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Introduction

A seemingly small departure from complete information may have
a large impact on strategic behavior.

» the e-mail game (Rubinstein, 1989),
» global games (Carlsson and van Damme, 1993),
» the structure theorem (Weinstein and Yildiz, 2007),

> ..

But not “anything goes.”

Kajii and Morris (1997) introduce the notion of robustness to all
elaborations.

» a strict Nash equilibrium may not be robust;

» some equilibrium is shown to be robust.



Elaborations
A complete-information game, denoted by g, consists of
> a finite set of players, N,
» a finite set of actions, A;;
> payoffs gj: A — R.

An elaboration of g, denoted by (u, P), is an
incomplete-information game consisting of

> the same sets of players and actions as g;
> a countable set of types, T;;
» a common prior P € A(T);

> type-dependent payoffs u;: Ax T — R.

| say that (u, P) is an e-elaboration of g if

P{te T|u(t,t,;)=g ViVt ;})>1—c.



Robustness to All Elaborations

An action profile a* is robust to all elaborations in g if for any
0 > 0, there exists € > 0 such that every e-elaboration has a

Bayesian Nash equilibrium that plays a* with probability at least
1-0.

Kajii and Morris (1997) show that

» a game may have no robust equilibrium;
» sufficient conditions for robustness:
> a unique correlated equilibrium;
» a p-dominant equilibrium with Y. p; < 1;

> a necessary condition for robustness: no other equilibrium is
strictly p-dominant with ) . p; < 1.

There is no known generic game with multiple robust equilibria.



A 2 x 2 Coordination Game

Two investors decide to invest on a project (/) or not (N):

/ N
g= I[ 1,1 =20
N [0,—2] 0,0

Both (/,1) and (N, N) are strict Nash equilibria:
» (/,1) is not robust;
» (N, N) is robust.



A 2 x 2 Coordination Game: Non-Robustness of (/, /)

/ N
g= I[ 1,1 [-20
N [0,—2] 0,0

Consider the following “e-mail game” elaboration (u, P):
» =T =N
» P(k,k+1)=P(k+1,k)=¢e(1—e)k/2;
> type 0 has NV as a dominant action; other types have the same
payoff as g;.

(u, P) is an e-elaboration of g, and “always N" is a unique
Bayesian Nash equilibrium.

Hence other action profiles are not robust.



A 2 x 2 Coordination Game: Robustness of (N, N)

/ N
g= [[ 1,1 [-20
N [0,—2] 0,0

Kajii and Morris (1997) show that any p-dominant equilibrium
with >, pi < 1 is robust to all elaborations.

Since (N, N) is a (1/3,1/3)-dominant equilibrium, (N, N) is
robust.



Canonical Elaborations

An elaboration (u, P) of g is canonical if every type is either
» a normal type: knows that his own payoff is the same as g;, or

> a commitment type: has some action as a dominant action.

An action profile a* is robust to canonical elaborations in g if
for any 6 > 0, there exists € > 0 such that every canonical
e-elaboration has a Bayesian Nash equilibrium that plays a* with
probability at least 1 — §.



Equivalence?
By the definitions,

robust to all elaborations = robust to canonical elaborations.

Does the converse hold? | do not know the answer.

» Whenever the literature establishes the non-robustness of
some equilibrium in some game, it always uses canonical
elaborations.

» Ui (2001) shows that if g is a potential game with a unique
potential maximizer a*, then a* is robust to canonical
elaborations. His proof relies on canonicality.

» Morris and Ui (2005) show that if g has a monotone potential
and either g or the monotone potential is supermodular, then
the potential maximizer is robust to all elaborations.

» Pram (2018) shows the equivalence when correlated
equilibrium is used as a solution concept. His proof relies on
the convexity of correlated equilibria.



The Result

| establish the non-equivalence between all and canonical
elaborations by means of a counterexample, but based on
set-valued notions of robustness.

A closed set £ C A(A) is robust to all (resp., canonical)
elaborations in g if for any § > 0, there exists ¢ > 0 such that
every (resp., canonical) e-elaboration has a Bayesian Nash
equilibrium that induces an action distribution in the
d-neighborhood of £.



The Counterexample

Balkenborg and Vermeulen (2016) introduce a class of minimal
diversity games.

With three players and two actions,
> A1 :A2:A3:{0,1};

>

gi1(a) = &(a) = g3(a) = {(1) :t::W(iS:),O) or (1,1,1),
Let £ = A(A\ {(0,0,0),(1,1,1)}).

Proposition 1. £ is robust to canonical elaborations in g.

Proposition 2. £ is not robust to all elaborations in g.



Proof of Proposition 1

The proof is essentially the same as that of Ui (2001).

Fix any canonical e-elaboration (u, P). Consider
max 3 P()ga(o (1),
teT

where max is taken over all strategy profiles o where all
commitment types play their dominant actions.

Since players have common payoffs, any maximizer ¢* is a
Bayesian Nash equilibrium of (u, P).



