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Abstract

This paper provides a brief survey of developments in the study of mechanisms for dynamic
settings. It interprets the literature as identifying conditions under which simple index policies
are optimal.

1 Introduction

Mechanism design is a framework for thinking about what a given institution can achieve when the
information necessary to make decisions is dispersed and privately held. The set of questions that
have been investigated using mechanism design is large. For example, to achieve a given reduction
in carbon emissions, is it more cost effective to rely on taxes or a cap and trade system? Is it better
to sell an IPO via auction or the traditional book building approach? In each case the information
needed to arrive at the correct answer is dispersed and privately held. In the emissions case, the
relevant information is the actual cost of reducing emissions by each emitter of carbon. Ideally, one
would want those with the lowest cost of reducing emissions to reduce their emissions first so as to
achieve the targeted reduction in the lowest cost way. The most popular application of mechanism
design is the examination of trading rules in static settings when the valuations of the buyers are
private information.

In the last decade a concerted effort has been made to extend the boundaries of the subject to
dynamic settings. Two kinds of applications motivate this effort. The first is to understand how a
seller facing a stream of strategic buyers that arrive over time should adjust her prices. The second
is when the set of buyers remains fixed, but their private information about valuations changes
over time with experience.1 The recent survey of Bergemann and Said (2010) provides a fair,
balanced and eminently readable account of these developments. This review will be neither fair or
balanced. Perhaps, not even readable! I depart from a conventional review that would summarize
the literature around problems or models. Instead, I choose to emphasize one idea and argue that
the literature can be understood as an attempt to enlarge the domain of application of that one
idea. Fans of Isaiah Berlin might justly call this a hedgehog exercise.2

∗Department of Managerial Economics and Decision Sciences, Kellogg Graduate School of Management, North-

western University, Evanston IL 60208.
1There are possibilities that are a mixture of the two which I ignore.
2Berlin offered a classification of thinkers inspired by a fragment of poetry due to Archilochus. Rendered in

English, it reads: The fox knows many things, but the hedgehog knows one big thing.
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What is the one idea? Index policies. In each period the agents with the highest index have the
highest priority for access to resources. In the absence of restrictions on how the index is computed,
this statement has no bite. Thus, we want the index to be easily computable and dependent only
on ‘local’ information. The well known Gittins index (1979) is an example of the kind of policy I
have in mind. It is easy to compute and simple to implement.

I begin with an overview of the classic static mechanism design problem of allocating a single
object amongst a group of agents so as to maximize expected revenue (see Myerson (1981)). I will
emphasize the index policy description of the optimal auction. Subsequently, I outline how much
of the structure of that static set up can be ‘lifted’ into dynamic settings. Space limitations require
that I assume the reader is familiar with the terminology of mechanism design.3

2 Static Allocation of a Single Unit

Here I will consider the allocation of a single object amongst a group of agents whose value for the
object is private information. In this environment the type of a buyer is their value for the good.
Let T be the type space and for convenience, take it to be discrete, i.e., T = {1, 2, . . . ,m}. Denote
the set of all n buyer profiles of types by Tn. Given a profile τ ∈ Tn, we use ni(τ) to denote the
number of buyers in the profile with type i. Given the revelation principle we restrict attention to
direct mechanisms. A direct mechanism consists of an allocation rule a and a payment rule p. The
allocation rule a specifies for each buyer the probability that it will receive the good as a function
of the reported types of all buyers. Similarly, p specifies the payment that each buyer must make
as a function of the reported types of all buyers. I restrict attention to allocation and payment
rules that are anonymous, i.e., independent of the names of buyers. This is without loss when each
buyer’s type is an independent draw from the same distribution, F . Denote by fi the probability
a buyer has type i. The anonymity assumption means that we can focus on a single buyer, say,
buyer 1.

Denote by τ a profile of types and let ai(τ) be the probability that agent 1 receives the good
when his type is i and the reported profile types is τ . Let Ai be the interim allocation probability
that agent 1 with type i receives the good, i.e.,

Ai =
∑

τ−1∈T n−1

ai[i, τ−1]π(τ−1). (1)

Here π(τ−1) is the probability that the profile of types of the buyers other than buyer 1 are τ−1.
Similarly, we can define Pi to be the expected payment of agent 1 if she reports type i. The expected
surplus that agent 1 of type i enjoys when she reports type j will be is iAj − Pj .

The usual conditions imposed on a mechanism (a,p) are individual rationality (IR) and Bayes-
Nash incentive compatibility (BNIC). IR is

iAi − Pi ≥ 0 ∀i ∈ T. (2)
3The reader unfamiliar with these matters would do well to consult the early chapters in Krishna (2002).
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BNIC requires that
iAi − Pi ≥ iAj − Pj ∀j 6= i. (3)

One can fold the IR constraint into BNIC by introducing a dummy type ‘0’ and setting A0 = 0.
From now we will assume the type space to be {0, 1, . . . ,m}.

The first key result characterizes allocation rules that are BNIC.

Theorem 1 An allocation rule a can be implemented by a BNIC mechanism (a,p) iff. the corre-
sponding interim allocation probabilities are monotonic. That is, r ≤ s ⇐⇒ Ar ≤ As.

The proof is straightforward. Observe that (3) implies that iAi−Pi ≥ iAj−Pj as well as jAj−Pj ≥
jAi − Pi. Adding these two inequalities together yields

(i− j)[Ai −Aj ] ≥ 0.

Theorem 1 means that the search for a BNIC mechanism can be restricted to choosing amongst
allocation rule for which the corresponding interim allocation probabilities is monotone.

