The Reduced Form

July 10, 2018



Mechanism Design

‘Optimizing’ the allocation of resources.

Parameters (called type) needed to determine an optimal allocation are private
knowledge of agents who will consume the resources to be allocated.

Decision variables of optimization problem depends on the entire profile of types. If
there are n agents and m possible types, this means at least n x m" variables!

In a reduced form representation the relevant decision variables depend on type alone
and not the entire profile of types.
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Allocation with Inspection; Ben-Porath, Dekel, Lipman (2011)

1. Novel.

2. 1C constraints not particularly relevant so can focus on reduced form
representation.

3. Originally not analyzed using reduced form so one can compare approaches.
4. Not knife edge (see Yunan Li (2017).



Set Up

Good to be allocated to agent with the highest value (private info).
Each agent would prefer to receive the good than not.

Transfers not permitted.

> n risk neutral agents
» Types are independent draws from T = {1,..., m}

» f; > 0 is probability that agent is of type t

For a cost K > 1, planner can verify an agent's type report.



Direct Mechanism

Planner announces two functions whose argument is the profile of types reported.

Allocation rule: specifies what ‘fraction’ of the object goes to each agent as a
function of profile of reported types.

Inspection rule: specifies probability that an agent will be inspected (conditional on
being allocated) as a function of profile of reported types.



Allocation Rules

For simplicity assume 2 agents.

a is an allocation rule

qi(t, s) is probability good is allocated to agent i when agent 1 reports t and agent 2
reports s.

Feasibility:
qi(t,s) + qo(t,s) <1Ve,s

qi(t,s) >0 Vi, Vt,s



Interim Allocations

Q! is the interim allocation probability to agent i when she reports t.

Q} = Z fsql(tvs)

seT

Q? = Z frCI2(t» 5)

teT

An interim allocation probability @ is implementable if there exists a feasible
allocation rule that corresponds to it.

Characterize the implementable @'s.



Border-Maskin-Matthews-Riley

Suppose allocation rule is anonymous, i.e., does not depend on names.
Qi=Q=Q
Q: is implementable iff.

nY fiQ<1-() f)"vSCT.

tes iZs

g(S)=1- (Zigs ft)" is non-decreasing and submodular.



Border-Maskin-Matthews-Riley

For the non-anonynous case:

anZo,-(r,-)ﬁ-(r,-)s oo TIfw=1-1] >, fit) HThcuT

i=1 ;eT/ tel(T!xT_;) i i HeT\T!
i

Q;(t,') >0 Vi VeT;



Submodularity 5&

¥ >

Let E ={1,2,...,n} be a ground set. Real valued function g defined on subsets of E

is
» non-decreasing if SC T = g(S) < g(T), and
» g is submodular if VS C T and j ¢ T:

g(Tuj)—g(T) <eg(5uj)—s(S)
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Polymatroid Optimization

Polymatroid:
P(g)={xeR]:> x <g(5) VSCE}
Jjes
max{cx : x € P(g)}
a>o...2c>20>ckq1... 2 .

1. §9=90

2.8 ={1,2,...,j} forall j € E.

3. x;=g(S) —g(S ) for 1 < j <k

4. x;=0forj > k+1.
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So What?

» For economic applications goal is not merely to solve the optimization problem
but identify some of its qualitative properties.

» Polymatroid optimizations problems are valuable because they admit a simple
greedy solution.

» Allow one to handle certain kinds of additional constraints like budget and quota
constraints.
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From Interim To Actual

Vohra

Suppose Q is implementable.

How do we recover corresponding feasible allocation rule a?
Trick from stochastic scheduling. Consider extreme point Q's.
Treat Q;'s as priorities.

In any profile allocate to agent whose type t has highest priority.
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Interim Allocations

Type space of agent 1 is {t,t'} and of agent 2 is {s, s'}.
qi(t,s) + q(t,s) <1
ql(tlv S) + q2(t,75) <1
q(t,s') + gt s') <1
q(t,s) + qo(t,s') < 1

foqu(t,s) + fuqu(t,s') = Q}
foqu(t',s) + fuqu(t',s') = Qb
fraa(t, s) + frqa(t,s) = Q2
frga(t,s') + foqa(t',s') = Q2
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Digression #1

Algebraic: eliminate the a(-,-) variables.

