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Preliminaries: Preferences

I = {1, . . . ,N}, N ≥ 2: A finite set of voters;

A = {a, b, c, . . . }, |A| ≥ 3: A finite set of alternatives;

Pi: A preference, i.e., a linear order over A;

rk(Pi): the kth ranked alternative in Pi;

D: The domain of preferences over A;

P ≡ (P1, . . . ,PN) ≡ (Pi,P−i) ∈ DN : A preference profile.

A domain D is minimally rich if for every a ∈ A, there exists Pi ∈ D
with r1(Pi) = a.

Definition
A Deterministic Social Choice Function (DSCF) is a map f : DN → A.
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Preliminaries: Random Social Choice Functions

Definition
A Random Social Choice Function (RSCF) is a map ϕ : DN → ∆(A).

Definition
An RSCF ϕ : DN → ∆(A) is unanimous if for all a ∈ A and P ∈ DN ,

[r1(Pi) = a for all i ∈ I]⇒ [ϕa(P) = 1].

Definition (Gibbard, 1977)
An RSCF ϕ : DN → ∆(A) is strategy-proof if for all i ∈ I; Pi,P′i ∈ D and
P−i ∈ DN−1, lottery ϕ(Pi,P−i) first-order stochastically dominates lottery ϕ(P′i ,P−i)
according to Pi, i.e.,

t∑
k=1

ϕrk(Pi)(Pi,P−i) ≥
t∑

k=1

ϕrk(Pi)(P′i ,P−i), t = 1, . . . , |A|.
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Random dictatorships

Definition
An RSCF ϕRD : DN → ∆(A) is a random dictatorship if there exists εi ≥ 0 for each
i ∈ I with

∑
i∈I εi = 1 such that for all P ∈ DN and a ∈ A, ϕRD

a (P) =
∑

i∈I:r1(Pi)=a εi.

A random dictatorship is unanimous and strategy-proof on any domains.

A random dictatorship never admits compromise.
For instance, let r1(P1) = a, r1(P2) = b and r2(P1) = r2(P2) = c.
However, ϕRD

c (P1,P2) = 0.

Escape random dictatorships: Chatterji, Sen and Zeng (2014)
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Top-separability

Assumption: Let A = ×s∈MAs where M is finite with |M| ≥ 2, and As is finite
with |As| ≥ 2 for all s ∈ M. We assume preferences satisfy Top-separability

[
r1(Pi) = (as)s∈M

]
⇒ [(as, z−s)Pi(bs, z−s) for all s ∈ M, bs 6= as and z−s ∈ A−s].

Definition
A domain is a multidimensional domain if all preferences are top-separable.

Every generalized dictatorship is strategy-proof if and only if all preferences
are top-separable. Random generalized dictatorships however do not
systematically admit compromise.
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Two examples strengthening top-separability
Definition (Le Breton and Sen, 2009)
A preference Pi is separable if there exists a (unique) marginal preference
[Pi]

s over As for each s ∈ M such that for all a, b ∈ A, we have[
as[Pi]

sbs and a−s = b−s]⇒ [aPib].

Definition (Barberà, Gul and Stacchetti, 1993)
For each s ∈ M, let all elements of As be located on a tree G(As). A
preference Pi is multidimensional single-peaked on the product of trees
×s∈MG(As) if for all distinct x, y ∈ A, we have [x ∈ 〈r1(Pi), y〉]⇒ [xPiy].
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The constrained compromise property

Definition
An RSCF ϕ : DN → ∆(A) satisfies the constrained compromise property
if there exists Î ⊆ I with |̂I| = N

2 if N is even and |̂I| = N+1
2 if N is odd, such that

given Pi,Pj ∈ D, we have[
r1(Pi) ≡ (xs, a−s) 6= (ys, a−s) ≡ r1(Pj) and
r2(Pi) = r2(Pj) ≡ (zs, a−s) where zs /∈ {xs, ys}

]
⇒
[
ϕ(zs,a−s)

( Pi

Î
,

Pj

I\Î

)
> 0
]
.