The second key result bounds the payments of a BNIC mechanism. Specifically,

Pi ≤
i∑

r=0

r(Ar −Ar−1) + K = iAi −
i−1∑
r=0

Ar + K. (4)

Here K is a constant that is usually determined by the IR constraint.4

2.1 Social Welfare Maximization

Here, I derive the incentive compatible allocation rule that maximizes the expected value of the
allocation. Call a set of interim allocation probabilities, Ai’s feasible if there exists an allocation
rule a such that (1) holds for all i. The next result characterizes the set of feasible interim allocation
probabilities.

Theorem 2 (Border’s Theorem, Border (1991, 2007)) The interim allocation Ai is feasible
iff.

n
∑
i∈S

fiAi ≤ 1− (
∑
i6∈S

fi)n ∀S ⊆ {1, 2, . . . ,m}. (5)

Three remarks are in order. First, Border’s theorem relies on the independence assumption
on the distribution of types. Second, no use is made of the fact that types are one dimensional,
i.e., Border’s Theorem holds even for multidimensional types. Third, the right hand side of (5),
1−(

∑
i6∈S fi)n, is submodular in S. Hence, the set of inequalities defined in (5) form a polymatroid.5

The problem of finding monotone interim allocation probabilities that maximize expected value
becomes:

Z0 = max n
∑m

i=1 ifiAi (OPTE)

s.t. n
∑

i∈S fiAi ≤ 1− (
∑

i6∈S fi)n ∀S ⊆ {1, 2, . . . ,m}
0 ≤ A1 ≤ . . . ≤ Ai ≤ · · · ≤ Am

4When the type space is continuous, the inequality in (4) becomes an equality and the summation an integral.
5After a change of variables, xi = fiAi. For more on polymatroids, see Schrijver (2003).
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Theorem 1 ensures that the optimal solution to (OPTE) is incentive compatible.
Ignoring the monotonicity constraints on the Ai’s in program (OPTE) yields a polymatroid

optimization problem. Such problems can be solved in greedy fashion, by picking the variable
with the largest objective function coefficient first and making it as large as feasibly possible. At
optimality, Ai = 0 whenever i = 0. Therefore,

∑
i≥r fiAi = 1−F (r−1)n

n for all r. In particular at

optimality Am = 1−F (m−1)n

nfm
, and

Ar =
1− F (r − 1)n

nfr
− 1− F (r)n

nfr
=

F (r)n − F (r − 1)n

nfr

for all 0 < r ≤ m−1. Straightforward algebra reveals that the A’s chosen in this way are monotone.
Therefore, the optimal solution to the relaxation of (OPTE) obtained by omitting the monotonicity
constraints is feasible for (OPTE). Hence, it must be optimal for problem (OPTE).

The solution via the inequalities in Border’s Theorem fixes the value of the Ai’s but does not
produce the actual allocation rule a. Nevertheless, one can recover the corresponding a’s quite
easily. Specifically, treat the value of Ai as a priority index for type i. In each profile, allocate
the good to the agent with the highest priority. In case of a tie, allocate with equal probability
amongst all agents with the same priority (see Manelli and Vincent (2010) or Vohra (2011)). Under
monotonicity of the interim allocations, we know that higher types will have higher priorities. Thus,
an equivalent rule is to allocate in each profile to the buyer with highest type. Notice this rule
satisfies the stronger property of being ex-post efficient.

To summarize, the efficient mechanism in this instance is an example of an index policy where
the index of an agent depends only on her type.

2.2 Revenue Maximization

I turn now to the problem of finding the incentive compatible mechanism that maximizes expected
revenue. Since Pi is the expected payment received from agent 1 when she claims type i and
the allocation rule is anonymous, the expected payment per agent will be

∑m
i=0 fiPi. Hence, the

problem of finding the revenue maximizing mechanism can be formulated as:

Z = max
{a}

n
m∑

i=0

fiPi (OPT1) (6)

s.t. Pi ≤ iAi −
i−1∑
r=0

Ar ∀i ∈ T (7)

0 = A0 ≤ A1 ≤ . . . ≤ Ai ≤ · · · ≤ Am (8)

P0 = 0 (9)

Ai =
∑

τ−1∈T n−1

ai[i, τ−1]π(τ−1) (10)

m∑
i=1

ni(τ)ai(τ) ≤ 1 ∀τ ∈ Tn (11)
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It is easy to see that at optimality, the constraints in (7) bind.6 Hence, Pi = iAi−
∑i−1

r=0Ar for
all i ∈ T . Therefore, after some tedious algebra,

m∑
i=1

fiPi =
m∑

i=1

fi{i−
1− F (i)

fi
}Ai.

The term {i− 1−F (i)
fi

} is called the virtual value of type i. It is also usual to assume 1−F (i)
fi

, is non-
increasing in i. This is called the monotone hazard condition and many natural distributions
satisfy it.

