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Example 1. Problems from testing conditional rationality    
with positive probability in all events.

Date 1: Nature chooses independent θ1 and θ2, where θ1∈{1,2} has 
probability θ1/3 and θ2 ~U[0,1]; player 1 chooses x∈[0,1].

Date 2: Player 2 observes s2 = x if θ1 = 1 but observes s2 = θ2 if θ1 = 2 
and then chooses y∈{1,2}.

y = 1 y = 2
[1/3]: θ1 = 1 1,1 0,0
[2/3]: θ1 = 2 1,0 0,1

- suppose for “conditional rationality tests,” any observed event  
must be given positive probability when possible.

- then, e.g., s2 = 1/2 will imply θ1 = 1 since s2 = 1/2 has positive 
probability only when (θ1, x) = (1,1/2).

- but then player 2 must always play y = 1,which is strictly 
dominated by always playing y = 2.  Perturb nature!



• Play occurs in a finite sequence of dates 𝑡𝑡 = 1, … ,𝑇𝑇.
Multi-stage games

• 𝑢𝑢𝑖𝑖:𝐴𝐴 → R is  player 𝑖𝑖’s bounded vNM utility function.

• 𝐴𝐴 = ×𝑖𝑖=0
𝐼𝐼 ×𝑡𝑡=1

𝑇𝑇 𝐴𝐴𝑖𝑖𝑡𝑡 ={outcomes of the game}.

• A strategy for 𝑖𝑖 at date 𝑡𝑡 is a function 𝑏𝑏𝑖𝑖𝑡𝑡: 𝑆𝑆𝑖𝑖𝑡𝑡 → ∆(𝐴𝐴𝑖𝑖𝑡𝑡). 

• A strategy for 𝑖𝑖 is 𝑏𝑏𝑖𝑖 = (𝑏𝑏𝑖𝑖1, … , 𝑏𝑏𝑖𝑖𝑇𝑇)∈𝐵𝐵𝑖𝑖;   𝐵𝐵 =×𝑖𝑖=1
𝐼𝐼 𝐵𝐵𝑖𝑖 .

• 𝜎𝜎𝑖𝑖𝑡𝑡:𝐴𝐴<𝑡𝑡 → 𝑆𝑆𝑖𝑖𝑡𝑡 ={signals for player i at date t}

• Date 𝑡𝑡 : Nature chooses 𝑎𝑎0𝑡𝑡∈𝐴𝐴0𝑡𝑡 according to 𝑝𝑝𝑡𝑡(⋅|𝑎𝑎<𝑡𝑡) and each
player 𝑖𝑖 = 1,2, … , 𝐼𝐼 privately observes a signal 𝑠𝑠𝑖𝑖𝑡𝑡 and then chooses 
an action from his action set 𝐴𝐴𝑖𝑖𝑡𝑡.



Conditional ε-equilibrium  

• For ε ≥ 0, b∈𝐵𝐵 is a conditional ε-equilibrium iff ∀𝑖𝑖𝑡𝑡 and ∀𝑍𝑍 ⊆ 𝑆𝑆𝑖𝑖𝑡𝑡
satisfying Prob(𝑍𝑍|𝑏𝑏) > 0,

𝑈𝑈𝑖𝑖 𝑐𝑐𝑖𝑖 , 𝑏𝑏−𝑖𝑖 𝑍𝑍 ≤ 𝑈𝑈𝑖𝑖 𝑏𝑏 𝑍𝑍 + ε, for all date-𝑡𝑡 continuations 𝑐𝑐𝑖𝑖 of 𝑏𝑏𝑖𝑖.

• 𝑐𝑐𝑖𝑖∈𝐵𝐵𝑖𝑖 is a date-𝑡𝑡 continuation of 𝑏𝑏𝑖𝑖∈𝐵𝐵𝑖𝑖 iff 𝑐𝑐𝑖𝑖𝑟𝑟 = 𝑏𝑏𝑖𝑖𝑟𝑟 for every 𝑟𝑟 < 𝑡𝑡.



