∀s

A mechanism ϕ maps every reported preference profile P to an
assignment ϕ(P)
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"Good" mechanisms

There are two known classes of effi cient and group
strategy-proof (GSP) mechanisms:

• Top Trading Cycles (TTC)-Based Mechanisms, include serial
dictatorships, priority-based TTC, hierarchical exchange rules,
and trading cycles mechanisms.1 They all follow
endow-then-trade and have a recursive structure

• Deferred Acceptance Mechanisms, when the priority structure
is acyclic (Ergin, 2002)

Our questions: What is driving the effi ciency and GSP of these DA
mechanisms? How are these DA and TTC related?

1When qs = 1, ∀s , a mechanism is "good" iff it is a trading cycles
mechanism (Pycia and Unver, 2017)
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Deferred acceptance (Gale and Shapley, 1962)

A deferred acceptance mechanism (DA) is associated with a
priority list �s on students for each school s.

Given a priority structure (�, q),DA�,q operates as follows: at
any P,

Step 1. Each student applies to her most favorite school.
Each school tentatively accepts the best students up
to its quota and rejects the rest.

Step k, k ≥ 2. Each rejected student applies to her next best
school. Each school tentatively accepts the best from
the accepted students and new applicants.

DA�,q always produces the student-optimal stable assignment, but
it is effi cient only when (�, q) is acyclic (Ergin, 2002)
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A simple example
Suppose S = {s1, s2}, I = {1, 2, 3}, qs1 = 1, and qs2 = 2. Schools’
priority lists and students’top preferences are as follows:

�s1 �s2
1 3
2 2
3 1
2 , 3 1

�s1 �s2
1 3
2 2
3 1
2 1 , 3

• {1, 2} satisfies the following: assigning students in it to their
favorite schools is not objectable by student 3, no matter
what P3 is

• We will (iteratively) identify sets like {1, 2}, then assign and
remove them. We show that this process is solvable iff DA�,q

is effi cient
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Assignment criteria
Definition
Assignment ν Pareto dominates µ if ∀i ∈ I , ν(i)Riµ(i) and ν 6= µ.
An assignment is (Pareto) effi cient if it is not Pareto dominated

Definition
ϕ is group strategy-proof if there is no ∅ 6= J ⊂ I ,P, and P ′J ,
such that ∀i ∈ J, ϕ(P ′J ,P−J )(i)Ri ϕ(P)(i) and for some
j ∈ J, ϕ(P ′J ,P−J )(j)Pj ϕ(P)(j)

Definition
At assignment µ, i’s priority at s is violated if i desires s but
someone with lower priority is assigned; µ is fair if there is no
priority violation

Definition
An assignment µ is stable if it is fair and nonwasteful (all desired
schools are fully assigned)



Top fair set (TFS)

Fix (�, q;P). A set of students T form a TFS if assigning them to
their favorite schools violates no priority, no matter what P−T is

Definition
A nonempty set of students T ⊂ I is a TFS if ∀i ∈ T and her
favorite school s ∪ {∅},

rs (i)− |{i ′ ∈ T : i ′ �s i , i ′ favors s ′ 6= s}| ≤ qs .

where rs (i) denote i’s rank at s; or equivalently, if

|{j /∈ T : j �s i}| ≤ qs − |{i ′ ∈ T : i ′ favors s}|.
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Example

Suppose I = {1, 2, 3, 4, 5},S = {s1, s2, s3}, qs1 = 2, and
qs2 = qs3 = 3. Assume schools’priority lists and students’top
preferences are as follows:

�s1 �s2 �s3
1 2 5
2 5 3
3 3 1
4 4 4
5 1 2
3, 4 , 5 1 2

TFS
T1 {1, 2, 3}
T2 {1, 2, 4}
T3 {1, 2, 3, 4}

• 4 ∈ T2, but 4 is not ranked among top-quota at any school
• TTC involves trading among 1, 2, and 5; its assignment is not
fair
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TFS vs. TTC