Since the expression i − 1−F (i)
fi

will be ubiquitous, set ν(i) = i − 1−F (i)
fi

. Under the monotone
hazard condition, ν(i) is non-decreasing in i. Problem (OPT1) becomes:

Z1 = max
{a}

n

m∑
i=1

fiAiν(i) (OPT2)

s.t. 0 ≤ A1 ≤ . . . ≤ Ai ≤ · · · ≤ Am

Ai =
∑

τ−1∈T n−1

ai[i, τ−1]π(τ−1) ∀i

m∑
i=1

ni(τ)ai(τ) ≤ 1 ∀τ ∈ Tn

Using (5) we can reformulate the problem of finding the revenue maximizing mechanism for the
sale of a single object as follows:

Z1 = max n
∑m

i=1 fiAiν(i) (OPT3)

s.t. n
∑

i∈S fiAi ≤ 1− (
∑

i6∈S fi)n ∀S ⊆ {1, 2, . . . ,m}
0 ≤ A1 ≤ . . . ≤ Ai ≤ · · · ≤ Am

Ignoring the monotonicity constraints on the Ai’s in program (OPT3), we have a polymatroid
optimization problem (recall the change of variables: xi = fiAi) that can be solved in greedy
fashion, by picking the variable with the largest objective function coefficient first and making
it as large as feasibly possible. At optimality, Ai = 0 whenever ν(i) < 0. Let i∗ be the lowest
type such that ν(i∗) ≥ 0. Assuming the monotone hazard condition, for all r ≥ i∗ we have∑

i≥r fiAi = 1−F (r−1)n

n . In particular at optimality Am = 1−F (m−1)n

nfm
, and

Ar =
1− F (r − 1)n

nfr
− 1− F (r)n

nfr
=

F (r)n − F (r − 1)n

nfr

for all i∗ ≤ r ≤ m−1. Straightforward algebra reveals that the A’s chosen in this way are monotone.
Therefore, the optimal solution to the relaxation of (OPT3) obtained by omitting the monotonicity
constraints, is feasible for (OPT3). Hence, it must be optimal for problem (OPT3). Note also that
the optimal solution to (OPT3) differs from that of (OPTE) only when types have negative virtual
values.

6To maximize expected revenue and satisfy IR, set K = 0 in (4).
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Theorem 3 Under the monotone hazard condition the revenue maximizing mechanism for the sale
of a single object allocates the object in each profile to the buyer with highest virtual value (provided
it is non-negative).

The idea mimics the case of efficient allocation. Treat the value of Ai as a priority index for type
i. Under the monotone hazard condition, higher types will have higher priorities. Thus, allocate
in each profile to the buyer with highest virtual value. Once again we have an index policy where
the index depends on the type of an agent as well as the distribution of types.

The derivation of the revenue maximizing mechanism in the static single good setting presented
relies on what is known as the reduced form. Specifically, the use of the interim allocation prob-
abilities, Ai rather than the actual allocation rule a. I have chosen the reduced form because it
suggests how to generalize these results to a dynamic setting.

3 Dynamic Settings

There are two ways in which the single good setting can be made ‘dynamic’. The first is to keep
the set of buyers fixed and have their types change over a time as a function of allocations selected
in earlier periods. Such settings can be used to model the sale of experience goods, long term
procurement relationships, indeed any situation where information that arrives over time changes
the buyers valuations. Examples of papers of this variety are Athey and Segal (2007), Esö and
Szentes (2007) and Akan et al. (2009). Call this the changing type case.

Modest reflection reveal the challenges the changing type case presents. Buyers must take into
account not only own payoffs in the current period, but how the allocation in the current period
will influence their type and allocation in a future period. Second, what should the appropriate
notion of individual rationality be? Should one require individual rationality in each period or does
it suffice for individual rationality to hold in the aggregate? A similar question applies in the case
of incentive compatibility. By enforcing individual rationality, say, in each period one ensures the
participation of the agent for the duration in which the mechanism is in force. Individual rationality
in the aggregate might give an agent the incentive to depart in mid-stream. One can prevent early
departure by requiring agents to post a bond that is forfeit if they depart early. The bond, however,
may be so large as to be impractical.7

The second way to make the single good setting dynamic, is to expose the seller to a stream of
buyers that arrive over time. Call this the changing buyer case. Here buyers types do not change
but the mix of buyers changes over time. The central problem for the seller is the usual one of
whether to make a sale today or wait until tomorrow. The difficulties arise when buyers can time
their purchases. A buyer today may not be present tomorrow. Alternatively a buyer may choose
to wait for an opportune moment to make a purchase.

In both cases a ‘simple’ index policy would be attractive. By simple, I mean that in any period
the index of a buyer should depend only on his own type and the distribution of types of buyers

7One might argue that objections to a bond rely on the assumption that agents are budget constrained. If so,

critics of the bond idea should impose the budget constraint in each period.
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in that period. I view the literature as an attempt to find sufficient conditions for the existence
of such simple index policies. I will provide an illustrative example of such an attempt for the
changing type case as well as the changing buyer case.

4 Fixed Buyers with Changing Types: Bandit Setting

The canonical infinite horizon dynamic system with changing types is the multi armed bandit.
One has a collection of projects (arms), N , each with a finite set of associated states.8 The set of
states associated with project i are Si. Project i engaged in state j ∈ Si generates a reward or
value vi(j). When a project is engaged in a given period, the relevant reward is obtained and the
state of the project changes according to a known Markov process. Projects not engaged in the
current period remain in their current state.9 At most one project can be engaged in any period.
The objective is to determine a policy for engaging projects in each period so as to maximize the
expected discounted rewards obtained.10

When there is a single project, the question becomes a stopping problem: At what point should
one stop engaging the project? The maximum expected discounted reward to be obtained from
project i when it is initially in state j is called the Gittins index of the pair (i, j). Call it gi(j).
Note that the index does not depend on other projects. It is well known, that the multi-armed
Bandit problem can be solved using Gittins indices. The optimal policy is to engage, in each time
period, the project with the highest Gittins index.

