・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Dynamic Liquidity-Based Security Design

Emre Ozdenoren¹ Kathy Yuan² Shengxing Zhang³

 ^{1}LBS and CEPR, ^{2}LSE and CEPR, ^{3}LSE

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivation

- The determinants of liquidity in a dynamic economy
 - random productivity or endowment shocks
 - adverse selection
 - type of liquidity technology: optimal security design
- The amount of liquidity
 - repo contracts
 - haircuts, interest rates

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Motivation

- The determinants of liquidity in a dynamic economy
 - random productivity or endowment shocks
 - adverse selection
 - type of liquidity technology: optimal security design
- The amount of liquidity
 - repo contracts
 - haircuts, interest rates

うして ふゆう ふほう ふほう うらつ

Key Mechanism

- Adverse selection
 - Without collateral borrowers cannot commit to paying back.
 - Productive assets provide liquidity because they can be used as collateral but are subject to adverse selection.
- Inter-temporal feedback
 - Collateral value depends on the re-sale value of the asset.
 - Re-sale value itself depends on the collateral value of the asset.
 - Leads to fragility and volatility in asset price and real output.

ション ふゆ く 山 マ チャット しょうくしゃ

Key Mechanism

- Adverse selection
 - Without collateral borrowers cannot commit to paying back.
 - Productive assets provide liquidity because they can be used as collateral but are subject to adverse selection.
- Inter-temporal feedback
 - Collateral value depends on the re-sale value of the asset.
 - Re-sale value itself depends on the collateral value of the asset.
 - Leads to fragility and volatility in asset price and real output.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Main Results

• Equity contracts: Fragility and self-fulfilling

- Pooling equilibrium: more liquidity and output
- Separating equilibrium: less liquidity and output
- Multiple equilibria
- Security design: liquid repo-debt contract (under monotone payoff constraints)
 - Unique equilibrium: both high and low types issue repo-debt and debt is liquid; low type issues equity
 - Eliminates fragility and improves liquidity
 - Improves social welfare relative to the separating equilibrium under equity contract

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Main Results

- Equity contracts: Fragility and self-fulfilling
 - Pooling equilibrium: more liquidity and output
 - Separating equilibrium: less liquidity and output
 - Multiple equilibria
- Security design: liquid repo-debt contract (under monotone payoff constraints)
 - Unique equilibrium: both high and low types issue repo-debt and debt is liquid; low type issues equity
 - Eliminates fragility and improves liquidity
 - Improves social welfare relative to the separating equilibrium under equity contract

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Agent I: investor or supplier; Agent O: entrepreneur
- Agent O has a CRS z-technology which produces z > 1 units of <u>consumption</u> goods with one <u>intermediate</u> good (capital, equipment) from Agent I
- Agent I produces intermediate goods 1-to-1 from labor
- Both have a basic technology that produces <u>consumption</u> good 1-to-1 from labor
- Agent *O* would like to borrow unlimited amount of intermediate goods from agent *I*.
 - because returns to scale of z-technology is z > 1
- ... but agent O's promise to pay back is not enforceable

Introduction		Model	Equilibrium	Results

- Agent I: investor or supplier; Agent O: entrepreneur
- Agent O has a CRS z-technology which produces z > 1 units of <u>consumption</u> goods with one <u>intermediate</u> good (capital, equipment) from Agent I
- Agent I produces intermediate goods 1-to-1 from labor
- Both have a basic technology that produces <u>consumption</u> good 1-to-1 from labor
- Agent *O* would like to borrow unlimited amount of intermediate goods from agent *I*.
 - because returns to scale of z-technology is z > 1
- ... but agent O's promise to pay back is not enforceable

Introduction		Model	Equilibrium	Results

- Agent I: investor or supplier; Agent O: entrepreneur
- Agent O has a CRS z-technology which produces z > 1 units of <u>consumption</u> goods with one <u>intermediate</u> good (capital, equipment) from Agent I
- Agent I produces intermediate goods 1-to-1 from labor
- Both have a basic technology that produces <u>consumption</u> good 1-to-1 from labor
- Agent *O* would like to borrow unlimited amount of intermediate goods from agent *I*.
 - because returns to scale of z-technology is z > 1
- ... but agent O's promise to pay back is not enforceable