Geometric: determine the projection of the polyhedron into the @ space.
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Digression # 1

Vohra

K ={(x,z) e R" x ®P : Ax + Bz = b}.

Proj(K) is the set of vectors x € R" such that there exists z € RP such that
(x,z) € K.

Theorem
Let Cx = {u € R™: uB =0}. Then,

projx(K) = {x € R" : uAx < ub Vu € Ck}.

Not necessary to use every u € Ck, sufficient to use extreme rays/generators of Ck.
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Interim Allocations

Type space of agent 1 is {t,t'} and of agent 2 is {s, s'}.
qi(t,s) + q(t,s) <1
ql(tlv S) + q2(t,75) <1
q(t,s') + gt s') <1
q(t,s) + qo(t,s') < 1

foqu(t,s) + fuqu(t,s') = Q}
foqu(t',s) + fuqu(t',s') = Qb
fraa(t, s) + frqa(t,s) = Q2
frga(t,s') + foqa(t',s') = Q2
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Interim Allocations

fefsqu(t, s) + fefsqo(t, s) < fefs
qi(t',s) + q(t',s) <1
qi(t's") + qo(t,s') <1
q1(t,s") + q2(t,s') < 1
feqi(t,s) + foqu(t,s') = @}
fsqu(t',s) + foaqu(t',s') = Qp
feqo(t,s) + fraqa(t',s) = Q2
feqo(t,s') + fuqa(t',s') = Q2
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Interim Allocations

fifsqi(t,s) + fefsqa(t, s) < fifs
fufsqu(t’,s) + fufsqa(t',s) < fufs
fufoqu(t',s") + fufoqa(t',s') < fufe
fifeqi(t,s’) + fify q2(t,s) < ftf/
foqu(t,s) + foqu(t,s') =
fequ(t',s) + foqu(t',s') = Qtr
frqa(t,s) + foqa(t,s) = Q2
frqa(t,s') + foqa(t',s') = Q2
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Interim Allocations

fifsqi(t,s) + fefsqa(t, s) < fifs

fofsqu(t',s) + fufeqa(t',s) < fufs
fufoqu(t',s") + fufoqa(t',s') < fufe

fifeqi(t,s') + fifeqa(t,s') < fify
ffsqu(t,s) + fifvqu(t,s') = £Q;

fiqi(t',s) + foqu(t',s') = Qf

feqa(t,s) + fuqa(t',s) = Q2

feqa(t,s’) + foqa(t',s') = Q2
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Interim Allocations

fifsqu(t, s) + fifsqo(t,s) < fifs
fufequ(t',s) + fufsqa(t',s) < fufs
fufoqu(t',s') + fufoqa(t',s") < fufy
fifoqu(t,s’) + fifeqa(t,s') < fify
fifequ(t, s) + fefoqu(t, s’
fufequ(t',s) + fofoqu(t',s') = fu Qp
fifsqa(t,s) + fufsqa(t',s) = £:Q3
fifyqa(t,s') + fufoqa(t,s") = £ QF

xi(u, v) = fufyqi(u, v).
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Interim Allocations

x1(t,s) + x2(t,s) < f;
x1(t',s) + xa(t',s) < fuf
x1(t,s') +x(t',s") < fuf.

fifs

x1(t,s') + xo(t,s) <
x1(t,s) + x1(t,s') = ftQtl
xi(t',s) + x(t',s') = fu Q}
x2(t,8) + xo(t',s) = £:Q?
x(t,s") + x(t',s') = Q3
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Digression #2

Hitchcock-Koopmans Transportation problem

S a set of supply nodes, where i € S has supply s;.

D a set of demand nodes, where j € D has demand d;.

E set of edges (i,j) with i € S and j € D.
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Digression #2

Let x; be the flow from i € S to j € D through (i,j) € E.

A flow x is feasible if
Z Xij <s5Vies

JED:(i j)EE

Y xj=d;VjeD
ieS:(i,j)eE

x; > 0V(ij)€E
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Digression #2

Does a feasible flow x exist?
Foreach TC D let N(T)={ie€ S:(i,j) € E& € T}.
A feasible flow exists iff for all T C D:

Z s,-ZZdj.

ieN(T) JET
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Interim Allocations

x1(t,s) + xo(t,s) < fifs
x1(t',s) + xo(t',s) < fufe
x1(t,s') +x(t',s") < fuf,
x1(t,s") + xa(t,s') < ffs
x1(t,s) + xi(t,s') = thl
xi(t',s) + x(t',s) = fu Q}
xa2(t,s) + xa(t', s) = £, Q2
xa(t,s') + xo(t',s") = £ Q2
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Allocation with Inspection

> Q: is interim allocation probability to type t € T.