An important observation for what is to come is that there is a reduced form representation
of the set of feasible policies. Instead of specifying which project is to be engaged each time as a
function of the history to date, one chooses xi

j , the expected discounted number of times project
i is engaged when it is in state j. Call a collection of xi

j variables feasible if there is a policy for
the bandit problem that yields those xi

j ’s. Bertsimas and Nino-Mora (1996) show that the set
of feasible xi

j ’s is characterized by an extended polymatroid. If we denote the relevant extended
polymatroid by E, then the bandit problem can be stated as:

V (N) = max{
∑
i∈N

∑
j∈Si

vi(j)xi
j : x ∈ E} (MAB)

Many important properties of polymatroid optimization carry over to optimization over extended
polymatroids (see Bhattacharya, Georgiadis and Tsoucas (1992)). In particular, there is a greedy
algorithm for maximizing a linear function over an extended polymatroid. In the case of the Bandit
problem, this greedy algorithm reduces to the Gittins index policy.

It is easy to graft a mechanism design problem onto the bandit setting. Agents play the role of
projects. One can imagine engaging a project or agent as allotting them an object. The value agent
i assigns to consuming the object in state j ∈ Si, is vi(j). At the end of the period, the object
is consumed and the state of the agent awarded the object changes. This change corresponds to

8For economy of exposition I ignore the case of an infinite number of states.
9This assumption is particularly important for tractability.

10For an example of a finite horizon setting see Athey and Segal (2007)
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experience or learning. The private information of agent i in each period is their current state or
equivalently vi(j). Further motivation for such a graft can be found in Bergemann and Välimäki
(2010), Pavan et al. (2008) as well as Kakade et al. (2010).

4.1 Social Welfare Maximization

We examine the easiest case first: identify an incentive compatible, efficient mechanism for the
bandit setting.11 This case is considered in full generality in Bergemann and Välimäki (2010) (see
also Carvallo, Parkes and Singh (2006)). Here I examine a special case.

Suppose an auctioneer who in each period must allocate an indivisible, non-storable object
amongst a set N of bidders. Let δ be the common discount rate of the bidders, si

t the state of agent
i at time t and gi(si

t) the Gittins index of the state si
t. For each i and t we order the states by

increasing Gittins index. The value that agent i enjoys from consuming the object in time period
t in state si

t is vi(si
t). We assume a one to one correspondence between values and states. At each

period t the efficient allocation rule chooses the agent i for which gi(si
t) is largest.

Consider the reduced form of the Bandit problem, i.e., problem (MAB). This is a static problem
and the natural thing to do is run the Vickrey-Clarke-Groves (VCG) mechanism. Each agent is
asked to report their vector of vi’s. Note that since the bandit process has not ‘begun’, the agents
are only reporting what their values in each of the possible states they may find themselves in
during the course of the bandit process. Next, solve (MAB) with respect to the reported vi’s. Let
x∗ be the optimal solution of (MAB). Subsequently, charge payments according to the (VCG) rule.
This mechanism is both efficient and dominant strategy incentive compatible. It achieves incentive
compatibility by giving each agent a surplus equal to her marginal product. The marginal product
of agent i is V (N)− V (N \ i).

Given x∗, we can back out the optimal policy. Now, execute the policy. There’s the rub. To
implement x∗ we must rely on each agent truthfully reporting their current state at each time period
not just their values in each possible state. Second, applying VCG to (MAB) tells us only what the
total expected discounted payments should be not when they should be charged. If payments are
extracted at the end, an agent might find it profitable to exit the mechanism at some intermediate
stage. This would happen if its realized surplus exceeded the expected surplus promised under
VCG.

Thus, the challenge is to determine per period payments needed to ensure three things:

1. Agents have an incentive to participate in each period.

2. Agents have an incentive to truthfully report their state in each period.

3. The expected discounted payments equal the expected payments under VCG.

We meet the challenge by observing that in each period we have a problem similar to the static
problem of allocating a single good. Thus, an expression similar to (4) should hold.

Conditioned on the history, let xi
t(j) denote the interim probability of selecting agent i at time

t if she reports the state j. Similarly, denote by pi
t(j) her expected payment. Let Vt+1(S|Et)

11The analysis described here was developed in collaboration with Sven de Vries.
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denote the value of the efficient allocation from time t + 1 onwards involving only the agents in S

conditional on event Et occurring at time period t. Similarly MP i
t+1(Et) is the marginal product

of agent i from time t + 1 onwards conditional on Et.
Let {Ei

t , r} be the event that agent i wins at time t when she reports state r. Let {F i
t , r} be

the complement of this event. Then, agent i’s payoff assuming truthful reporting is

[vi(si
t) + δMP i

t+1({Ei
t , s

i
t})]xi

t(s
i
t) + [δMP i

t+1({F i
t , s

i
t})](1− xi

t(s
i
t))− pi

t(s
i
t)

= {vi(si
t) + δMP i

t+1({Ei
t , s

i
t})− δMP i

t+1({F i
t , s

i
t})}xi

t(s
i
t)− pi

t(s
i
t) + δMP i

t+1({F i
t , s

i
t})

It will be useful to rewrite the expression in braces:

vi(si
t) + δMP i

t+1({Ei
t , s

i
t})− δMP i

t+1({F i
t , s

i
t}) (12)

Observe, first that
Vt(N \ i|{F i

t , s
i
t}) = Vt+1(N \ i|{Ei

t , s
i
t}).

Furthermore, if k is the agent that wins at time t if agent i does not, and wk
t is the state of agent

k, it follows that
Vt(N \ i|{F i

t , s
i
t})− vk(wk

t ) = δVt+1(N \ i|{F i
t , s

i
t}).

Therefore expression (12) is

vi(si
t)− vk(wk

t ) + (1− δ)Vt(N \ i|{F i
t , s

i
t}) + δ[Vt+1(N |{Ei

t , s
i
t})− Vt+1(N |{F i

t , s
i
t})].