The constrained compromise property focuses on non-assemblable compromise
alternatives, and hence weakens the compromise property of Chatterji, Sen and
Zeng (2016).

Question
Suppose a multidimensional domain admits a unanimous, strategy-proof RSCF
which also satisfies the constrained compromise property: What can we infer about
the structure of such a domain?
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Adjacency

Let Γ(Pi,P′i) = {(a, b) ∈ A2|aPib and bP′ia}.
Grandmont (1978), Monjardet (2009), Sato (2013) and Cho (2016).

Pi P′i
a ↗ c c c c ↗ b
c a a ↗ b b c
d d ↗ b a ↗ d d
b b d d a a

P1
i P2

i P3
i P4

i P5
i P6

i

Preferences Pi and P′i are adjacent, denoted Pi ∼ P′i, if we have
Γ(Pi,P′i) = {(a, b)} for some a, b ∈ A.
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Adjacency+

After imposing top-separability, preferences P2
i and P5

i are excluded.

Pi P′i
a = (0, 0) ↗ c = (1, 0) c = (1, 0) ↗ b = (1, 1)
c = (1, 0) a = (0, 0) ↗ b = (1, 1) c = (1, 0)
d = (0, 1) ↗ b = (1, 1) a = (0, 0) ↗ d = (0, 1)
b = (1, 1) d = (0, 1) d = (0, 1) a = (0, 0)

P1
i P3

i P4
i P6

i

Besides adjacency (e.g., P3
i ∼ P4

i ), multiple local switchings occurs
simultaneously between P1

i and P3
i : Γ(P1

i ,P
3
i ) =

{
(a, c), (d, b)}.

Preferences Pi and P′i are adjacent+, denoted Pi ∼+ P′i, if we have
(i) Pi and P′i are separable preferences, and

(ii) Γ(Pi,P′i) =
{(

(as, z−s), (bs, z−s)
)}

z−s∈A−s for some s ∈ M, as, bs ∈ As.
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Path

A path {P1
i , . . . ,P

t
i} is a sequence of preferences such that Pk

i ∼ Pk+1
i or

Pk
i ∼+ Pk+1

i for all k = 1, . . . , t − 1.

Grandmont (1978): The notion of betweenness is stronger than a path as
it requires the inclusion of all preferences between two preferences.
Monjardet (2009), Sato (2013) and Cho (2016): Only adjacency.

We introduce some parsimony in the lengths of these paths via the notion
of a connected+ domain.

(Shurojit Chatterji) University of Rochester June 2018 10 / 29



Connectedness+

Definition (The Interior+ property)
Given Pi,P′i ∈ D with r1(Pi) = r1(P′i) ≡ a, there exists a path {Pk

i }
q
k=1 ⊆ D

connecting Pi and P′i such that r1(Pk
i ) = a, k = 1, . . . , q.

Definition (The Exterior+ property)
Given Pi,P′i ∈ D with r1(Pi) 6= r1(P′i), and a, b ∈ A with aPib and aP′ib, there exists
a path {Pk

i }
q
k=1 ⊆ D connecting Pi and P′i such that aPk

i b, k = 1, . . . , q. In particular,
when r1(Pi) ≡ (as, z−s) 6= (bs, z−s) ≡ r1(P′i), the path {Pk

i }
q
k=1 satisfies the

non-detour property, i.e., r1(Pk
i ) ∈ (As, z−s), k = 1, . . . , q.

A connected+ domain: A multidimensional domains satisfying the Interior+

Property and the Exterior+ Property.
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Connectedness+: Inclusions

The top-separable domain

The separable domain

The multidimensional single-peaked domain

The intersection of the separable domain and the multidimensional
single-peaked domain

The union of the separable domain and the multidimensional
single-peaked domain(s)
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Connectedness+: Exclusions

The complete domain (Gibbard, 1973)

The single-peaked domain (Moulin, 1980; Demange, 1982)

The single-dipped domain (Barberà, Berga and Moreno, 2012)

Single-crossing domains (Saporiti, 2009; Carroll, 2012)

The lexicographically separable domain (Chatterji, Roy and Sen, 2012)
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Characterization of multidimensional
single-peakedness

Theorem
Let D be a minimally rich and connected+ domain. If it admits a unanimous
and strategy-proof RSCF satisfying the constrained compromise property, it is
multidimensional single-peaked.
Conversely, a multidimensional single-peaked domain admits a unanimous
and strategy-proof RSCF satisfying the constrained compromise property.