Example 2. What about a “full support” topological approach?
Date 1: Player 1 chooses x∈[0,1].
Date 2: Player 2 observes s2 = x and then chooses y∈[0,1].
Date 3: Nature chooses θ∈{-1,1}, p(1) = p(-1) = 1/2.
Date 4: Player 3 observes s3 = θ(x+y) and then chooses z∈{-1,1}.

u1 = u2 = -θz
u3 = θz

• 1 and 2 do not want 3 to guess θ and they can prevent this by choosing x = y = 0.

• Hence, subgame perfection requires x = y = 0.

• But there are imperfect conditional ε-equilibria with full support. 

For example, 1 chooses x ~ U[0,1], 2 chooses y ~ U[0,1] no matter what action
of player 1 she observes, and 3 chooses z =1 if s3 >0 and chooses z = -1 if s3 < 0.

• This imperfect conditional ε-equilibrium survives here because the conditional 
rationality of player 2 is not tested at the critical signal s2 = 0. 



Conditional ε-equilibrium  

• For ε ≥ 0, b∈𝐵𝐵 is a conditional ε-equilibrium iff ∀𝑖𝑖𝑡𝑡 and ∀𝑍𝑍 ⊆ 𝑆𝑆𝑖𝑖𝑡𝑡
satisfying Prob(𝑍𝑍|𝑏𝑏) > 0,

𝑈𝑈𝑖𝑖 𝑐𝑐𝑖𝑖 , 𝑏𝑏−𝑖𝑖 𝑍𝑍 ≤ 𝑈𝑈𝑖𝑖 𝑏𝑏 𝑍𝑍 + ε, for all date-𝑡𝑡 continuations 𝑐𝑐𝑖𝑖 of 𝑏𝑏𝑖𝑖.

• 𝑐𝑐𝑖𝑖∈𝐵𝐵𝑖𝑖 is a date-𝑡𝑡 continuation of 𝑏𝑏𝑖𝑖∈𝐵𝐵𝑖𝑖 iff 𝑐𝑐𝑖𝑖𝑟𝑟 = 𝑏𝑏𝑖𝑖𝑟𝑟 for every 𝑟𝑟 < 𝑡𝑡.

• For a strategy profile to be a perfect conditional ε-equilibrium, it 
must be possible, given any finite set of signals outside a negligible 
set, to perturb the players’ strategies and nature’s probability 
function arbitrarily slightly so that every signal in the finite set has 
positive probability and so that the perturbed strategy profile is a 
conditional ε-equilibrium in the game with nature’s perturbed 
probability function.
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• For a strategy profile to be a perfect conditional ε-equilibrium, it 
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positive probability and so that the perturbed strategy profile is a 
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• Z∈M(𝑆𝑆𝑖𝑖𝑡𝑡) is negligible iff 𝑃𝑃𝑟𝑟𝑟𝑟𝑏𝑏 Z 𝑏𝑏 = 0, ∀𝑏𝑏∈𝐵𝐵. 

• Let 𝑆𝑆 =∪ 𝑆𝑆𝑖𝑖𝑡𝑡 be the set of all signals in the game.

• Z ⊂ 𝑆𝑆 is negligible iff Z ∩ 𝑆𝑆𝑖𝑖𝑡𝑡 is negligible for every 𝑖𝑖𝑡𝑡.
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Perfect conditional ε-equilibrium 
• For a strategy profile to be a perfect conditional ε-equilibrium, it 

must be possible, given any finite set of signals outside a negligible 
set, to perturb the players’ strategies and nature’s probability 
function arbitrarily slightly so that every signal in the finite set has 
positive probability and so that the perturbed strategy profile is a 
conditional ε-equilibrium in the game with nature’s perturbed 
probability function.

