Non-Equivalence between All and Canonical Elaborations

Satoru Takahashi

June 2018

Introduction

A seemingly small departure from complete information may have a large impact on strategic behavior.

- the e-mail game (Rubinstein, 1989),
- global games (Carlsson and van Damme, 1993),
- the structure theorem (Weinstein and Yildiz, 2007),
- ...

But not "anything goes."
Kajii and Morris (1997) introduce the notion of robustness to all elaborations.

- a strict Nash equilibrium may not be robust;
- some equilibrium is shown to be robust.

Elaborations

A complete-information game, denoted by \mathbf{g}, consists of

- a finite set of players, N;
- a finite set of actions, A_{i};
- payoffs $g_{i}: A \rightarrow \mathbb{R}$.

An elaboration of \mathbf{g}, denoted by (\mathbf{u}, P), is an incomplete-information game consisting of

- the same sets of players and actions as \mathbf{g};
- a countable set of types, T_{i};
- a common prior $P \in \Delta(T)$;
- type-dependent payoffs $u_{i}: A \times T \rightarrow \mathbb{R}$.

I say that (\mathbf{u}, P) is an ε-elaboration of \mathbf{g} if

$$
P\left(\left\{t \in T \mid u_{i}\left(\cdot, t_{i}, t_{-i}^{\prime}\right)=g_{i} \forall i \forall t_{-i}^{\prime}\right\}\right) \geq 1-\varepsilon .
$$

Robustness to All Elaborations

An action profile a^{*} is robust to all elaborations in \mathbf{g} if for any $\delta>0$, there exists $\varepsilon>0$ such that every ε-elaboration has a Bayesian Nash equilibrium that plays a^{*} with probability at least $1-\delta$.

Kajii and Morris (1997) show that

- a game may have no robust equilibrium;
- sufficient conditions for robustness:
- a unique correlated equilibrium;
- a p-dominant equilibrium with $\sum_{i} p_{i}<1$;
- a necessary condition for robustness: no other equilibrium is strictly \mathbf{p}-dominant with $\sum_{i} p_{i} \leq 1$.

There is no known generic game with multiple robust equilibria.

A 2×2 Coordination Game

Two investors decide to invest on a project (I) or not (N):

	I	N
$\mathbf{g}=1$	1,1	-2,0
N	0, -2	0,0

Both (I, I) and (N, N) are strict Nash equilibria:

- (I, I) is not robust;
- (N, N) is robust.

A 2×2 Coordination Game: Non-Robustness of (I, I)

$$
\mathbf{g}=
$$

Consider the following "e-mail game" elaboration (\mathbf{u}, P):

- $T_{1}=T_{2}=\mathbb{N}$;
- $P(k, k+1)=P(k+1, k)=\varepsilon(1-\varepsilon)^{k} / 2$;
- type 0 has N as a dominant action; other types have the same payoff as g_{i}.
(\mathbf{u}, P) is an ε-elaboration of \mathbf{g}, and "always N " is a unique Bayesian Nash equilibrium.

Hence other action profiles are not robust.

A 2×2 Coordination Game: Robustness of (N, N)

Kajii and Morris (1997) show that any p-dominant equilibrium with $\sum_{i} p_{i}<1$ is robust to all elaborations.

Since (N, N) is a (1/3, 1/3)-dominant equilibrium, (N, N) is robust.

Canonical Elaborations

An elaboration (\mathbf{u}, P) of \mathbf{g} is canonical if every type is either

- a normal type: knows that his own payoff is the same as g_{i}, or
- a commitment type: has some action as a dominant action.

An action profile a^{*} is robust to canonical elaborations in \mathbf{g} if for any $\delta>0$, there exists $\varepsilon>0$ such that every canonical ε-elaboration has a Bayesian Nash equilibrium that plays a^{*} with probability at least $1-\delta$.

Equivalence?

By the definitions,
robust to all elaborations \Rightarrow robust to canonical elaborations.
Does the converse hold? I do not know the answer.

- Whenever the literature establishes the non-robustness of some equilibrium in some game, it always uses canonical elaborations.
- Ui (2001) shows that if \mathbf{g} is a potential game with a unique potential maximizer a^{*}, then a^{*} is robust to canonical elaborations. His proof relies on canonicality.
- Morris and Ui (2005) show that if \mathbf{g} has a monotone potential and either \mathbf{g} or the monotone potential is supermodular, then the potential maximizer is robust to all elaborations.
- Pram (2018) shows the equivalence when correlated equilibrium is used as a solution concept. His proof relies on the convexity of correlated equilibria.

The Result

I establish the non-equivalence between all and canonical elaborations by means of a counterexample, but based on set-valued notions of robustness.