» 1 — ¢(t) is the probability of checking a report of type t conditional on the good
being allocated to a type t.

» Total value less the cost of inspection is
m m
D fitQe = K Y fiQ[l — ()]
t=1 t=1

=) AQt — K + Kc(t)]

teT
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Allocation with Inspection

max Y £ Qi[t — K + Kc(t)]

teT
st. Q> Qsc(s) Vt,se T (1)
0<c(t)<1VteT (2)
nY Qt<1-(D) f)"=g(S)VSCT (3)
tes tgS
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Allocation with Inspection

Q:
c(s)

Q> QSC(S) = Qs <

Never good to inspect t = 1 because K > 1. So, ¢(1) = 1.

Therefore, Q1 < Q; Vt & T.

c(s) < gt Vit = c(s) < &
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Allocation with Inspection

max Y _ £Qi[t — K + Kc(t)]

teT

s.t. ¢(t) < gl vte T

t

Qe>@QVteT
0<c(t)<1VteT

nY fiQ<g(S)VscT

tes
c(t) = min{%, 1} = %
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Allocation with Inspection: Relaxation

max Y fiQ:[t — K] + KQu

t=1
st. Qi > @ Vte T

ny fQ<g(S)VSCT
tesS

Qi =x¢ + Qp forall t > 2
H(S) g(S) —n@y Z:es

H is submodular.

e

For Q1 < ming nEgj(i)sft' H is monotone.
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Allocation with Inspection: Relaxation

m

O th)Qu+max ) fixe[t — K]

t=1 t=2
st.nY fixe < H(S)VS C T\ {1}

tes

One more change of variables:z; = fix; for all t > 2.
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m

(2”’: tfi) Q1 + maszt[t — K]

t=1 t=2

st.nY z < H(S)VSC T\ {1}

teS

1. Set z = 0 for all t < K. Therefore Q; = Q1.
2. ¢c(t)=1forall t <K.

3. There is a cutoff, A so that in any profile of types, award the object to the agent
with the highest type provided it exceeds .

4. Inspect their report with positive probability. The probability of inspection rises
with t.

5. If all reported types fall below the cutoff, randomize equally between all types
below A and don't inspect.
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Secretary Problem (cardinal version)

Sequence of boxes, 1,...,n.

Inspect boxes one at a time in given.

Box i contains a random number t; with probability f;(¢;).

Upon inspecting a box, one can reject the draw and move to the next box or keep the
draw and stop.

Maximize the expected value of number selected.
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Secretary Problem (cardinal version)

Vohra

zi(t;) = Pr[choose tj|1,...,i — 1 not chosen].

Note independence of (ti,...,ti_1).

Only constraint that such variables should satisfy is 0 < z;(t;) <1 Vi

Let fi.j—1(t1:i—1) = [] fi(t:).

Qi(ti) = Pr(choose t;]| = z(t;) >_ H(l = zj(tj)) fima(trio1)-

tii—1 j=

Vt;.
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Secretary Problem (cardinal version)

_ Qi(t7)
zi(t;) = 1 .
t_Z_ -1;[1(1 — zj(tj)) f:i—1(tr:i-1)
CLAIM (by induction):
zi(t;) = 1 Qit:)
1- le Q;(1)fi(1)
Jj=1
i—1
Q)+ ) D Qit)fi(t) <1 Vi Vv
=1

Q,'(t,') >0 Vi Vt','
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Prophet Inequality ,,

Vohra

¥ >

Optimal Offline Optimal Online

max ZZ t:Qi(t)fi(t) max ZZ ti Qi(ti)fi(t;)

stY ) Qi) <1—HF(t Vtst Q t,)—l—ZZQJ (t)F() <1 Vi vy
i t>t j=1
Qi(t)) >0 Vi Vi Qi(t)) >0 Vi Vi

Theorem
The optimal online objective function value is at least 1/2 of the optimal offline
objective function value.
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Prophet Inequality