• �̂�𝑝 is a δ-perturbation of 𝑝𝑝 iff |�̂�𝑝𝑡𝑡 C 𝑎𝑎<𝑡𝑡 − 𝑝𝑝𝑡𝑡(C 𝑎𝑎<𝑡𝑡 | ≤ δ, 
∀𝑎𝑎<𝑡𝑡∈𝐴𝐴<𝑡𝑡, ∀C∈M(𝐴𝐴0𝑡𝑡),∀𝑡𝑡. 

• �𝑏𝑏∈𝐵𝐵 is a δ-perturbation of 𝑏𝑏∈𝐵𝐵 iff |�𝑏𝑏𝑖𝑖𝑡𝑡(C|𝑠𝑠𝑖𝑖𝑡𝑡) −𝑏𝑏𝑖𝑖𝑡𝑡(C 𝑠𝑠𝑖𝑖𝑡𝑡 | ≤ δ,   
∀𝑠𝑠𝑖𝑖𝑡𝑡∈𝑆𝑆𝑖𝑖𝑡𝑡, ∀C∈M(𝐴𝐴𝑖𝑖𝑡𝑡),∀𝑖𝑖𝑡𝑡.
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Perfect conditional ε-equilibrium 
• For a strategy profile to be a perfect conditional ε-equilibrium, it 

must be possible, given any finite set of signals outside a negligible 
set, to perturb the players’ strategies and nature’s probability 
function arbitrarily slightly so that every signal in the finite set has 
positive probability and so that the perturbed strategy profile is a 
conditional ε-equilibrium in the game with nature’s perturbed 
probability function.

• Let Γ(�̂�𝑝) denote the perturbed game in which nature’s probability
function is �̂�𝑝 instead of 𝑝𝑝.



Perfect conditional ε-equilibrium 

Fact. In finite games, a strategy profile is part of a sequential equilibrium iff it is 
the limit of a sequence of perfect conditional ε-equilibria as ε tends to zero.

(Can define conditional belief systems that are “finitely consistent” and that make a given perfect 
conditional ε-equilibrium sequentially ε-rational. Can use beliefs to test plausibility as in KW.)

• For a strategy profile to be a perfect conditional ε-equilibrium, it 
must be possible, given any finite set of signals outside a negligible 
set, to perturb the players’ strategies and nature’s probability 
function arbitrarily slightly so that every signal in the finite set has 
positive probability and so that the perturbed strategy profile is a 
conditional ε-equilibrium in the game with nature’s perturbed 
probability function.

• b∈B is a perfect conditional ε-equilibrium iff ∃ngbl 𝑁𝑁 ⊆ 𝑆𝑆 s.t.            
∀finite 𝑍𝑍 ⊆ 𝑆𝑆\N, ∀δ>0, there are δ-perturbations �𝑏𝑏 of 𝑏𝑏 and �̂�𝑝 of 𝑝𝑝 s.t., 
in Γ(�̂�𝑝), �𝑏𝑏 gives every 𝑠𝑠∈𝑍𝑍 positive probability and �𝑏𝑏 is a conditional 
ε-equilibrium.



Example 1. Problems from testing conditional rationality...
Date 1: Nature chooses independent θ1 and θ2, where θ1∈{1,2} has 

probability θ1/3 and θ2 ~U[0,1]; player 1 chooses x∈[0,1].
Date 2: Player 2 observes s2 = x if θ1 = 1 but observes s2 = θ2 if θ1 = 2 

and then chooses y∈{1,2}.

y = 1 y = 2
[1/3]: θ1 = 1 1,1 0,0
[2/3]: θ1 = 2 1,0 0,1

There are many perfect conditional ε-equilibria. For example, 
• Player 1 chooses x ~ U[0,1] and player 2 always chooses y = 2.
• For any finite set of signals Z ⊆ [0,1] for player 2, perturb θ₂ to 

be uniform on Z with small positive probability.



Example 2. What about a “full support” topological approach?
Date 1: Player 1 chooses x∈[0,1].
Date 2: Player 2 observes s2 = x and then chooses y∈[0,1].
Date 3: Nature chooses θ∈{-1,1}, p(1) = p(-1) = 1/2.
Date 4: Player 3 observes s3 = θ(x+y) and then chooses z∈{-1,1}.

u1 = u2 = -θz
u3 = θz

• 1 and 2 do not want 3 to guess θ and they can prevent this by choosing x = y = 0.