Introduction		Model	Equilibrium	Results

- Agent I: investor or supplier; Agent O: entrepreneur
- Agent O has a CRS z-technology which produces z > 1 units of <u>consumption</u> goods with one <u>intermediate</u> good (capital, equipment) from Agent I
- Agent I produces intermediate goods 1-to-1 from labor
- Both have a basic technology that produces <u>consumption</u> good 1-to-1 from labor
- Agent *O* would like to borrow unlimited amount of intermediate goods from agent *I*.
 - because returns to scale of z-technology is z > 1
- ... but agent O's promise to pay back is not enforceable

Introduction	Model	Equilibrium	Results
Utilities			

- Utility in period t is $U_t(x, l) = x l$
- x is the consumption good
- / is labor
- Discount rate between periods β , with $0 < \beta < 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Timing

• Three dates in each period.

• Date 1: Intermediate good is produced

- perishes at the end of the period
- no direct utility

• Date 2: Consumption good is produced

- via the productive or basic technology.
- Date 3: Consumption takes place.
 - Consumption good perishes at the end of the period.

Infroduction						
	Int	tro	di	icti	or	

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Timing

- Three dates in each period.
- Date 1: Intermediate good is produced
 - perishes at the end of the period
 - no direct utility
- Date 2: Consumption good is produced
 - via the productive or basic technology.
- Date 3: Consumption takes place.
 - Consumption good perishes at the end of the period.

Int	80	2		Ċ	÷ 1	0	
		vu	u	-		v	

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Timing

- Three dates in each period.
- Date 1: Intermediate good is produced
 - perishes at the end of the period
 - no direct utility
- Date 2: Consumption good is produced
 - via the productive or basic technology.
- Date 3: Consumption takes place.
 - Consumption good perishes at the end of the period.

Int	80	2		Ċ	÷ 1	0	
		vu	u	-		v	

Model

Equilibrium

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Timing

- Three dates in each period.
- Date 1: Intermediate good is produced
 - perishes at the end of the period
 - no direct utility
- Date 2: Consumption good is produced
 - via the productive or basic technology.
- Date 3: Consumption takes place.
 - Consumption good perishes at the end of the period.

Introduction	Model	Equilibrium	Results
Asset			

- Long lived asset pays *s* units of dividend as consumption good at date 3.
- Fixed supply of the asset is A.
- With prob. λ dividend distribution is F_L and 1λ it is F_H .

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

- $F_L, F_H \in \Delta[s_L, s_H], \ 0 \le s_L < s_H$
- F_H first order stochastically dominates F_L
- Quality $Q \in \{H, L\}$ is i.i.d. over time
- $\widetilde{F}_Q(s) = 1 F_Q(s)$ for $Q \in \{L, H\}$

Introduction	Model	Equilibrium	Results
Asset			

- Long lived asset pays *s* units of dividend as consumption good at date 3.
- Fixed supply of the asset is A.
- With prob. λ dividend distribution is F_L and 1λ it is F_H .

- $F_L, F_H \in \Delta[s_L, s_H], \ 0 \le s_L < s_H$
- F_H first order stochastically dominates F_L
- Quality $Q \in \{H, L\}$ is i.i.d. over time
- $\widetilde{F}_Q(s) = 1 F_Q(s)$ for $Q \in \{L, H\}$

Introduction	Model	Equilibrium	Results
Asset			

- Long lived asset pays *s* units of dividend as consumption good at date 3.
- Fixed supply of the asset is A.
- With prob. λ dividend distribution is F_L and 1λ it is F_H .