Multidimensional domains were excluded by Chatterji, Sen and Zeng
(2016). Furthermore, we endogenize the tops-only property here and
work with a weaker notion of the compromise property.
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Deterministic Social Choice Functions

Theorem
Let domain D be minimally rich and connected+. If it admits a unanimous,
anonymous and strategy-proof DSCF, it is multidimensional single-peaked.

Generalize the results in Chatterji, Sanver and Sen (2013) and Chatterji and
Massó (2018): No restriction on the number of voters, endogenize the tops-only
property, and recover full single-peakedness.

Nehring and Puppe (2007), Bogomolnaia (1998).
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Elaboration: Necessity (con.)

For instance,
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Step 1 The constrained compromise property implies
ϕ
(
(a1, 1), (b1, 1)

)
= αe(a1,1) + (β − α)e(c1,1) + (1− β)e(b1,1), where 0 ≤ α < β ≤ 1.

Since (a1, 1) ∼+ (a1, 0), from profile
(
(a1, 1), (b1, 1)

)
to

(
(a1, 0), (b1, 1)

)
, strategy-proofness

implies ϕ(c1,1)
(
(a1, 0), (b1, 1)

)
+ ϕ(c1,0)

(
(a1, 0), (b1, 1)

)
= β − α.

Step 2 Since (a1, 0) ∼+ (b1, 0), unanimity and strategy-proofness imply
ϕ(a1,0)

(
(a1, 0), (b1, 0)

)
+ ϕ(b1,0)

(
(a1, 0), (b1, 0)

)
= 1.

Since (b1, 0) ∼+ (b1, 1), from profile
(
(a1, 0), (b1, 0)

)
to

(
(a1, 0), (b1, 1)

)
, strategy-proofness

implies ϕ(c1,1)
(
(a1, 0), (b1, 1)

)
+ ϕ(c1,0)

(
(a1, 0), (b1, 1)

)
= 0. A contradiction to tops-onlyness.
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Elaboration: Necessity (con.)

5. Every separable preference is multidimensional single-peaked on ×s∈MG(As):
A consequence of the constrained compromise property since each marginal
preference is driven to be single-peaked.

6. Every preference is multidimensional single-peaked on ×s∈MG(As):
A consequence of connectedness+.
Suppose that Pi is not multidimensional single-peaked, e.g.,
(xs, z−s) ∈

〈
r1(Pi), (ys, z−s)

〉
but (ys, z−s)Pi(xs, z−s).

Pi · · · Pk
i Pk+1

i · · · P′i
(as, a−s) (as, a−s) 6= b (ys, z−s)

...
...

...
...

(ys, z−s) (ys, z−s) · ·
...

...
...

...
(xs, z−s) (xs, z−s) · ·

...
...

...
...
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Elaboration: Sufficiency

1. Let I = {1, 2}. The multidimensional single-peaked domain DMSP.

r r r
r









(a1, 0) (d1, 0) (b1, 0)

(c1, 0)r r r
r









(a1, 1)
(d1, 1)

(b1, 1)

(c1, 1)

2. A projection rule:
Fix a threshold z ∈ A.
Given P1,P2 ∈ DMSP, assume r1(P1) = x and r1(P2) = y.
Then, f z(Pi,Pj) = π

(
z, 〈x, y〉

)
.
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Elaboration: Sufficiency (con.)

3. A mixed projection rule: a mixture of all projection rules
Let λz > 0 for all z ∈ A and

∑
z∈A λ

z = 1.

For all P1,P2 ∈ DMSP, ϕ(P1,P2) =
∑

z∈A λ
z f z(P1,P2).