• Hence, subgame perfection requires x = y = 0.

• But there are imperfect conditional ε-equilibria with full support. 

For example, 1 chooses x ~ U[0,1], 2 chooses y ~ U[0,1] no matter what action
of player 1 she observes, and 3 chooses z =1 if s3 >0 and chooses z = -1 if s3 < 0.

• But this imperfect equilibrium is not a perfect conditional ε-equilibrium because 
it is not a conditional ε-equilibrium in any perturbation that gives positive 
probability to s2 = 0.



Subgame perfection 

• For any date 𝑡𝑡, 𝑎𝑎<𝑡𝑡∈𝐴𝐴<𝑡𝑡 is a subgame iff 𝜎𝜎𝑖𝑖𝑡𝑡−1(𝜎𝜎𝑖𝑖𝑡𝑡(𝑎𝑎<𝑡𝑡)) = {𝑎𝑎<𝑡𝑡}, ∀𝑖𝑖.

Fact. Every perfect conditional ε-equilibrium is a subgame perfect
ε-equilibrium.

• b∈B is a subgame perfect ε-equilibrium iff ∀𝑖𝑖𝑡𝑡, ∀subgames 𝑎𝑎<𝑡𝑡
outside a negligible set, 

𝑈𝑈𝑖𝑖 𝑐𝑐𝑖𝑖 , 𝑏𝑏−𝑖𝑖 𝑎𝑎<𝑡𝑡 ≤ 𝑈𝑈𝑖𝑖 𝑏𝑏 𝑎𝑎<𝑡𝑡 + ε, for all date-𝑡𝑡 continuations 𝑐𝑐𝑖𝑖 of 𝑏𝑏𝑖𝑖.



Perfect Conditional Equilibrium Distributions

• A perfect conditional equilibrium distribution is any 𝜇𝜇∈[0,1]ℳ 𝐴𝐴 s.t.,

𝜇𝜇 𝐻𝐻 = lim𝛼𝛼Prob 𝐻𝐻 𝑏𝑏𝛼𝛼 , ∀𝐻𝐻∈ℳ 𝐴𝐴 , 

where {𝑏𝑏𝛼𝛼} is a net of perfect conditional ε𝛼𝛼-equilibria, and lim𝛼𝛼ε𝛼𝛼 = 0.

Fact. In finite games, a strategy profile is part of a sequential equilibrium iff its 
outcome distribution is a perfect conditional equilibrium distribution.

• b∈B is a perfect conditional ε-equilibrium iff ∃ngbl 𝑁𝑁 ⊆ 𝑆𝑆 s.t.            
∀finite 𝑍𝑍 ⊆ 𝑆𝑆\N, ∀δ>0, there are δ-perturbations �𝑏𝑏 of 𝑏𝑏 and �̂�𝑝 of 𝑝𝑝 s.t., 
in Γ(�̂�𝑝), �𝑏𝑏 gives every 𝑠𝑠∈𝑍𝑍 positive probability and �𝑏𝑏 is a conditional 
ε-equilibrium.



Regular projective games
A multi-stage game Γ is a regular projective game iff there is a finite index set J
and sets 𝐴𝐴𝑛𝑛𝑟𝑟𝑗𝑗 such that for every player 𝑖𝑖 and date 𝑡𝑡,

(R.1)  𝐴𝐴𝑖𝑖𝑡𝑡 =×𝑗𝑗∈𝐽𝐽 𝐴𝐴𝑖𝑖𝑡𝑡𝑗𝑗,  𝐴𝐴0𝑡𝑡 =×𝑗𝑗∈𝐽𝐽 𝐴𝐴0𝑡𝑡𝑗𝑗, 

(R.2) there is a set 𝑀𝑀𝑖𝑖𝑡𝑡 ⊆ 0,1, … , 𝐼𝐼 × {1, … , 𝑡𝑡 − 1} × J such that 
𝜎𝜎𝑖𝑖𝑡𝑡 𝑎𝑎<𝑡𝑡 = (𝑎𝑎𝑛𝑛𝑟𝑟𝑗𝑗)𝑛𝑛𝑟𝑟𝑗𝑗∈𝑀𝑀𝑖𝑖𝑖𝑖 .