- $F_L, F_H \in \Delta[s_L, s_H], \ 0 \le s_L < s_H$
- F_H first order stochastically dominates F_L
- Quality $Q \in \{H, L\}$ is i.i.d. over time
- $\widetilde{F}_Q(s) = 1 F_Q(s)$ for $Q \in \{L, H\}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Collateral Asset and Adverse Selection

- Agent O uses the asset as collateral to borrow intermediate goods from agent I.
- Agent *O* privately observes asset quality *O* at the beginning of each period.
 - Adverse selection is within the period
 - Shown later, agent *O* purchases all collateral assets in equilibrium
 - Privately informed about the quality because of
 - opportunity to temper with quality
 - incentive to acquire private information

(ロ) (型) (E) (E) (E) (O)

Collateral Asset and Adverse Selection

- Agent O uses the asset as collateral to borrow intermediate goods from agent *I*.
- Agent *O* privately observes asset quality *O* at the beginning of each period.
 - Adverse selection is within the period
 - Shown later, agent *O* purchases all collateral assets in equilibrium
 - Privately informed about the quality because of
 - opportunity to temper with quality
 - incentive to acquire private information

ション ふゆ く 山 マ チャット しょうくしゃ

Trading Environment: Two Markets

$\bullet\,$ Markets for intermediate goods at date 1

- An agent O randomly meets at least two agent Is
- in decentralized market(s)
- intermediate goods are traded for asset-based securities
- i.e, borrowing against some forms of securities takes place
- Market for the collateral asset at date 3
 - After state is realized, asset price, ϕ_t , is determined
 - in a *centralized* market
 - ϕ_t = present value of all the future cash flows of the asset.

ション ふゆ く 山 マ チャット しょうくしゃ

Trading Environment: Two Markets

- $\bullet\,$ Markets for intermediate goods at date 1
 - An agent O randomly meets at least two agent Is
 - in decentralized market(s)
 - intermediate goods are traded for asset-based securities
 - i.e, borrowing against some forms of securities takes place
- Market for the collateral asset at date 3
 - After state is realized, asset price, ϕ_t , is determined
 - in a *centralized* market
 - ϕ_t = present value of all the future cash flows of the asset.

Introduction	Model	Equilibrium	Results
Timeline			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Security Design

- Security Design is conducted ex ante before types are realised.
- An asset-backed security $y^{j}(s)$ is a state-contingent promise of consumption goods at date 3.
- Two cases of interest:
 - Equity $y(s) = s + \phi_t, \forall s \in [s_L, s_H]$
 - Set of monotone securities $\mathscr{I}_t(\phi_t) = \{y : y(s) \text{ increasing in } s, y(s) \le s + \phi_t, \forall s \in [s_L, s_H] \}$

ション ふゆ く 山 マ チャット しょうくしゃ

Security Design

- Security Design is conducted ex ante before types are realised.
- An asset-backed security $y^{j}(s)$ is a state-contingent promise of consumption goods at date 3.
- Two cases of interest:
 - Equity $y(s) = s + \phi_t, \forall s \in [s_L, s_H]$
 - Set of monotone securities $\mathscr{I}_t(\phi_t) = \{y : y(s) \text{ increasing in } s, y(s) \le s + \phi_t, \forall s \in [s_L, s_H]\}$

ション ふゆ く 山 マ チャット しょうくしゃ

Security Design

- Security Design is conducted ex ante before types are realised.
- An asset-backed security $y^{j}(s)$ is a state-contingent promise of consumption goods at date 3.
- Two cases of interest:
 - Equity $y(s) = s + \phi_t, \forall s \in [s_L, s_H]$
 - Set of monotone securities $\mathscr{I}_t(\phi_t) = \{y : y(s) \text{ increasing in } s, y(s) \le s + \phi_t, \forall s \in [s_L, s_H]\}$

(日) (伊) (日) (日) (日) (0) (0)

Equilibrium in Security *j*'s Market

- Security trading occurs at date 1:
 - bilaterally between agent O and multiple agent Is
 - in dedicated sub-markets for each available security.
- Suppose agent I bids per-unit price q_t^j for security j.
- If highest bid, agent O offers him $a_t^Q(j)$ units of security j for $q_t^j a_t^Q(j)$ intermediate goods.
- In equilibrium, winning bid q_t^j
 - agent I: zero expected gain due to Bertrand Competition
 - IC for agent O: profitable for an informed O agent type