For economy of notation, set

hi(si
t) = vi(si

t)− vk(wk
t ) + (1− δ)Vt(N \ i) + δ[Vt+1(N |{Ei

t , s
i
t})− Vt+1(N |{F i

t , s
i
t})].

If agent i reports she is in state r instead, her expected payoff, assuming truthful reporting in
all subsequent periods, will be:

[vi(si
t) + δMP i

t+1({Ei
t , s

i
t})]xi

t(r) + [δMP i
t+1({F i

t , s
i
t})](1− xi

t(r))− pi
t(r)

= {vi(si
t) + δMP i

t+1({Ei
t , s

i
t})− δMP i

t+1({F i
t , s

i
t})}xi

t(r)− pi
t(r) + δMP i

t+1({F i
t , s

i
t})

= hi(si
t)x

i
t(r)− pi

t(r) + δMP i
t+1({F i

t , s
i
t}).

The notion of incentive compatibility imposed is bayesian incentive compatibility and captured
in the following:

hi(si
t)x

i
t(s

i
t)− pi

t(s
i
t) + δMP i

t+1({F i
t , s

i
t}) ≥ hi(si

t)x
i
t(r)− pi

t(r) + δMP i
t+1({F i

t , s
i
t}) ∀r ∈ Si. (13)

The first term on the left hand side of (13), hi(si
t)x

i
t(s

i
t)−pi

t(s
i
t), is the surplus in the current period

from reporting truthfully. The second term, δMP i
t+1({F i

t , s
i
t}), on the left hand side, is promised

future surplus assuming truthful reporting in the next period. The two terms on the right hand
side can be similarly interpreted assuming the agent lies about her type. We want (13) to hold for
all histories.
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Interchanging the roles of si
t and r in (13) yields:

hi(r)xi
t(r)− pi

t(r) + δMP i
t+1({F i

t , r}) ≥ hi(r)xi
t(s

i
t)− pi

t(s
i
t) + δMP i

t+1({F i
t , r}). (14)

Adding them together yields:

[hi(si
t)− hi(r)][xi

t(s
i
t)− xi

t(r)] ≥ 0. (15)

Suppose that that hi(r) is increasing in r, i.e., as gi(r) increases, hi(r) increases. Then, (15) implies
that xi

t is increasing in the state. In words, the higher the Gittins index, the higher the probability
of being engaged.

To show that hi(r) is increasing in r, consider the part of hi(si
t) that depends on si

t:

vi(si
t) + δ[Vt+1(N |Ei

t(s
i
t))− Vt+1(N |{F i

t , s
i
t})].

Then

vi(si
t) + δ[Vt+1(N |Ei

t(s
i
t))− Vt+1(N |{F i

t , s
i
t})] = Vt(N)− [vk(wk

t ) + δVt+1(N |{F i
t , s

i
t})] + vk(wk

t ).

Now, the term Vt(N)− [vk(wk
t ) + δVt+1(N |{F i

t , s
i
t})] is the change in welfare when we switch from

i to k at time t. This difference should increase the larger the Gittins index of agent i at time t.
In fact it does by the interchange lemma in Gittins’ original proof. Thus, hi(r) is increasing in r.

Let r̂ be the lowest state in Si. Since hi is monotone, it follows by standard arguments (similar
to that used to derive (4)) that

pi
t(s

i
t) = hi(si

t)x
i
t(s

i
t)−

hi(si
t)∑

q=r̂

[hi(q)− hi(q + 1)]xi
t(q) + δMP i

t+1({F i
t , s

i
t}) + K.

Here K is a constant determined by the IR constraint.
As long as q has a Gittins index that is at least as large the Gittins index of agent k, xi

t(q) = 1.
Let ri

t be the smallest state for agent i for which gi(ri
t) is equal to the Gittins index of agent k.

Then
pi

t(s
i
t) = hi(ri

t) + δMP i
t+1({F i

t , s
i
t}) + K.

Observe that the efficient allocation rule will be indifferent between awarding the object to i in
state ri

t and to agent k. Thus,

vi(ri
t) + δVt+1(N |{Ei

t , r
i
t}) = v(wk

t ) + δVt+1(N |{Ek
t , wk

t }) = vk(wk
t ) + δVt+1(N |{F i

t , r
i
t}). (16)

Rearranging (16) we conclude that

δVt+1(N |{Ei
t , r

i
t})− δVt+1(N |{F i

t , r
i
t}) = vk(wk

t )− vi(ri
t).

Hence,

hi(ri
t) = vi(ri

t)−vk(wk
t )+(1−δ)Vt(N \i)+δ[Vt+1(N |{Ei

t , r
i
t})−Vt+1(N |{F i

t , r
i
t})] = (1−δ)Vt(N \i).

Thus,
pi

t(s
i
t) = (1− δ)Vt(N \ i) + δMP i

t+1({F i
t , s

i
t}) + K.
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4.2 Revenue Maximization

Turn now to revenue maximization. As before, I consider the reduced form, i.e. (MAB) and check
to see if we can decompose the payments across periods. Unfortunately, the reduced form of the
problem is an instance of revenue maximization when private information is multi-dimensional.
This is because an agent’s private information is {vi

j}j∈Si .
Since revenue maximization with multidimensional private information is hard even in the

non-dynamic case, we will have to make an assumption to reduce the dimensionality of private
information. Specifically, each agent i has a one dimensional type θi drawn independently from a
common distribution F (with density f) over {1, 2, . . . ,m}. Agent i’s value from consuming the
object when in state j ∈ Si is vi(j|θi). So as to mimic the analysis of section 4.1 suppose that

vi(j|θi) = θi + ri
j .