Let Q* be optimal off-line solution. Set Q;(t) = 072(”'

If Q is not feasible there exists agent i/ and type s such that

+ZZQJ (t)fi(t) > 1

=1 %
i—1
)+ > QL)) >2
=1 g
On the other hand we know that Q(s) < 1. Additionally, by feasibility of Q*
Z > Qi) <1
J=1
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On-line Inspection

QL is the probability of allocating the item to agent / conditioned on the event that

type k was realized.

c,’; is the probability that agent / will NOT be inspected when he declares type k.

max DY AQt — K(1 - )]
oL k=1
sit. Q> Qjcf Vi kI
c <1 Vi Vk

i—1 mj

Q+> > Q<1 Vi Vk

j=1 I=1
Q,c>0

39
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On-line Inspection

Wasteful to inspect the lowest type, so ¢ = 1.

Incentive compatibility: ' '
Q< Q, Vk>1

max ZkaQk[tk— 1—C;;)]
Qe i=1 k=1

s.t. ckggl. Vi Vk,l
Qs
<1 Vi Vk
] i—1 mj ]
Qu+D_ D> Q<1 Vi Vk
j=11=1
Q,c>0
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One-line Inspection

Set c,’; = Q} and rewrite :

Q
max S AQUt - K+ KD Q)
i=1 k=1 i=1
i—1 m
SEQE+Y Y Q<1 Vi Vk
j=11=1

Qi< Qi Vi VYk>2
Q>0

Vohra
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One-line Inspection

Set Q. = Qi +x! and Q] = aj, and we get the following linear program:

rgaxx Zka(tk— Xk—i-kathOé,

i=1 k=1
i—1 m
s.t. Za,+xk+ZZf/ Vi Vk
j=1I=1
x’—O Vi
a,x >0
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Bandit Problem

Each agent i has a one dimensional type 6’ drawn independently from a common
distribution F (with density f) over {1,2,..., m}.

Agent i's value from consuming the object when in state j € S’ is v/(j|0").

vi(j|oT) = 6"+ r.
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Bandit Problem 5&

Vohra

s

State of project i is of the form (', ).

When a project i is in state (6, j) it cannot transition to a state (o', k) for k € S’ and
ol £ 6.

Let xJ’(Q’) be the expected discounted number of times agent i is awarded the object
when she is in state (6, j).

Assume the second component of the state, rj’ is known to the seller. Equivalently,
agent i will truthfully report rJ!' when she is in state (6’ rj' .
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Bandit Problem pq

>
Let p/(#") denote the total expected payment of agent i when she reports type ',

Let X(6") denote the total discounted number of times agent i receives the object
when she reports type 6'. Observe that X'(6') = djesi X !(0’).

Bayesian incentive compatibility:
O'X'(0)+ ) rixi(07) = p'(07) = 0'X (o) + D rixi( oY Vol £60'.  (4)
jesi jesi

Interchanging 6’ and o' yields:

o' X (o) + > rixi( o) = o' X0+ > rixi(07) = p(0)) VO £ o' (5)
Jjes’ jeSs
Adding (4) to (5) produces
(X(0") = X'(a"))(¥" — o') > 0. (6)
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Bandit Problem

Bayesian incentive compatibility is equivalent to monotonicity of X'(-).

pi(ei) < HiXi(Hi) o Z X Z 1(9

o< jes
The problem of finding the revenue maximizing mechanism can be formulated as:

max 3" S (0! () ™

ieN ¢
st. X'(0") < X'(o') Vi, VO’ < o' (8)
PO < OXI(0) — 30 Xi(o) + 37 rjx(0) Vi, 0 (9)

o<0i jesi

X0 => " xi(0") Vi, 0’ (10)

jesi
X(0N} ) c E 11
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Bandit Problem

max Y Y F(6')[6" - _( ]x(e YN FO)Y X)) (12)

ieN gi ieN @i JES
s.t. X(e) Xi(o") Vi, V0" < o (13)
=Y xi(0) Vi, 0 (14)
jeSs’
{X/(0)}ieno € E (15)
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Bandit Problem pq

¥ >

Eliminating the X'(#') variables and dropping the monotonicity constraint yields the
following relaxation:

max Y 50 ST AON0 — S+ O) (MAB) (19
ieN jesi oi
st. {x/(0)}ieng € E (17)
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