(日) (伊) (日) (日) (日) (0) (0)

Equilibrium in Security *j*'s Market

- Security trading occurs at date 1:
 - bilaterally between agent O and multiple agent Is
 - in dedicated sub-markets for each available security.
- Suppose agent I bids per-unit price q_t^j for security j.
- If highest bid, agent O offers him $a_t^Q(j)$ units of security j for $q_t^j a_t^Q(j)$ intermediate goods.
- In equilibrium, winning bid q_t^j
 - agent I: zero expected gain due to Bertrand Competition
 - IC for agent O: profitable for an informed O agent type

Equilibrium in Security *j*'s Market

- Security trading occurs at date 1:
 - bilaterally between agent O and multiple agent Is
 - in dedicated sub-markets for each available security.
- Suppose agent I bids per-unit price q_t^j for security j.
- If highest bid, agent O offers him $a_t^Q(j)$ units of security j for $q_t^j a_t^Q(j)$ intermediate goods.
- In equilibrium, winning bid q_t^j
 - agent I: zero expected gain due to Bertrand Competition
 - IC for agent O: profitable for an informed O agent type

Model

Equilibrium

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Equilibrium in Security *j*'s Market

• Adverse selection index: higher R_t^j , lower adverse selection

$$R_t^j \equiv \frac{E_L y_t^j}{E_H y_t^j}$$

• Expected value of security j when both O types participate

$$\overline{q}^{j} = \lambda E_{L} y_{t}^{j} + (1 - \lambda) E_{H} y_{t}^{j}$$

• High O type participates if adverse selection is low:

$$z\overline{q}^{j}-E_{H}y_{t}^{j}\gtrless$$
 0iff $R\gtrless \zeta$

where $\zeta\equiv 1-(z-1)/\lambda z$

Equilibrium

Results

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Equilibrium Price in Security *j*'s Market

Security Design: Objective

Before learning asset quality, agent O chooses security design $\mathscr{J}_t(\phi_t) \subseteq \mathscr{I}_t(\phi_t)$ to maximize

$$\begin{aligned} \mathcal{V}_{o,t}(a) &= \lambda \int \left(\sum_{j \in \mathscr{J}_t(\phi_t)} a_t^L(j) \left[z q_t^j - y_t^j(s) \right] \right) dF_L(s) \\ &+ (1 - \lambda) \int \left(\sum_{j \in \mathscr{J}_t(\phi_t)} a_t^H(j) \left[z q_t^j - y_t^j(s) \right] \right) dF_H(s) \\ &+ \int a(s + \phi_t) d \left[\lambda F_L(s) + (1 - \lambda) F_H(s) \right] \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction		Model	Equilibrium	Results
Security	Design:	Constraints		

- Each O type optimally chooses how much to supply:
 - Low type O agent always sells all since $E_L y_t^j(s) \leq E_H y_t^j(s)$

$$a_t^L(j) = a ext{ and } a_t^H(j) = \begin{cases} a & ext{if } R_t^j \ge \zeta \\ 0 & ext{if } R_t^j < \zeta \end{cases}$$

• The security design must be overall feasible

$$\sum_{j \in \mathscr{J}_t(\phi_t)} y_t^j(s) d\mu_{o,t} \le s + \phi_t$$

• Price is determined via Bertrand competition

$$q_t^j = \begin{cases} \lambda E_L y_t^j + (1 - \lambda) E_H y_t^j & \text{if } R_t^j \ge \zeta \\ E_L y_t^j & \text{if } R_t^j < \zeta \end{cases}$$

Introduction		Model	Equilibrium	Results
Security	Design:	Constraints		

- Each O type optimally chooses how much to supply:
 - Low type O agent always sells all since $E_L y_t^j(s) \le E_H y_t^j(s)$

$$a_t^L(j) = a ext{ and } a_t^H(j) = egin{cases} a & ext{if } R_t^j \geq \zeta \ 0 & ext{if } R_t^j < \zeta \end{cases}$$