We can interpret this to mean that agent i initially has a value θi for the object. After consuming
the object when she is in state j, she updates her value to θi + ri

j . Such a restriction is considered
in Pavan et al. (2008) as well as Kakade et al. (2010).12

We now have a bandit system where the state of project i is of the form (θi, j). When a project
i is in state (θi, j) it cannot transition to a state (σi, k) for k ∈ Si and σi 6= θi. A project i in state
(θi, j) generates a reward of θi + ri

j . Let E denote the extended polymatroid associated with this
bandit system.

Now, follow the path taken in section 4.1. Let xi
j(θ

i) be the expected discounted number of
times agent i is awarded the object when she is in state (θi, j). In what follows assume for the
moment that the second component of the state, ri

j is known to the seller. Equivalently, agent i

will truthfully report ri
j when she is in state (θi, ri

j). Subsequently we relax this assumption.
Let pi(θi) denote the total expected payment of agent i when she reports type θi. Let Xi(θi)

denote the total discounted number of times agent i receives the object when she reports type θi.
Observe that Xi(θi) =

∑
j∈Si xi

j(θ
i). Bayesian incentive compatibility implies that

θiXi(θi) +
∑
j∈Si

ri
jx

i
j(θ

i)− pi(θi) ≥ θiXi(σi) +
∑
j∈Si

ri
jx

i
j(σ

i)− pi(σi) ∀σi 6= θi. (17)

Interchanging the roles of θi and σi yields:

σiXi(σi) +
∑
j∈Si

ri
jx

i
j(σ

i)− pi(σi) ≥ σiXi(θi) +
∑
j∈Si

ri
jx

i
j(θ

i)− pi(θi) ∀θi 6= σi. (18)

Adding (17) to (18) produces

(Xi(θi)−Xi(σi))(θi − σi) ≥ 0. (19)

The rest of the argument now follows the pattern of the single object case. We conclude that
bayesian incentive compatibility is equivalent to monotonicity of Xi(·). Similarly we deduce that
(4) applies, i.e.,

pi(θi) ≤ θiXi(θi)−
∑
σ<θi

Xi(σ) +
∑
j∈Si

ri
jx

i
j(θ

i).

12Both papers consider environments more general than this.
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The problem of finding the revenue maximizing mechanism can be formulated as:

max
∑
i∈N

∑
θi

f(θi)pi(θi) (20)

s.t. Xi(θi) ≤ Xi(σi) ∀i, ∀θi ≤ σi (21)

pi(θi) ≤ θiXi(θi)−
∑
σ<θi

Xi(σ) +
∑
j∈Si

ri
jx

i
j(θ

i) ∀i, θi (22)

Xi(θi) =
∑
j∈Si

xi
j(θ

i) ∀i, θi (23)

{xi
j(θ

i)}i∈N,θi ∈ E (24)

Note the similarity to the standard single object auction. By analogy we conclude that the above
program can be rewritten as

max
∑
i∈N

∑
θi

f(θi)[θi − 1− F (θi)
f(θi)

]Xi(θi) +
∑
i∈N

∑
θi

f(θi)
∑
j∈Si

ri
jx

i
j(θ

i) (25)

s.t. Xi(θi) ≤ Xi(σi) ∀i, ∀θi ≤ σi (26)

Xi(θi) =
∑
j∈Si

xi
j(θ

i) ∀i, θi (27)

{xi
j(θ

i)}i∈N,θi ∈ E (28)

Eliminating the Xi(θi) variables and dropping the monotonicity constraint yields the following
relaxation:

max
∑
i∈N

∑
j∈Si

∑
θi

f(θi)[θi − 1− F (θi)
f(θi)

+ ri
j ]x

i
j(θ

i) (MABθ) (29)

s.t. {xi
j(θ

i)}i∈N,θi ∈ E (30)

The expression θi − 1−F (θi)
f(θi)

should be familiar from the static case. Notice there is no adjustment
to the ri

j . This is because we assumed that the agent would truthfully report ri
j .

Next, invoke the monotone hazard rate condition on F to ensure that the solution to the
relaxation satisfies the omitted monotonicity constraints. Observe that the Gittins index of the
state (θi, ri

j) is at least as large as the Gittins index of the state (σi, ri
j) whenever θi > σi. Under

the monotone hazard rate condition

θi − 1− F (θi)
f(θi)

> σi − 1− F (σi)
f(σi)

⇐⇒ θi > σi.

This suggests modifying each state (θ, ri
j) to (θ − 1−F (θ)

f(θ) , ri
j). Hence, the Gittins index of (θi −

1−F (θi)
f(θi)

, ri
j) (virtual Gittins index) is at least as large as the Gittins index of (σi − 1−F (σi)

f(σi)
, ri

j)
whenever θi > σi. Therefore, Xi(θi) > Xi(σi) i.e., the omitted monotonicity constraints are
satisfied.
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Let {x̄i
j}{i∈N,θi} ∈ E be an optimal solution(MABθ). As before we can back out the optimal

policy. It will be to award the good to the agent with the highest virtual Gittins index in each
period. The problem is that we assumed that each agent i can conceal θi, but not ri

j . What
happens when each agent i can conceal ri

j? We can use same approach from Section 4.1 to get
around this. As before the challenge is to decompose the payments across periods so as to give each
agent an incentive to reveal ri

j as well as to participate. The argument mimics the one given in the
case of finding the efficient allocation. There is, however, an important wrinkle. In the very first
period, agent i’s private information is θi + ri

j , not simply ri
j . Thus, in the first period the private

information is two dimensional! There are two ways to deal with this. The first is to assume that
the set of types θi is sufficiently rich so that any misreport σi + ri

k can be mimicked by a report
µi + ri

j (see Pavan et al. (2008)). Thus, the agent gains nothing by lying about both θi and ri
j . It

suffices to misreport θi only. The second, is to use a second round of reporting, see Kakade et al.
(2010).