A closed set $\mathcal{E} \subseteq \Delta(A)$ is robust to all (resp., canonical) elaborations in \mathbf{g} if for any $\delta>0$, there exists $\varepsilon>0$ such that every (resp., canonical) ε-elaboration has a Bayesian Nash equilibrium that induces an action distribution in the δ-neighborhood of \mathcal{E}.

The Counterexample

Balkenborg and Vermeulen (2016) introduce a class of minimal diversity games.

With three players and two actions,

- $A_{1}=A_{2}=A_{3}=\{0,1\}$;

$$
g_{1}(a)=g_{2}(a)=g_{3}(a)= \begin{cases}0 & \text { if } a=(0,0,0) \text { or }(1,1,1) \\ 1 & \text { otherwise }\end{cases}
$$

Let $\mathcal{E}=\Delta(A \backslash\{(0,0,0),(1,1,1)\})$.
Proposition 1. \mathcal{E} is robust to canonical elaborations in \mathbf{g}.
Proposition 2. \mathcal{E} is not robust to all elaborations in \mathbf{g}.

Proof of Proposition 1

The proof is essentially the same as that of Ui (2001).
Fix any canonical ε-elaboration (u,P). Consider

$$
\max _{\sigma} \sum_{t \in T} P(t) g_{1}(\sigma(t))
$$

where max is taken over all strategy profiles σ where all commitment types play their dominant actions.

Since players have common payoffs, any maximizer σ^{*} is a Bayesian Nash equilibrium of (\mathbf{u}, P).

Proof of Proposition 1, Continued

Let $\bar{\sigma}$ be the (possibly non-equilibrium) strategy profile where all normal types play $(0,0,1)$ and all commitment types play their dominant actions. Then

$$
\begin{aligned}
\min _{\mu \in \mathcal{E}}\left\|\sum_{t} P(t) \sigma^{*}(t)-\mu\right\|_{1} & =2 \sum_{t} P(t) \sigma^{*}(t)(\{(0,0,0),(1,1,1)\}) \\
& =2\left(1-\sum_{t \in T} P(t) g_{1}\left(\sigma^{*}(t)\right)\right) \\
& \leq 2\left(1-\sum_{t \in T} P(t) g_{1}(\bar{\sigma}(t))\right) \leq 2 \varepsilon
\end{aligned}
$$

Proof of Proposition 2: \mathbf{h}

I use the following game $\mathbf{h}=\left(h_{\alpha}, h_{\beta}, *\right)$ among players α, β, and γ as a building block of my construction of elaborations:

$$
\mathbf{h}=
$$

I denote by \mathbf{h}^{\times}the induced two-player game between players α and β given player γ 's mixed action $x \in[0,1]$ (x denotes the probability of action 1):

Game \mathbf{h}^{x} has a unique equilibrium $((1+x) / 3,(1+x) / 3)$.

Proof of Proposition 2: $\tilde{\mathbf{h}}$

I also construct another game $\tilde{\mathbf{h}}=\left(\tilde{h}_{\alpha}, \tilde{h}_{\beta}, *\right)$ by relabeling player β 's action 0 as action 1, and action 1 as action 0 :

I denote by $\tilde{\mathbf{h}}^{x}$ the induced two-player game given player γ 's mixed action $x \in[0,1]$:

$$
\tilde{\mathbf{h}}^{x}=
$$

Game $\tilde{\mathbf{h}}^{x}$ has a unique equilibrium $((1+x) / 3,(2-x) / 3)$.

Proof of Proposition 2: Construction of (\mathbf{u}, P)

- $T_{i}=\left\{t_{i}^{*}, t_{i}^{i+1, f}, t_{i}^{i+2, f}, t_{i}^{i, s}, t_{i}^{i+1, s}\right\}$,

$$
P(t)= \begin{cases}1-\varepsilon & \text { if } t=\left(t_{1}^{*}, t_{2}^{*}, t_{3}^{*}\right), \\ \varepsilon / 9 & \text { if } t=\left(t_{i}^{*}, t_{i+1}^{i, f}, t_{i+2}^{i, f}\right),\left(t_{i}^{i, s}, t_{i+1}^{i, f}, t_{i+2}^{i, s}\right), \\ & \left(t_{i}^{i, s}, t_{i+1}^{*}, t_{i+2}^{, j, s}\right) \text { with some } i \in N, \\ 0 & \text { otherwise. }\end{cases}
$$

Figure: Interactions among $t_{i}^{*}, t_{i+1}^{*}, t_{i+2}^{*}, t_{i+1}^{i, f}, t_{i+2}^{i, f}, t_{i}^{i, s}$, and $t_{i+2}^{i, s}$.