Proof of Proposition 1, Continued

Let & be the (possibly non-equilibrium) strategy profile where all
normal types play (0,0,1) and all commitment types play their
dominant actions. Then

min P(t)o*(t) —
iy |32 P(0)" ()~

_QZP a*(t)({(0,0,0),(1,1,1)})

=2 <1 - P(t)gl(a*(t))>

teT

<2 (1 -> P(t)a(c‘r(t))) < 2.

teT



Proof of Proposition 2: h

| use the following game h = (h,, hg, *) among players ¢, 3, and ~y
as a building block of my construction of elaborations:

0 1 0 1
h— 01,0, |0,1,x% 01]20,% 0,2, %
1]0,2,%|2,0,x 1]0,1,%|1,0,x
0 1

| denote by h* the induced two-player game between players o and
3 given player v's mixed action x € [0, 1] (x denotes the
probability of action 1):

0 1
h*= 0|1+x,0|0,1+x
110,2—x1]2-x,0

Game h* has a unique equilibrium ((1 + x)/3, (1 + x)/3).



Proof of Proposition 2: h

| also construct another game h= (/~7a, 775, ) by relabeling player
B's action 0 as action 1, and action 1 as action 0:

=
Il

OIN| O

1
?* 17 7>‘< 0 07 7* 2707*
x| 0,2, % 11,0, |0,1,x
0 1

010,
2

)

(=N -]

)

| denote by h* the induced two-player game given player v's mixed
action x € [0, 1]:

5 0 1
h“= 0]0,1+x|1+x,0
112—-x,0|0,2—x

Game h* has a unique equilibrium ((1 + x)/3, (2 — x)/3).



Proof of Proposition 2: Construction of (u, P)
> T — {t* t{-+1,f t{'+2f t, tl+15}
| 4

1—¢e ift=(t,t5,5),
i .7f .7f '7 .7f '7
P(t) — 6/9 ift = ( ?<7 ;Jrl’ ;+2) (tl 57 ;+17 ,{sz),

(t;s, e t,+2) with some i € N,

0 otherwise.

* * *
t; i1 tii2

if
i+2
i,s

i+2

I »S

t:3r2' 7, and t,+2.

Figure: Interactions among t7, t7 |, t/,,, t,_’H,



Proof of Proposition 2: Construction of (u, P)

*

* *
t; i1 tii2

if
tiio

i,s
ti+2

ui(a, ti, tit1, tizo) = gi(a),

w Jf ifN T
ui+1(37 ti, t,’+17 ti+2) - ha(3;+1, i+2; ai)7
x L i,f if\__ T
uiva(a, 7, st ) = hg(aite, aiva, ai),
i,s i, f Lis\ _
ui-‘rl(av ti ) t,’+17 ti+2) - 07

i,s % is\ i,s % is\ _
ui(a, t;7, 4, ;+2)— uito(a, t; 7ti+1vti+2)_07
i,s Li,f is\
ui(a, 6ty t,-+2) = ha(aj, ait2, ait1),
is i, f  iss\ __
ui+o(a, 7t t,-+2) = hﬁ(ai, 3j42,3it1)



Proof of Proposition 2: Lemma
Let o be any Bayesian Nash equilibrium of (u, P).

Lemma If 0;(t) < 1/2 (resp., < 1/2) and o;(t]) +oiy2(tf,) <1
(resp., > 1), then ojy1( ,+1) =1 (resp., 0). In particular, if
oi(tf) = 0 (resp., 1), then o;y1(tf ;) =1 (resp., 0).

t.*

tf tf Tio

i i+1

O

tl~7i>2

tl~7i>2

£
1
Proof of Lemma If o;(t*) < 1/2, then a,+1( ) 1/2 via h.
So 0(t;®) = oiya( ,+2) < 1/2 via h.
Hence o;1(tf ;) = 1. (Notice that 0;(t;+1’f) + 0;+2(tfi§’f) ~1)



Proof of Proposition 2

Suppose that o;(t}) # 1/2 for some i € N.

Without loss of generality, | assume that / = 1 maximizes
loi(tf) —1/2] and o1(t]) < 1/2.

By the maximality and o1(t]) < 1/2, | have

1

1
7a(5) - | 2 a(5) -

1
5 —o(t) = -

2

1
o1(8) - 2] >

and hence o1(t]) + o3(t5) < L.

By Lemma, | have o»(t3) = 1.

Applying Lemma iteratively, | have 3(t) = 0 and hence

o1(ty) =1, a contradiction.

Thus | have o(tf) =1/2 for all i € N.

(In fact, (u, P) has a unique Bayesian Nash equilibrium of “always
play 50-50.")



Conclusion

| provide an example to show the non-equivalence between all and
canonical elaborations.

Open questions:

» to prove or disprove the equivalence for singleton-valued
robustness notions;

> to prove or disprove the equivalence for approximate
robustness (Haimanko and Kajii, 2016).



