The very odd lattice of cumulative distributions

Meneghel and Tourky Australian National University

NUS Game Theory Workshop 2018

- The lattice of monotone functions
- Decomposable sets
- The odd property
- The open question
- The Tourky-Meneghel theorem
- Outline of proof of Tourky-Meneghel
- Application: a fixed point theorem
- Application to games.

Let *C* be a compact subset of [0, 1] that contains 0, 1. Let X(C) be the set of cumulative distributions on with support that is a subset of [0, 1] and values in *C*. That is, the set of upper semi-continuous functions *f* from [0, 1] to *C* satisfying f(0) = 0 and f(1) = 1. Viewing it as a subset of L_1 we see the following:

- As a subset of L_1 it is norm compact.
- It is a lattice under the usual ordering ordering.
- If f first order stochastically dominates g, g ≥ f, then the order interval {g ≥ h ≥ f} is path connected.
- It is a continuous lattice.

Let $f,g:[0,1] \to \mathbb{R}$ be measurable functions and $E \subseteq [0,1]$ be a measurable set. We write f_Eg for the function

$$f_Eg(a) = egin{cases} f(a) & ext{if } a \in E\,, \ g(a) & ext{otherwise}\,. \end{cases}$$

A subset D of L_1 is *decomposable* if $f, g \in D$ implies $f_E g \in D$ for all measurable $E \in [0, 1]$.

If D is a closed decomposable set, and $D \cap X(C)$ is non empty, then $D \cap X(C)$ has the following properties:

- Norm compact.
- It is a lattice under the usual ordering ordering.
- If f first order stochastically dominates g, g ≥ f, then the order interval {g ≥ h ≥ f} is path connected.
- It is a continuous lattice.

- If D is a closed decomposable set, and $D \cap X(C)$ is non empty, then the following holds true:
 - X(C) is a norm compact absolute retract.
 - **2** $D \cap X(C)$ is a norm compact absolute retract.

Once we observe that $D \cap X(C)$ has the lattice properties, there is nothing new in proving this. It has been understood in lattice theory for a very long time.

Characterise the sets Y in L_1 such that

- Y is a norm-compact absolute retract.
- If D is any set that is closed and decomposable and D ∩ Y is nonempty, then D ∩ Y is an absolute retract.

I'll call such sets "OAR" Absolute Retracts. (OAR stands for OAR Absolute Retracts. :-))

- It is interesting.
- ② If Y is a "OAR" Absolute Retract and F: Y → L₁ is a closed, decomposable valued correspondence such that F(x) ∩ Y is nonempty for all x ∈ Y, then F has a fixed point in Y.
- Solution Decomposable valued mappings arise in many applications.

Theorem: If X is a set that is compact in L_{∞} , then there is a compact set $Y \subseteq L_1$, with $X \subset Y$, such that Y is an "OAR" Absolute Retract.

- Q: Suppose that D is a closed decomposable subset of L₁ and F: D → D is a non-empty valued decomposable-valued mapping. If there is a (pointwise) compact set X ⊆ D such that F(f) ∩ X ≠ Ø for all f ∈ D, then does there exist f* satisfying f* ∈ F(f*)?
- A: Prior literature—yes when D is compact, but that means it is a singleton (obvious)
 The Meneghel-Tourky theorem answers this in the affirmative.

Meneghel-Tourky: If X is a compact set in L_{∞} , then there is a compact set $Y \subseteq L_1$, $X \subset Y$, satisfying:

- If $F: Y \to L_1$ is a closed, decomposable-valued correspondence satisfying $F(f) \cap Y \neq \emptyset$, then F has a fixed point in Y.
- If $F: L_1 \to L_1$ is a closed, decomposable-valued correspondence satisfying $F(f) \cap X \neq \emptyset$, then F has a fixed point in Y.

- Let C be a compact subset of [0,1], X be the set of all constant functions $f: [0,1] \to C$.
 - X is compact in L_{∞} .
 - **②** Y of Meneghel-Tourky is the set of monotone functions $g: [0,1] \rightarrow C$.
 - Y is "AOR" Absolute Retract, and X need not be an Absolute Retract.

- Let X be a compact metric space. Let $C \subset [0,1]$ be the Cantor ternary set. By the Hahn-Mazurkiewicz theorem there exists a continuous function such that $f: C \to X$ is onto.
- So set of constant functions $f: [0,1] \to C$ maps to X. The set of monotone functions $g: [0,1] \to C$ maps back to the desired $Y \supset X$.