The optimal mechanism derived here can be summarized as follows. Execute the efficient
mechanism assuming a type in each period equal to the virtual ‘θ’ plus reported shocks, ri

j . In
effect, the agent receives rents commensurate with the fact that θ is private information but is
charged payments equal to their expected future value. This idea originates in Esö and Szentes
(2007) (see also Baron and Besanko (1984)).

5 Changing Buyer

The problem of optimally selling a finite number of indivisible goods to buyers arriving over time
has been studied for at least half a century. Early papers ignored the incentive issues. See for
example Karlin (1962), Derman et al. (1972) and Albright (1974). Subsequent papers, for example,
Stokey (1979) and Bulow (1982), incorporated strategic buyers. In the non-strategic cases, the
optimal policy allocates a good to an agent if its index exceeds a threshold corresponding to the
opportunity cost of the good. Indeed, one way to view the literature with strategic buyers is as an
attempt to show such index polices continue to be optimal in the presence of private information.

For selfish reasons, I offer Pai and Vohra (2010) as typical of this line of work. It generalizes
some of the earlier models and sits exactly on the border between the tractable and intractable.
Pai and Vohra (2010) assumes a risk neutral seller seeking to sell C identical and indivisible units
over T discrete time periods, indexed by t. Buyers with unit demand arrive over time, and have
private valuations for a unit of the good. In particular, buyer i has a valuation vi for one unit of
the good, excess units are worthless. Furthermore, each buyer has an arrival time ti and a deadline
t̄i. This means buyer i cannot participate in the auction before time ti or after time t̄i. Goods
assigned to agent i outside the interval [ti, t̄i] have no value to him. As will be seen below, it is the
ability for the buyer to be strategic about when they depart the ‘system’ that causes difficulties.

No buyer observes how many units remain, how many buyers are present or what messages are
sent. The 3-tuple (vi, ti, t̄i) is buyer i’s type and assumed to be the private information of buyer i.
Thus buyer i is in a position to claim a valuation smaller or larger than vi, an arrival later than ti
and a deadline earlier than t̄i. Therefore, there is a finite set of buyers’ types T ⊂ V ×T 2. A buyer
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with a cumulative probability a of getting allotted good between periods t and t̄ enjoys a monetary
value of:

v(a|(v, t, t̄)) = va. (31)

In each period t, Nt risk neutral potential buyers arrive. Nt is a non-negative, discrete valued
random variable, distributed according to a known probability mass function g(·), with finite sup-
port {0, 1, . . . , N̄}. There is a common prior (a probability distribution with p.d.f. f) on the space
of types T. For any entry time t and exit time t̄ ≥ t, let f(t,t̄)(·) and F(t,t̄)(·) denote the pdf and cdf
respectively of the distribution of a buyer’s valuation conditional on his entry at time t and exit at
t̄.

Agents arriving at time t receive i.i.d. draws from the posterior of this distribution (i.e. given
time of arrival is t). Formally, the probability that an agent arriving at time t has type (v, t, t̄) is

ft(v, t̄) ≡ P{type = (v, t, t̄)| arrival time = t} =
f(v, t, t̄)∑

v′∈V,t̄′≥t f(v′, t, t̄′)
. (32)

Thus, the valuation and exit time of a buyer arriving at time t is independent of both the number
and type of other buyers.

Consider a partial order � on the space T, defined as

(v′, t′, t̄′) � (v, t, t̄) ≡ (v′ ≥ v) ∧ (t′ ≤ t) ∧ (t̄′ ≥ t̄). (33)

In other words, a type is said to be partially ordered above another according to � if it has a
(weakly) higher valuation, arrives earlier and has a later deadline. One can extend the standard
increasing hazard rate condition to respect this partial order, i.e. have a higher hazard rate.

Definition 1 (Monotone Hazard Rate) A distribution with pdf f on the space of types T sat-
isfies the monotone hazard rate condition if

(v′, t′, t̄′) � (v, t, t̄) ⇒
f(t′,t̄′)(v′)

1− F(t′,t̄′)(v′)
≥

f(t,t̄)(v)
1− F(t,t̄)(v)

, (34)

The corresponding notion of a virtual value is v − f(t,t̄)(v)

1−F(t,t̄)(v) .

The monotone hazard rate condition implies two restrictions. First, fixing entry and exit times,
the distribution of valuations of types with that entry and exit time has an increasing hazard rate.
Second: fix (t, t̄) and (t′, t̄′) such that [t, t̄] ⊆ [t′, t̄′]. The condition implies that: 13

E[v|(t, t̄)] ≥ E[v|(t′, t̄′)].

In the airline motivation we may imagine that impatient buyers are business travelers, and patient
buyers are ‘leisure’ travelers. The hazard rate condition means that the former are expected to have
higher valuations than the latter. Alternately, fixing an arrival time, high valuation travelers tend
to be more impatient than low valuation travelers. This is orthogonal to the standard assumption in

13It actually has a stronger implication, i.e. that F(t,t̄) first order stochastically dominates F(t′,t̄′).
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this literature that leisure travelers arrive early, while business travelers arrive late– neither implies
nor contradicts the other.