(R.3) 𝐴𝐴0𝑡𝑡𝑗𝑗 and 𝐴𝐴𝑖𝑖𝑡𝑡𝑗𝑗 are nonempty compact metric spaces ∀j∈J, and all spaces, 
including all products, are given their Borel sigma-algebras,

(R.4)  𝑢𝑢𝑖𝑖:𝐴𝐴 → R is continuous,

(R.5) 𝑝𝑝𝑡𝑡 C 𝑎𝑎<𝑡𝑡 = ∫𝐶𝐶𝑓𝑓𝑡𝑡(𝑎𝑎0𝑡𝑡|𝑎𝑎<𝑡𝑡)Π𝑗𝑗∈𝐽𝐽𝜌𝜌0𝑡𝑡𝑗𝑗(𝑑𝑑𝑎𝑎0𝑡𝑡𝑗𝑗) ∀C∈B(𝐴𝐴0𝑡𝑡), ∀𝑎𝑎<𝑡𝑡∈𝐴𝐴<𝑡𝑡,
where 𝑓𝑓𝑡𝑡:𝐴𝐴0𝑡𝑡 × 𝐴𝐴<𝑡𝑡 → [0,∞) is the product of a positive continuous 
function and a nonnegative function that is measurable w.r.t. a finite product 
partition of 𝐴𝐴0𝑡𝑡 × 𝐴𝐴<𝑡𝑡, and where 𝜌𝜌0𝑡𝑡𝑗𝑗 ∈ ∆(𝐴𝐴0𝑡𝑡𝑗𝑗) ∀j∈J. 

Remark. Since distinct players can observe the same coordinate of Nature, regular projective games 
need not satisfy the information diffuseness condition of Milgrom-Weber (1985) .
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Regular projective games
A multi-stage game Γ is a regular projective game iff there is a finite index set J
and sets 𝐴𝐴𝑛𝑛𝑟𝑟𝑗𝑗 such that for every player 𝑖𝑖 and date 𝑡𝑡,
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including all products, are given their Borel sigma-algebras,

(R.4)  𝑢𝑢𝑖𝑖:𝐴𝐴 → R is continuous,

(R.5) 𝑝𝑝𝑡𝑡 C 𝑎𝑎<𝑡𝑡 = ∫𝐶𝐶𝑓𝑓𝑡𝑡(𝑎𝑎0𝑡𝑡|𝑎𝑎<𝑡𝑡)Π𝑗𝑗∈𝐽𝐽𝜌𝜌0𝑡𝑡𝑗𝑗(𝑑𝑑𝑎𝑎0𝑡𝑡𝑗𝑗) ∀C∈B(𝐴𝐴0𝑡𝑡), ∀𝑎𝑎<𝑡𝑡∈𝐴𝐴<𝑡𝑡,
where 𝑓𝑓𝑡𝑡:𝐴𝐴0𝑡𝑡 × 𝐴𝐴<𝑡𝑡 → [0,∞) is the product of a positive continuous 
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Remark. Since distinct players can observe the same coordinate of Nature, regular projective games 
need not satisfy the information diffuseness condition of Milgrom-Weber (1985) .



Existence

Theorem. Let Γ be any regular projective game. Then, (i) for every    
ε > 0, Γ possesses at least one perfect conditional ε-equilibrium, and 
(ii) Γ possesses at least one perfect conditional equilibrium distribution.