4. A mixed projection rule is unanimous and strategy-proof, and satisfies
the constrained compromise property. Moreover, a mixed projection rule
also satisfies the compromise property of Chatterji, Sen and Zeng (2016).
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Indispensability of unanimity

Consider the top-separable domain DTS.
A two-voter point voting scheme ϕ : D2

TS → ∆(A) introduced by
Barberà (1979) is strategy-proof and satisfies the constrained
compromise property:

Fix (α1, α2, . . . , α|A|) ∈ R|A|+ such that α1 > 0, α2 > 0 and
∑|A|

k=1 αk = 1
2 .

Given Pi,Pj ∈ DTS, if a = rs(Pi) and a = rt(Pj), then ϕ(Pi,Pj) = αs + αt.
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Indispensability of strategy-proofness

Consider the top-separable domain DTS.

A two-voter DSCF f : D2
TS → A

f (Pi,Pj) =

{
a if r1(Pi) 6= r1(Pj) and r2(Pi) = r2(Pj) ≡ a;

r1(Pi) otherwise.

is unanimous and satisfies the constrained compromise property.
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Indispensability of the constrained compromise
property

Consider the top-separable domain DTS.

A generalized random dictatorship is unanimous and strategy-proof.
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Indispensability of top-separability

Let A = ×s∈MAs where |As| = 2 for all s ∈ M.

The complete domain satisfies the Interior+ and Exterior+ properties.

A random dictatorship is unanimous and strategy-proof, and satisfies the
constrained compromise property vacuously.
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Indispensability of minimal richness

Let A = A1 × A2, A1 = {0, 1, 2} and A2 = {0, 1}. Specify domain DMSP
on G(A1)× G(A2) below. Remove all preferences with peak (2, 0) or
(2, 1), i.e., let D̂ = {Pi ∈ DMSP|r1(Pi) 6= (2, 0) and r1(Pi) 6= (2, 1)}.
Add a new preference P̄i.

r rr r rr
(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)
P̄i

(0, 0)
(0, 1)
(1, 0)
(2, 0)
(2, 1)
(1, 1)

Domain D = D̂ ∪ {P̄i} is connected+ but never multidimensional
single-peaked.

A two-voter mixed projection rule associating positive weights to all
projectors other than (2, 0) and (2, 1) is unanimous and strategy-proof
and satisfies the constrained compromise property vacuously.
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Indispensability of paths in connectedness+

Let A = A1 × A2 × A3, A1 = {0, 1, 2} and A2 = A3 = {0, 1}. Specify domain DMSP on
G(A1)× G(A2)× G(A3) below. Moreover, add a new preference P̄i.
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r r r

r r r

r r r

r r r
(0, 0, 0) (1, 0, 0) (2, 0, 0)

(0, 1, 0) (1, 1, 0) (2, 1, 0)

(0, 0, 1) (1, 0, 1) (2, 0, 1)

(0, 1, 1) (1, 1, 1) (2, 1, 1) P̄i
(0, 0, 0)
(1, 0, 0)
(2, 0, 0)
(0, 1, 0)
(1, 1, 0)
(2, 1, 0)
(0, 0, 1)
(1, 0, 1)
(2, 0, 1)
(0, 1, 1)
(2, 1, 1)
(1, 1, 1)

Domain D = DMSP ∪ {P̄i} is minimally rich and top-separable, but never
multidimensional single-peaked.

Domain D satisfies the Interior+ property but violates the Exterior+ property since there
exists no path connecting P̄i and a preference with peak (2, 1, 1) along which (2, 1, 1)
always ranks above (1, 1, 1).

A two-voter mixed projection rule associating positive weight to every projector other
than (1, 1, 1) and (2, 1, 1) is unanimous and strategy-proof, and satisfies the constrained
compromise property.
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Why do we adopt randomization?

Theorem
Let domain D be minimally rich and connected+. If it admits a unanimous,
anonymous and strategy-proof DSCF, it is multidimensional single-peaked.

Generalize the results in Chatterji, Sanver and Sen (2013) and Chatterji and
Massó (2018): No restriction on the number of voters, endogenize the tops-only
property, and recover the full single-peakedness.