• The security design must be overall feasible

$$\sum_{j\in\mathscr{J}_t(\phi_t)} y_t^j(s) d\mu_{o,t} \leq s + \phi_t$$

• Price is determined via Bertrand competition

$$q_t^j = egin{cases} \lambda E_L y_t^j + (1-\lambda) E_H y_t^j & ext{if } R_t^j \geq \zeta \ E_L y_t^j & ext{if } R_t^j < \zeta \end{cases}$$

Introduction		Model	Equilibrium	Results
Security	Design:	Constraints		

- Each O type optimally chooses how much to supply:
 - Low type O agent always sells all since $E_L y_t^j(s) \le E_H y_t^j(s)$

$$a_t^L(j) = a ext{ and } a_t^H(j) = egin{cases} a & ext{if } R_t^j \geq \zeta \ 0 & ext{if } R_t^j < \zeta \end{cases}$$

• The security design must be overall feasible

$$\sum_{j\in\mathscr{J}_t(\phi_t)} y_t^j(s) d\mu_{o,t} \leq s + \phi_t$$

• Price is determined via Bertrand competition

$$q_t^j = egin{cases} \lambda E_L y_t^j + (1-\lambda) E_H y_t^j & ext{if } R_t^j \geq \zeta \ E_L y_t^j & ext{if } R_t^j < \zeta \end{cases}$$

うして ふゆう ふほう ふほう うらつ

Dynamic Security Design Equilibrium

A stationary dynamic equilibrium consists of

- $\mathscr{J}_t(\phi_t)$ solves the security design problem
- security price q_t^j satisfies the submarket Bertrand competition
- asset price ϕ_t solves the Euler equation given by:

$$\phi_t = \beta \left[z \left(\sum_{j \in P_t} q_t^j + \lambda \sum_{j \in \mathscr{J}_t(\phi_t) \setminus P_t} q_t^j \right) + (1 - \lambda) \sum_{j \in \mathscr{J}_t(\phi_t) \setminus P_t} E_H y_t^j \right]$$

where $j \in P_t$ iff $R_t^j \ge \zeta$.

Benchmark: Dynamic Lemons Market

• Collateral asset is the only security: No security design

- security price depends on $\frac{E_L s + \phi_t}{E_H s + \phi_t} \gtrsim \zeta$:
 - Pooling: $q_t^P = \phi_t + \lambda E_L s + (1 \lambda) E_H s$
 - Separating: $q_t^S = \phi_t + E_L s$ otherwise.
- asset price depends on $\frac{E_L s + \phi_t}{E_H s + \phi_t} \stackrel{\geq}{=} \zeta$:
 - Pooling: $\phi^P = \beta z q_t^P = \frac{\beta z (\lambda E_L s + (1-\lambda) E_H s)}{1-\beta z}$

• Separating: $\phi^{S} = \beta \left[z\lambda q_{t}^{S} + (1-\lambda) \left(\phi^{S} + E_{H}s \right) \right] = \frac{\beta \left[\lambda zE_{L}s + (1-\lambda)E_{H}s \right]}{1-\beta (\lambda z+1-\lambda)}$ • $\phi^{P} > \phi^{S} > PV = \frac{\beta \left[\lambda E_{L}s + (1-\lambda)E_{H}s \right]}{1-\beta}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Benchmark: Dynamic Lemons Market

- Collateral asset is the only security: No security design
- security price depends on $\frac{E_L s + \phi_t}{E_H s + \phi_t} \stackrel{\geq}{=} \zeta$:
 - Pooling: $q_t^P = \phi_t + \lambda E_L s + (1 \lambda) E_H s$
 - Separating: $q_t^S = \phi_t + E_L s$ otherwise.
- asset price depends on $\frac{E_L s + \phi_t}{E_H s + \phi_t} \stackrel{\geq}{\equiv} \zeta :$ • Pooling: $\phi^P = \beta z q_t^P = \frac{\beta z (\lambda E_L s + (1-\lambda) E_H s)}{1-\beta z}$ • Separating: $\phi^S = \beta \left[z \lambda q_t^S + (1-\lambda) \left(\phi^S + E_H s \right) \right] = \frac{\beta [\lambda z E_L s + (1-\lambda) E_H s]}{1-\beta (\lambda z + 1-\lambda)}$ • $\phi^P > \phi^S > PV = \frac{\beta [\lambda E_L s + (1-\lambda) E_H s]}{1-\beta}$