• A perfect conditional equilibrium distribution is any 𝜇𝜇∈[0,1]ℳ 𝐴𝐴 s.t.,

𝜇𝜇 𝐻𝐻 = lim𝛼𝛼Prob 𝐻𝐻 𝑏𝑏𝛼𝛼 , ∀𝐻𝐻∈ℳ 𝐴𝐴 , 

where {𝑏𝑏𝛼𝛼} is a net of perfect conditional ε𝛼𝛼-equilibria, and lim𝛼𝛼ε𝛼𝛼 = 0.

• b∈B is a perfect conditional ε-equilibrium iff ∃ngbl 𝑁𝑁 ⊆ 𝑆𝑆 s.t.            
∀finite 𝑍𝑍 ⊆ 𝑆𝑆\N, ∀δ>0, there are δ-perturbations �𝑏𝑏 of 𝑏𝑏 and �̂�𝑝 of 𝑝𝑝 s.t., 
in Γ(�̂�𝑝), �𝑏𝑏 gives every 𝑠𝑠∈𝑍𝑍 positive probability and �𝑏𝑏 is a conditional 
ε-equilibrium.



Perfect conditional ε-equilibrium.

Properties of perfect conditional ε-equilibria.

• they are subgame perfect ε-equilibria

• players with the same information behave as if they have the 
same beliefs

• in finite multi-stage games, the set of their limits as ε → 0
coincides with the set of sequential equilibrium strategy profiles

• they can be shown to exist in a large class of infinite multi-stage 
games that we call regular projective games

• For a strategy profile to be a perfect conditional ε-equilibrium, it must 
be possible, given any finite set of signals outside a negligible set, to 
perturb the players’ strategies and nature’s probability function 
arbitrarily slightly so that every signal in the finite set has positive 
probability and so that the perturbed strategy profile is a conditional 
ε-equilibrium in the game with nature’s perturbed probability function.





y = 1 y = 2
[1/4]: θ = 1 1,1 0,0
[3/4]: θ = 2 1,0 0,1

Example. Spurious signaling in naïve finite approximations
Date 1: Nature chooses θ∈{1,2}, p(θ=1) = 1/4, and
Player 1 chooses x ∈[0,1].
Date 2: Player 2 observes s2 = xθ, then chooses y∈{1,2}.

1’s payoff is zero in any Nash equilibrium. 

But if player 1 is restricted to any large finite subset F of his action 
space [0,1], he must obtain u1 ≥ 1/4 in any SPE; since when s2 is 
the highest action in F less than 1, player 2 must respond with 
y = 1 since the state must be θ = 1.



y = 1 y = 2
[1/4]: θ = 1 1,1 0,0
[3/4]: θ = 2 1,0 0,1

Example. Spurious signaling in naïve finite approximations
Date 1: Nature chooses θ∈{1,2}, p(θ=1) = 1/4, and
Player 1 chooses x ∈[0,1].
Date 2: Player 2 observes s2 = xθ, then chooses y∈{1,2}.

There are many perfect conditional ε-equilibria. For example,

• Player 1 chooses x = 0 and player 2 always chooses y = 2.

• For any finite set of signals Z ⊆ [0,1] for player 2, perturb 

player 1’s strategy toward �𝑏𝑏1, where �𝑏𝑏1 𝑥𝑥 = 3�𝑏𝑏1 𝑥𝑥 > 0 for 

all 𝑥𝑥 in the square-root closure of Z (i.e., ∪𝑧𝑧∈𝑍𝑍 {𝑧𝑧, 𝑧𝑧, 𝑧𝑧, … }).



Example. Effects of correlated perturbations of nature
Date 1: Nature chooses θ1,θ2 ~ U[-1,3].
Date 2: Player 1 observes s1= θ1 and chooses x ∈{-1,1}.
Date 3: Player 2 observes s2 = x and chooses y∈{-1,1}. 

u1 = xy

u2 = θ2 y
• Since no player observes θ2 and E(θ2) > 0, player 2 should always  

choose y = 1, regardless of the action of player 1 that she observes.
• So player 1 should choose x = 1 regardless of the θ1 that he 

observes. The only sensible equilibrium payoffs are u1 = u2 = 1. (?)