Elicit a product of tree ×s∈MG(As).
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r
r

(a1, 0)

(a1, 1)

(b1, 0)

(b1, 1)

(c1, 0)

(c1, 1)

Four cases:

f
(
(a1, 0), (b1, 1)

)
= (a1, 0).

f
(
(a1, 0), (b1, 1)

)
= (b1, 1).

f
(
(a1, 0), (b1, 1)

)
= (b1, 0).

f
(
(a1, 0), (b1, 1)

)
/∈ {(a1, 0), (b1, 1), (b1, 0)}.

Loosely speaking, all these four cases are covered
simultaneously in the random setting.
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Summary

Generalized random dictatorships and top-separability.

Connectedness+ and a characterization of multidimensional
single-peakedness in both random and deterministic settings.

The characterization of multidimensional single-peakedness remains
robust to the voting under constraints.
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Generalized random dictatorships

Assumption: Let A = ×s∈MAs where M is finite with |M| ≥ 2, and As is finite
with |As| ≥ 2 for all s ∈ M.

For each s ∈ M, a voter is ∈ I is fixed. A voter sequence: i ≡ (is)s∈M.

A generalized dictatorship: For instance, fix voter sequence (1, 2). Let
r1(P1) = (a1, a2) and r1(P2) = (b1, b2), we have f i(P1,P2) = (a1, b2).

Definition
An RSCF ϕGRD : DN → ∆(A) is a generalized random dictatorship if there
exists γ(i) ≥ 0 for each i ∈ IN with

∑
i∈IN γ(i) = 1 such that for all P ∈ DN ,

ϕGRD(P) =
∑

i∈IN
γ(i) f i(P)
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A GRD does not admit non-assemblable compromise

For instance, assume γ(i) > 0 for all i ∈ IN .

Let r1(P1) = (x1, x2), r1(P2) = (y1, y2) and r2(P1) = r2(P2) = (x1, y2).
Thus, the compromise alternative (x1, y2) can be assembled via voter
sequence (1, 2) at (P1,P2), i.e., f (1,2)(P1,P2) = (x1, y2).
Hence, ϕGRD

(x1,y2)
(P1,P2) > 0.

Let r1(P1) = (x1, a2), r1(P2) = (y1, a2) and r2(P1) = r2(P2) = (z1, a2).
Thus, the compromise alternative (z1, a2) is unable to be assembled via
any voter sequence at (P1,P2), i.e., f i(P1,P2) 6= (z1, a2) for all i ∈ I2.
Hence, ϕGRD

(z1,a2)
(P1,P2) = 0

(Shurojit Chatterji) University of Rochester June 2018 29 / 29



\{}begin{frame}{Elaboration: Necessity}\{}rm
\{}begin{enumerate} \{}item[1.] Two preferences disagreeing on peaks
are never adjacent: \{}\{}A consequence of top-separability.\{}medskip
\{}item[2.] Every unanimous and strategy-proof RSCF satisfies
\{}textbf{the tops-only property}: given $P, P’ \{}in \{}mathbb{D}ˆ{N}$,
\{}begin{center} $\{}big[r_{1}(P_{i}) = r_{1}(P_{i}’)\{}; \{}textrm{for all}\{};
i \{}in I\{}big] \{}Rightarrow [\{}varphi(P) = \{}varphi(P’)]$: \{}end{center}
A consequence of connectedness\{}textsuperscript{+}. \{}medskip
Degenerate $P_{i} \{}simˆ{+} P_{i}’$ with $r_{1}(P_{i})\{}equiv a \{}neq
b \{}equiv r_{1}(P_{i}’)$ to $a \{}simˆ{+} b$.\{}medskip
\{}item[3.] If $|Aˆs| = 2$ for all $s \{}in M$, top-separability implies
multidimensional single-peakedness immediately.\{}medskip
\{}item[4.] If $|Aˆs| > 2$ for some $s \{}in M$, we elicit a product of tree
$\{}times_{s \{}in M}G(Aˆ{s})$: A consequence of the constrained
compromise property.
\{}end{enumerate}
\{}end{frame}
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