Proof of Proposition 2: Construction of (\mathbf{u}, P)

$$
\begin{aligned}
u_{i}\left(a, t_{i}^{*}, t_{i+1}, t_{i+2}\right) & =g_{i}(a) \\
u_{i+1}\left(a, t_{i}^{*}, t_{i+1}^{i, f}, t_{i+2}^{i, f}\right) & =\tilde{h}_{\alpha}\left(a_{i+1}, a_{i+2}, a_{i}\right) \\
u_{i+2}\left(a, t_{i}^{*}, t_{i+1}^{i, f}, t_{i+2}^{i, f}\right) & =\tilde{h}_{\beta}\left(a_{i+1}, a_{i+2}, a_{i}\right) \\
u_{i+1}\left(a, t_{i}^{i, s}, t_{i+1}^{i, f}, t_{i+2}^{i, s}\right) & =0 \\
u_{i}\left(a, t_{i}^{i, s}, t_{i+1}^{*}, t_{i+2}^{i, s}\right) & =u_{i+2}\left(a, t_{i}^{i, s}, t_{i+1}^{*}, t_{i+2}^{i, s}\right)=0, \\
u_{i}\left(a, t_{i}^{i, s}, t_{i+1}^{i, f}, t_{i+2}^{i, s}\right) & =h_{\alpha}\left(a_{i}, a_{i+2}, a_{i+1}\right), \\
u_{i+2}\left(a, t_{i}^{i, s}, t_{i+1}^{i, f}, t_{i+2}^{i, s}\right) & =h_{\beta}\left(a_{i}, a_{i+2}, a_{i+1}\right)
\end{aligned}
$$

Proof of Proposition 2: Lemma

Let σ be any Bayesian Nash equilibrium of (\mathbf{u}, P).
Lemma If $\sigma_{i}\left(t_{i}^{*}\right)<1 / 2($ resp., $<1 / 2)$ and $\sigma_{i}\left(t_{i}^{*}\right)+\sigma_{i+2}\left(t_{i+2}^{*}\right) \leq 1$ (resp., ≥ 1), then $\sigma_{i+1}\left(t_{i+1}^{*}\right)=1$ (resp., 0). In particular, if $\sigma_{i}\left(t_{i}^{*}\right)=0($ resp., 1$)$, then $\sigma_{i+1}\left(t_{i+1}^{*}\right)=1$ (resp., 0).

Proof of Lemma If $\sigma_{i}\left(t_{i}^{*}\right)<1 / 2$, then $\sigma_{i+1}\left(t_{i+1}^{i, f}\right)<1 / 2$ via $\tilde{\mathbf{h}}$. So $\sigma_{i}\left(t_{i}^{i, s}\right)=\sigma_{i+2}\left(t_{i+2}^{i, s}\right)<1 / 2$ via \mathbf{h}.
Hence $\sigma_{i+1}\left(t_{i+1}^{*}\right)=1$. (Notice that $\sigma_{i}\left(t_{i}^{i+1, f}\right)+\sigma_{i+2}\left(t_{i+2}^{i+1, f}\right)=1$.)

Proof of Proposition 2

Suppose that $\sigma_{i}\left(t_{i}^{*}\right) \neq 1 / 2$ for some $i \in N$.
Without loss of generality, I assume that $i=1$ maximizes
$\left|\sigma_{i}\left(t_{i}^{*}\right)-1 / 2\right|$ and $\sigma_{1}\left(t_{1}^{*}\right)<1 / 2$.
By the maximality and $\sigma_{1}\left(t_{1}^{*}\right)<1 / 2$, I have

$$
\frac{1}{2}-\sigma_{1}\left(t_{1}^{*}\right)=\left|\sigma_{1}\left(t_{1}^{*}\right)-\frac{1}{2}\right| \geq\left|\sigma_{3}\left(t_{3}^{*}\right)-\frac{1}{2}\right| \geq \sigma_{3}\left(t_{3}^{*}\right)-\frac{1}{2}
$$

and hence $\sigma_{1}\left(t_{1}^{*}\right)+\sigma_{3}\left(t_{3}^{*}\right) \leq 1$.
By Lemma, I have $\sigma_{2}\left(t_{2}^{*}\right)=1$.
Applying Lemma iteratively, I have $\sigma_{3}\left(t_{3}^{*}\right)=0$ and hence $\sigma_{1}\left(t_{1}^{*}\right)=1$, a contradiction.
Thus I have $\sigma_{i}\left(t_{i}^{*}\right)=1 / 2$ for all $i \in N$.
(In fact, (\mathbf{u}, P) has a unique Bayesian Nash equilibrium of "always play 50-50.")

Conclusion

I provide an example to show the non-equivalence between all and canonical elaborations.

Open questions:

- to prove or disprove the equivalence for singleton-valued robustness notions;
- to prove or disprove the equivalence for approximate robustness (Haimanko and Kajii, 2016).