• But consider b1(θ1) = -1 iff θ1 ≠ -1 and b2(x) = -x. This yields the
payoff vector (u1, u2) = (-1,1)

• These strategies are supported by perturbing  nature to give small 
positive probability to the event {(θ1,θ2)=(-1,-1)}.

(Can eliminate this equilibrium if Nature’s states are perturbed independently.)



Example. Effects of “far” perturbations of nature
Date 1: Nature chooses (θ1,θ2)∈ [0,1]2.  With probability ½, the coordinates are 
independent and uniform on [0,1], and with probability ½ the coordinates are 
equal and uniform on [0,1]. 
Date 2: Player 1 observes s1 = θ1 and chooses x∈{-1,1}. Player 2 observes s2 = x
and chooses y∈{-1,1}.
u1 = xy,   
u2 = y(1/3 - |θ1-θ2|).

Player 2 should choose y = 1 iff she expects |θ1-θ2| to be less than 1/3.

Player 1 wants to choose an action that player 2 will match.

Since for every θ1, θ2 is equally likely to be equal to θ1 (in which case |θ1-θ2| =0) 
as to be uniform on [0,1] (in which case E|θ1-θ2| ≤ ½), player 2 should expect 
|θ1-θ2| to be no greater than ¼, regardless of 1’s strategy. So player 2 should 
choose y = 1.

Thus all sensible equilibria give probability 1 to (x,y) = (1,1). (?)



Example. Effects of “far” perturbations of nature
Date 1: Nature chooses (θ1,θ2)∈ [0,1]2.  With probability ½, the coordinates are 
independent and uniform on [0,1], and with probability ½ the coordinates are 
equal and uniform on [0,1]. 
Date 2: Player 1 observes s1 = θ1 and chooses x∈{-1,1}. Player 2 observes s2 = x
and chooses y∈{-1,1}.
u1 = xy,   
u2 = y(1/3 - |θ1-θ2|).

Player 2 should choose y = 1 iff she expects |θ1-θ2| to be less than 1/3.

Player 1 wants to choose an action that player 2 will match.

Since for every θ1, θ1 is equally likely to be equal to θ1 (in which case |θ1-θ2| =0) 
as to be uniform on [0,1] (in which case |θ1-θ2| ≤ ½), player 2 should expect  |θ1-
θ2| to be no greater than ¼, regardless of 1’s strategy. So player 2 should choose 
a2 = 1.

Thus all sensible equilibria give probability 1 to (x,y) = (1,1). (?)



Example. Effects of “far” perturbations of nature
Date 1: Nature chooses (θ1,θ2)∈ [0,1]2.  With probability ½, the coordinates are 
independent and uniform on [0,1], and with probability ½ the coordinates are 
equal and uniform on [0,1]. 
Date 2: Player 1 observes s1 = θ1 and chooses x∈{-1,1}. Player 2 observes s2 = x
and chooses y∈{-1,1}.
u1 = xy,   
u2 = y(1/3 - |θ1-θ2|).

Player 2 should choose y = 1 iff she expects |θ1-θ2| to be less than 1/3.

Player 1 wants to choose an action that player 2 will match.

Thus all sensible equilibria give probability 1 to (x,y) = (1,1). (?)



Example. Effects of “far” perturbations of nature
Date 1: Nature chooses (θ1,θ2)∈ [0,1]2.  With probability ½, the coordinates are 
independent and uniform on [0,1], and with probability ½ the coordinates are 
equal and uniform on [0,1]. 
Date 2: Player 1 observes s1 = θ1 and chooses x∈{-1,1}. Player 2 observes s2 = x
and chooses y∈{-1,1}.
u1 = xy,   
u2 = y(1/3 - |θ1-θ2|).

Player 2 should choose y = 1 iff she expects |θ1-θ2| to be less than 1/3.

Player 1 wants to choose an action that player 2 will match.

Thus all sensible equilibria give probability 1 to (x,y) = (1,1). (?) 

But consider (b1,b2) where b1(θ1) = -1 iff θ1 ≠ 1, and b2(x) = -x. 