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ → 圖 → の Q @

Benchmark: Dynamic Lemons Market

- Collateral asset is the only security: No security design
- security price depends on $\frac{E_L s + \phi_t}{E_H s + \phi_t} \stackrel{\geq}{=} \zeta$:
 - Pooling: $q_t^P = \phi_t + \lambda E_L s + (1 \lambda) E_H s$
 - Separating: $q_t^S = \phi_t + E_L s$ otherwise.
- asset price depends on $\frac{E_L s + \phi_t}{E_H s + \phi_t} \gtrless \zeta$: • Pooling: $\phi^P = \beta z q_t^P = \frac{\beta z (\lambda E_L s + (1-\lambda)E_H s)}{1-\beta z}$ • Separating: $\phi^S = \beta \left[z \lambda q_t^S + (1-\lambda) \left(\phi^S + E_H s \right) \right] = \frac{\beta [\lambda z E_L s + (1-\lambda)E_H s]}{1-\beta (\lambda z + 1-\lambda)}$ • $\phi^P > \phi^S > PV = \frac{\beta [\lambda E_L s + (1-\lambda)E_H s]}{1-\beta}$

- ロト - 4 目 - 4 目 - 4 目 - 9 9 9

うして ふゆう ふほう ふほう うらつ

Benchmark: Dynamic Lemons Market

- Collateral asset is the only security: No security design
- security price depends on $\frac{E_L s + \phi_t}{E_H s + \phi_t} \gtrsim \zeta$:
 - Pooling: $q_t^P = \phi_t + \lambda E_L s + (1 \lambda) E_H s$
 - Separating: $q_t^S = \phi_t + E_L s$ otherwise.
- asset price depends on $\frac{E_L s + \phi_t}{E_H s + \phi_t} \stackrel{\geq}{\underset{\scriptstyle =}{\underset{\scriptstyle =}{\underset{\scriptstyle =}{\atop}}} \zeta :$ Pooling: $\phi^P = \beta z q_t^P = \frac{\beta z (\lambda E_L s + (1 \lambda) E_H s)}{1 \beta z}$ Separating: $\phi^S = \beta \left[z \lambda q_t^S + (1 - \lambda) \left(\phi^S + E_H s \right) \right] = \frac{\beta [\lambda z E_L s + (1 - \lambda) E_H s]}{1 - \beta (\lambda z + 1 - \lambda)}$ • $\phi^P > \phi^S > PV = \frac{\beta [\lambda E_L s + (1 - \lambda) E_H s]}{1 - \beta}$

Fragility of Dynamic Lemons Market

• There can be multiple equilibria in a dynamic lemons market.

• Occurs when $\frac{E_L s + \phi^S}{E_H s + \phi^S} < \zeta \le \frac{E_L s + \phi^P}{E_H s + \phi^P}$.

- Plugging for ϕ_S and ϕ_P we obtain the condition for multiplicity as $\frac{\zeta - \beta}{1 - \beta} < \frac{E_L s}{E_{LS}} < \frac{\zeta - \beta \left[1 - (1 - \lambda) (z - 1)\right]}{1 - \beta \left[1 - (1 - \lambda) (z - 1)\right]}$
- Easy to see that for intermediate values of E_{LS}/E_{HS} both equilibria exist.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Fragility of Dynamic Lemons Market

• There can be multiple equilibria in a dynamic lemons market.

• Occurs when
$$\frac{E_L s + \phi^S}{E_H s + \phi^S} < \zeta \leq \frac{E_L s + \phi^P}{E_H s + \phi^P}$$
.

- Plugging for ϕ_S and ϕ_P we obtain the condition for multiplicity as $\frac{\zeta - \beta}{1 - \beta} < \frac{E_L s}{E_H s} < \frac{\zeta - \beta \left[1 - (1 - \lambda) \left(z - 1\right)\right]}{1 - \beta \left[1 - (1 - \lambda) \left(z - 1\right)\right]}$
- Easy to see that for intermediate values of E_{LS}/E_{HS} both equilibria exist.