• Both identify students who should be assigned their favorite
schools

• Both are decisive: their formations are independent of others’
preferences

• TFS is justified by fairness, while TTC by trading
(endowments or priorities)

• When qs = 1, ∀s, TFS reduces to the union of TTCs



Non-existence of TFS

Modify the first example by reducing qs2 to one:

�s1 �s2
1 3
2 1
3 2
2, 3 1

P1 P2 P3
s2 s1 s1
∅ s2 s2

Even though for the P above, DA�,q(P) is an effi cient assignment,
TFS does not exist at (�, q;P)



Properties of TFS

Proposition
Fix a school choice problem (�, q;P):
(i) If both T and T ′ are TFS, then so is T ∪ T ′;

(ii) If T is a TFS and T ′ ( T is assigned and removed, then
T\T ′ is still a TFS at the remaining subproblem

(i) implies the existence of a maximal TFS, if any TFS exists; (ii)
shows that assigning by TFS has a form of consistency
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Finding TFS

For any school choice problem (�, q;P), an (iterative)
elimination process operates as follows:

Step 1. Let each student apply to her favorite school. Then
let each school select the best applicants up to its
quota; the rest are eliminated

Step t, t ≥ 2. For each s ∈ S , operate the following: let all
students who have ever been eliminated apply to s.
Then let s select the best applicants among new
applicants and accepted students; the rest are
eliminated.
Stop when no new students are eliminated

Proposition
The set of students who survive the elimination process, if
nonempty, is the maximal TFS. If it is empty, then no TFS exists
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TFS algorithm

For each preference profile P of students, TFS�,q operates as
follows:

Step 1. If (�, q;P) has no TFS, stop. Otherwise, find a
TFS, assign and remove it

Step t, t ≥ 2. Repeat Step 1 on the subproblem that remains

Definition
A priority structure (�, q) is TFS-solvable if at any P,TFS�,q
produces a complete assignment
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Main result

Theorem
(�, q) is TFS-solvable if and only if DA�,q is Pareto effi cient

Moreover, if (�, q) is TFS-solvable, then TFS�,q(·) = DA�,q(·)
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Ergin’s characterization

Definition (Ergin, 2002)
(�, q) is acyclic if @ distinct schools s1, s2 and distinct students
i , j , k such that: (i) i �s1 j �s1 k �s2 i ; and (ii) ∃ disjoint
Is1 , Is2 ⊂ I\{i , j , k} such that Is1 �s1 j , Is2 �s2 i , |Is1 | = qs1 − 1,
and |Is2 | = qs2 − 1

Theorem (Ergin, 2002)
(�, q) is acyclic iff DA�,q is Pareto effi cient (or GSP, or consistent)

Corollary
(�, q) is TFS-solvable if and only if it is acyclic
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Implications

• When (�, q) is acyclic, the TFS-decomposition of DA�,q
makes its effi ciency, GSP, and consistency more intuitive

• TFS reveals that effi cient DA mechanisms also have an
iterative removal structure, as the TTC-like mechanisms

• Effi cient DA vs. other good mechanisms reduces to TFS vs.
TTC



Extend TFS?
We do not yet know how to properly extend (weaken) TFS for
priority structures that are not acyclic

This relates to finding a maximally stable good mechanism.
Attempts include Kesten’s ETTC and Morrill’s Clinch-and-Trade,
but the goal has not been achieved (Abdulkadiroglu et. al, 2017)

A natural way is to remove TFS if it exists and otherwise remove
TTC. However, such a mechanism is not strategy-proof

�s1 �s2 �s3 P1 P2 P3 P4
1 3 4 s2 s3 s1 s1

2 2 3
... s1

... s3
3 1 2 s2 s2
4 4 1
3, 4 1 2
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Conclusion

• We discover a hidden structure, TFS, from existing DA
mechanisms; it is the only known alternative to TTC

• TFS improves our understanding of effi cient and GSP
mechanisms

• When schools have substitutable (or more general) priority,
the definition of TFS can be naturally extended

• We don’t know how to properly extend the TFS algorithm to
cyclic priority structures to design new mechanisms



Thank you.