(b1,b2) gives probability 1 to (x,y) = (-1,1), and is supported in a perfect conditional 
ε-equilibrium by the perturbation of Nature that never perturbs θ2 but that with 
probability ε perturbs the distribution of θ1 so that it is a mass point on θ1 = 1. 
With this perturbation, player 2 equates x = 1 with θ1 =1 and therefore expects the 
value of |θ1-θ2| to be ½.
Can eliminate this equilibrium if Nature’s states are perturbed only to nearby states.



Remark. For each date 𝑡𝑡, �𝑝𝑝𝑡𝑡 works as follows. First, a  provisional date-t state 
𝑎𝑎0𝑡𝑡 = (𝑎𝑎0𝑡𝑡𝑗𝑗)𝑗𝑗∈𝐽𝐽 is chosen according to 𝑝𝑝𝑡𝑡(�│𝑎𝑎<𝑡𝑡). Then, independently for each
coordinate j, the j-th coordinate is either unchanged (with probability 1- δ/#J), or, 
(with probability δ/#J) it is replaced with some element of 𝐴𝐴0𝑡𝑡𝑗𝑗 that is within δ of 
𝑎𝑎0𝑡𝑡𝑗𝑗.  So, in local perturbations, nature’s state is only changed slightly and with 
small probability. 

�𝑝𝑝𝑡𝑡 C 𝑎𝑎<𝑡𝑡 = ∫𝐴𝐴0𝑖𝑖∏𝑗𝑗∈𝐽𝐽𝜙𝜙𝑡𝑡𝑗𝑗 𝐶𝐶𝑗𝑗 𝑎𝑎0𝑡𝑡𝑗𝑗 𝑝𝑝𝑡𝑡 𝑑𝑑𝑎𝑎0𝑡𝑡 𝑎𝑎<𝑡𝑡 ,   ∀𝐶𝐶 =×𝑗𝑗∈𝐽𝐽 𝐶𝐶𝑗𝑗 ⊆ 𝐴𝐴0𝑡𝑡, ∀𝑎𝑎<𝑡𝑡

for any transition probabilities 𝜙𝜙𝑡𝑡𝑗𝑗:𝐴𝐴0𝑡𝑡𝑗𝑗 → ∆(𝐴𝐴0𝑡𝑡𝑗𝑗) that satisfy

𝜙𝜙𝑡𝑡𝑗𝑗 𝑎𝑎0𝑡𝑡𝑗𝑗 𝑎𝑎0𝑡𝑡𝑗𝑗 ≥ 1 − 𝛿𝛿
#𝐽𝐽

and 𝜙𝜙𝑡𝑡𝑗𝑗 𝐵𝐵𝑎𝑎𝐵𝐵𝐵𝐵𝛿𝛿(𝑎𝑎0𝑡𝑡𝑗𝑗) 𝑎𝑎0𝑡𝑡𝑗𝑗 = 1, ∀𝑎𝑎0𝑡𝑡𝑗𝑗 ∈ 𝐴𝐴0𝑡𝑡𝑗𝑗 ∀𝑗𝑗 ∈ 𝐽𝐽 .

Local perturbations of nature
Suppose that nature’s date-t states can be written as 𝐴𝐴0𝑡𝑡=×𝑗𝑗∈𝐽𝐽 𝐴𝐴0𝑡𝑡𝑗𝑗 and that each
𝐴𝐴0𝑡𝑡𝑗𝑗 is a metric space.

For any δ ≥ 0, a probability function �𝑝𝑝 = �𝑝𝑝1, … , �𝑝𝑝𝑇𝑇 is a local δ-perturbation  
of nature’s probability function 𝑝𝑝 = 𝑝𝑝1, … ,𝑝𝑝𝑇𝑇 iff ∀𝑡𝑡 ≤ 𝑇𝑇, �𝑝𝑝𝑡𝑡 is of the form


	Perfect conditional -equilibria of multi-stage games with infinite sets of signals and actions
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