Fragility of Dynamic Lemons Market

- There can be multiple equilibria in a dynamic lemons market.
- Occurs when $\frac{E_L s + \phi^S}{E_H s + \phi^S} < \zeta \leq \frac{E_L s + \phi^P}{E_H s + \phi^P}$.
- Plugging for ϕ_S and ϕ_P we obtain the condition for multiplicity as $\frac{\zeta - \beta}{1 - \beta} < \frac{E_L s}{E_H s} < \frac{\zeta - \beta \left[1 - (1 - \lambda)(z - 1)\right]}{1 - \beta \left[1 - (1 - \lambda)(z - 1)\right]}$
- Easy to see that for intermediate values of E_{LS}/E_{HS} both equilibria exist.

Fragility of Dynamic Lemons Market

- There can be multiple equilibria in a dynamic lemons market.
- Occurs when $\frac{E_L s + \phi^S}{E_H s + \phi^S} < \zeta \leq \frac{E_L s + \phi^P}{E_H s + \phi^P}$.
- Plugging for ϕ_S and ϕ_P we obtain the condition for multiplicity as $\frac{\zeta - \beta}{1 - \beta} < \frac{E_L s}{E_{LS}} < \frac{\zeta - \beta \left[1 - (1 - \lambda)(z - 1)\right]}{1 - \beta \left[1 - (1 - \lambda)(z - 1)\right]}$
- Easy to see that for intermediate values of E_{LS}/E_{HS} both equilibria exist.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Intuition for Dynamic Multiplicity

- There is a dynamic feedback loop.
- If agents anticipate the asset to be traded in a pooling eqm in the decentralized market, then price is high.
- In turn, when the price is high, the H-type O agent is willing to pool.
- If agents anticipate the asset to be traded in a separating eqm in the decentralized market, price is low.
- In turn, when the price is low, the H-type keeps the asset.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Intuition for Dynamic Multiplicity

- There is a dynamic feedback loop.
- If agents anticipate the asset to be traded in a pooling eqm in the decentralized market, then price is high.
- In turn, when the price is high, the H-type O agent is willing to pool.
- If agents anticipate the asset to be traded in a separating eqm in the decentralized market, price is low.
- In turn, when the price is low, the H-type keeps the asset.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Intuition for Dynamic Multiplicity

- There is a dynamic feedback loop.
- If agents anticipate the asset to be traded in a pooling eqm in the decentralized market, then price is high.
- In turn, when the price is high, the H-type O agent is willing to pool.
- If agents anticipate the asset to be traded in a separating eqm in the decentralized market, price is low.

• In turn, when the price is low, the H-type keeps the asset.

Intuition for Dynamic Multiplicity

- There is a dynamic feedback loop.
- If agents anticipate the asset to be traded in a pooling eqm in the decentralized market, then price is high.
- In turn, when the price is high, the H-type O agent is willing to pool.
- If agents anticipate the asset to be traded in a separating eqm in the decentralized market, price is low.
- In turn, when the price is low, the H-type keeps the asset.

- We call a security traded in a pooling equilibrium in the decentralized market a liquid security.
- First we show that Agent *O* is weakly better-off selling only one liquid security.
- This is because if two securities are both liquid, combination is also liquid and generates at least as much value for Agent O.
- Also if security design is optimal, the feasibility constraint is binding.
- W.l.o.g. can restrict attention to a liquid security y(s) and an illiquid one $s + \phi y(s)$.

- We call a security traded in a pooling equilibrium in the decentralized market a liquid security.
- First we show that Agent *O* is weakly better-off selling only one liquid security.
- This is because if two securities are both liquid, combination is also liquid and generates at least as much value for Agent O.
- Also if security design is optimal, the feasibility constraint is binding.
- W.l.o.g. can restrict attention to a liquid security y(s) and an illiquid one $s + \phi y(s)$.