The dynamic nature of the problem, and the fact that possible misreports by a type are restricted
by assumption mean the revelation principle cannot be applied directly. Standard proofs of the
revelation principle are for settings where any type can send any feasible message: by contrast, in
our setting the periods in which an agent is present, and can hence send messages, depends on her
type.14 One result in Pai and Vohra (2010) shows that it suffices to consider mechanisms in which
buyers never receive an object before their deadline. This allows one to employ a suitable version
of the revelation principle to restrict attention to direct revelation mechanisms.

In this setting, Pai and Vohra (2010) ask when the revenue maximizing mechanism can be
described by a ‘simple’ index rule? The index rule is easy to describe. To each type, assign an
index equal to the virtual value. Give the good to a buyer only if his index (virtual value) exceeds
the expected index that extra unit would have generated in the future. Under the hazard rate
condition, Pai and Vohra (2010) show the index rule to be optimal.

When such a ‘simple’ index policy is not incentive compatible, a dynamic analogue of Myerson’s
ironing procedure is needed. This means the allocation rule cannot be written in a recursive fashion,
or alternately, the index of a buyer depends on the allocation rule in the future. As a result the
optimal allocation rule is both hard to compute, and hard to describe. To summarize

1. If the deadlines, t̄i, are common knowledge, then, the distribution of types satisfying an
appropriate monotone hazard rate condition is necessary and sufficient for the index rule to
characterize the optimal allocation rule.

2. If we drop the assumption of common knowledge of the deadlines, then the appropriate
monotone hazard rate condition is not sufficient. A form of ironing will be required in spite
of the maintained assumption of a monotone hazard rate. Equivalently, the algorithm for
computing the optimal allocation rule in this case cannot be recursive.

What causes the difficulty in the second case? Incentive compatibility requires that the allocation
rule should be exit monotone, i.e., a later exit from the system increases probability of allotment
(all other things being equal). However, the monotone hazard rate condition by itself does not
force exit monotonicity in the allocation rule in the same way that it forces the allocation rule to be
monotone in valuation. To see why, consider a seller with 1 good for sale, and a buyer arriving in
the first period, with a last period deadline and an intermediate valuation. With some probability,
a high value buyer will arrive after period 1, get the good, and leave our original buyer with no
allocation. If the original buyer had a period 1 deadline instead, then he might even get the good
outright if his virtual value is high enough. This suggests that a sufficient condition for allocations
to be monotonic in exit time is that types with lower exit times ceteris paribus have a substantially
lower hazard rate.15

14Green and Laffont (1986) identify a sufficient condition for the revelation principle to hold in settings where the

set of messages an agent can send is a function of her type. However, they consider a static setting.
15The difficulty remains even if privately known exit times are replaced with privately known discount rates.
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The question of how to ‘iron’ in dynamic settings does not admit an easy answer. Recent work
by Mierendorff (2009) considers a simpler model (2 periods, 2 buyers, simpler type space). He
completely characterizes the optimal mechanism in this setting, but the methods appear technical,
and hard to generalize. There is some computational work on implementing ironing in a related
dynamic setting (see Parkes et al. (2007)). Neither paper will satisfy those interested in a complete
characterization, but they do highlight the difficulties of ironing in a dynamic setting.

A sequence of papers beginning with Vulcano et al. (2002) can be seen as special cases or
variations of Pai and Vohra (2010). In each case, the revenue maximizing mechanism is an index
rule of the type described above: allocate in each period to the agent with largest virtual value
provided it exceeds a certain threshold. They do so by limiting the dimensionality of the buyers’
type. In Vulcano et al. (2002) each buyer is present for at most one period (i.e., t̄i = ti for all
i). The only private information is the buyer’s valuation for a single unit. Dizdar et al. (2010)
extends this to allow buyers to demand multiple units. Both marginal valuations and maximum
amount demanded are private information but the misreports a buyer can make about the quantity
demanded is limited. Gallien (2006) considers a monopolist selling a finite number of identical
items over an infinite horizon to time sensitive buyers with unit demands and private value and
time of entry, whose inter-arrival times have an increasing failure rate. Time sensitivity of buyers is
modeled using a discount factor common to all buyers that is known to the seller.16 Gershkov and
Moldovanu (2009) consider a similar setting, except that the monopolist now sells heterogenous
goods which are commonly ranked by all buyers, and each buyer’s private information is one
dimensional. Further, their model considers a finite horizon.17

6 Non-Bayesian Approaches

My summary has focused on Bayesian approaches because I am interested in the conditions that
lead to a simple index policy being optimal. There is also a non-Bayesian perspective. One can
interpret this literature as identifying conditions under which simple index policies yield outcomes
with good worst case behavior. In the changing buyer case, Lavi and Nisan (2004), consider the
same model as Vulcano et al. (2002) but in a setting where no prior distribution over types is
assumed. They propose a index policy and perform a worst case analysis of the revenue achieved.
Ng, Parkes and Seltzer (2003) investigate a closely related model where the seller has C perishable
units of a good in each period. They exhibit a dominant strategy mechanism, and perform a worst
case analysis of the revenue achieved. Hajiaghayi, Kleinberg, Mahdian and Parkes (2005) consider
the same model but achieve a better competitive ratio. A variant of the changing buyer case that
has its roots in the Secretary problem has been examined in Babaioff, Immorlica, and Kleinberg
(2007) as well as Buchbinder, Singh and Jain (2010) . Finally, for the changing type case there is
Nazarzadeh, Saberi and Vohra (2008) as well as Babaioff, Slivkin and Sharma (2009).

16See Board (2008) and Board and Skrzypacz (2010) for related papers.
17Gershkov and Moldovanu (2008) derive the efficient mechanism in the same setting.
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