- We call a security traded in a pooling equilibrium in the decentralized market a liquid security.
- First we show that Agent *O* is weakly better-off selling only one liquid security.
- This is because if two securities are both liquid, combination is also liquid and generates at least as much value for Agent O.
- Also if security design is optimal, the feasibility constraint is binding.
- W.l.o.g. can restrict attention to a liquid security y(s) and an illiquid one $s + \phi y(s)$.

- We call a security traded in a pooling equilibrium in the decentralized market a liquid security.
- First we show that Agent *O* is weakly better-off selling only one liquid security.
- This is because if two securities are both liquid, combination is also liquid and generates at least as much value for Agent O.
- Also if security design is optimal, the feasibility constraint is binding.
- W.l.o.g. can restrict attention to a liquid security y(s) and an illiquid one $s + \phi y(s)$.

- We call a security traded in a pooling equilibrium in the decentralized market a liquid security.
- First we show that Agent *O* is weakly better-off selling only one liquid security.
- This is because if two securities are both liquid, combination is also liquid and generates at least as much value for Agent O.
- Also if security design is optimal, the feasibility constraint is binding.
- W.I.o.g. can restrict attention to a liquid security y(s) and an illiquid one $s + \phi y(s)$.

Equilibrium

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Optimality of Debt

Proposition

Assume that $\frac{f_L(s)}{f_H(s)}$ is decreasing in *s*. The optimal security is a unique standard debt contract y_D such that

$$y_D(s) = \phi + \min(s, s^*),$$

for some $s^* \in (s_L, s_H)$.

Characterizing the Debt Contract

Proposition

Assume that
$$\frac{f_L(s)}{f_H(s)}$$
 is decreasing in s.

• If
$$\frac{E_L s}{E_H s} < 1 - \frac{z-1}{z} \frac{1}{\lambda(1-\beta)}$$
,
• ie, the separating region in the dynamic lemons market
• a unique equilibrium and non-trivial tranching with
 $D \in (s_L, s_H)$ and ϕ solve:
 $\phi = \frac{z}{z-1} \lambda \int_{s_L}^{D} \left[\widetilde{F}_H(s) - \widetilde{F}_L(s) \right] ds - \int_{s_L}^{D} \widetilde{F}_H(s) ds - s_L$ (1)
 $\phi = \frac{\beta}{1-\beta z} \left\{ z [\lambda E_L s + (1-\lambda) E_H s] - (1-\lambda)(z-1) \int_{D}^{s_H} \widetilde{F}_H(s) ds \right\}$
(2)

• Otherwise, a "pass-through security" that promises the entire value of the asset and replicates the pooling equilibrium in dynamic lemons market

•
$$D = s_H$$
 and $\phi = \frac{\beta}{1-\beta z} z [\lambda E_L s + (1-\lambda)E_H s]$. $\Rightarrow \quad e \Rightarrow \quad$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Discussions on Liquidity and Fragility

- We show that security design equilibrium Pareto dominates all equilibria of the case in dynamic lemons market
 - more liquidity, more real output and less fragility
 - even if only issue a "pass-through security" that mimics equity

 replicate the pooling

Model

Equilibrium

Results

Eliminates Low Liquidity Equilibrium

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Discussions on Fragility and Robustness

- Unravelling results when security design option is introduced.
 - Suppose low asset price,
 - tranche a small senior liquid debt, asset price ↑, which allows more liquid tranching D↑, which leads to asset price ↑, ... converges to optimal.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Repo Features

- Face value: $D + \phi$
- Repo rate: $\frac{D+\phi-q_D}{q_D}$
- Haircut: equity tranch, q_E

In	۲r	C	a		0	tı	0	n
		0	5	5	ļ			

(ロ) (型) (E) (E) (E) (O)

Conclusion

Optimal security design in a dynamic lemons market

- Unique equilibrium: both high and low types issue repo-debt and debt is liquid; low type issues equity
- Eliminates fragility and improves liquidity
- Improves social welfare relative to the separating equilibrium under equity contract
- Endogenous amplification of shocks to asset quality and productivity