Random Mechanism Design on Multidimensional Domains

Shurojit Chatterji¹ and Huaxia Zeng²

¹School of Economics, Singapore Management University

²School of Economics, Shanghai University of Finance and Economics

June 2018

- $I = \{1, \dots, N\}, N \ge 2$: A finite set of voters;
- $A = \{a, b, c, \dots\}, |A| \ge 3$: A finite set of alternatives;
- *P_i*: A preference, i.e., a linear order over *A*;
- $r_k(P_i)$: the *k*th ranked alternative in P_i ;
- D: The domain of preferences over *A*;
- $P \equiv (P_1, \dots, P_N) \equiv (P_i, P_{-i}) \in \mathbb{D}^N$: A preference profile.

A domain \mathbb{D} is **minimally rich** if for every $a \in A$, there exists $P_i \in \mathbb{D}$ with $r_1(P_i) = a$.

Definition

A Deterministic Social Choice Function (DSCF) is a map $f : \mathbb{D}^N \to A$.

• • • • • • • • • • • •

Preliminaries: Random Social Choice Functions

Definition

A Random Social Choice Function (RSCF) is a map $\varphi : \mathbb{D}^N \to \Delta(A)$.

Definition

An RSCF $\varphi : \mathbb{D}^N \to \Delta(A)$ is **unanimous** if for all $a \in A$ and $P \in \mathbb{D}^N$,

$$[r_1(P_i) = a \text{ for all } i \in I] \Rightarrow [\varphi_a(P) = 1].$$

Definition (Gibbard, 1977)

An RSCF $\varphi : \mathbb{D}^N \to \Delta(A)$ is **strategy-proof** if for all $i \in I$; $P_i, P'_i \in \mathbb{D}$ and $P_{-i} \in \mathbb{D}^{N-1}$, lottery $\varphi(P_i, P_{-i})$ first-order stochastically dominates lottery $\varphi(P'_i, P_{-i})$ according to P_i , i.e.,

$$\sum_{k=1}^{t} \varphi_{r_k(P_i)}(P_i, P_{-i}) \ge \sum_{k=1}^{t} \varphi_{r_k(P_i)}(P'_i, P_{-i}), \quad t = 1, \dots, |A|.$$

(Shurojit Chatterji)

Definition

An RSCF φ^{RD} : $\mathbb{D}^N \to \Delta(A)$ is a **random dictatorship** if there exists $\varepsilon_i \ge 0$ for each $i \in I$ with $\sum_{i \in I} \varepsilon_i = 1$ such that for all $P \in \mathbb{D}^N$ and $a \in A$, $\varphi_a^{RD}(P) = \sum_{i \in I: r_1(P_i) = a} \varepsilon_i$.

- A random dictatorship is unanimous and strategy-proof on any domains.
- A random dictatorship *never* admits compromise. For instance, let $r_1(P_1) = a$, $r_1(P_2) = b$ and $r_2(P_1) = r_2(P_2) = c$. However, $\varphi_c^{RD}(P_1, P_2) = 0$.
- Escape random dictatorships: Chatterji, Sen and Zeng (2014)

Top-separability

Assumption: Let $A = \times_{s \in M} A^s$ where *M* is finite with $|M| \ge 2$, and A^s is finite with $|A^s| \ge 2$ for all $s \in M$. We assume preferences satisfy **Top-separability**

$$[r_1(P_i) = (a^s)_{s \in M}] \Rightarrow [(a^s, z^{-s})P_i(b^s, z^{-s}) \text{ for all } s \in M, b^s \neq a^s \text{ and } z^{-s} \in A^{-s}].$$

Definition

A domain is a **multidimensional domain** if all preferences are top-separable.

Every generalized dictatorship is strategy-proof if and only if all preferences are top-separable. Random generalized dictatorships however do not systematically admit compromise.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two examples strengthening top-separability

Definition (Le Breton and Sen, 2009)

A preference P_i is **separable** if there exists a (unique) marginal preference $[P_i]^s$ over A^s for each $s \in M$ such that for all $a, b \in A$, we have

$$[a^s[P_i]^s b^s \text{ and } a^{-s} = b^{-s}] \Rightarrow [aP_ib].$$

Definition (Barberà, Gul and Stacchetti, 1993)

For each $s \in M$, let all elements of A^s be located on a tree $G(A^s)$. A preference P_i is **multidimensional single-peaked** on the product of trees $\times_{s \in M} G(A^s)$ if for all distinct $x, y \in A$, we have $[x \in \langle r_1(P_i), y \rangle] \Rightarrow [xP_iy]$.

The constrained compromise property

Definition

An RSCF $\varphi : \mathbb{D}^N \to \Delta(A)$ satisfies **the constrained compromise property** if there exists $\hat{I} \subseteq I$ with $|\hat{I}| = \frac{N}{2}$ if *N* is even and $|\hat{I}| = \frac{N+1}{2}$ if *N* is odd, such that given $P_i, P_j \in \mathbb{D}$, we have

$$r_1(P_i) \equiv (x^s, a^{-s}) \neq (y^s, a^{-s}) \equiv r_1(P_j) \text{ and } r_2(P_i) = r_2(P_j) \equiv (z^s, a^{-s}) \text{ where } z^s \notin \{x^s, y^s\} \ \left] \Rightarrow \left[\varphi_{(z^s, a^{-s})}\left(\frac{P_i}{\hat{l}}, \frac{P_j}{\hat{l} \setminus \hat{l}}\right) > 0\right].$$

• The constrained compromise property focuses on non-assemblable compromise alternatives, and hence weakens the compromise property of Chatterji, Sen and Zeng (2016).

Question

Suppose a multidimensional domain admits a unanimous, strategy-proof RSCF which also satisfies the constrained compromise property: What can we infer about the structure of such a domain?

(Shurojit Chatterji)

Adjacency

- Let $\Gamma(P_i, P'_i) = \{(a, b) \in A^2 | aP_i b \text{ and } bP'_i a\}.$
- Grandmont (1978), Monjardet (2009), Sato (2013) and Cho (2016).

• Preferences P_i and P'_i are **adjacent**, denoted $P_i \sim P'_i$, if we have $\Gamma(P_i, P'_i) = \{(a, b)\}$ for some $a, b \in A$.

Adjacency⁺

• After imposing top-separability, preferences P_i^2 and P_i^5 are excluded.

- Besides adjacency (e.g., $P_i^3 \sim P_i^4$), multiple local switchings occurs simultaneously between P_i^1 and P_i^3 : $\Gamma(P_i^1, P_i^3) = \{(a, c), (d, b)\}$.
- Preferences P_i and P'_i are **adjacent**⁺, denoted $P_i \sim^+ P'_i$, if we have
 - (i) P_i and P'_i are separable preferences, and

(ii)
$$\Gamma(P_i, P'_i) = \{((a^s, z^{-s}), (b^s, z^{-s}))\}_{z^{-s} \in A^{-s}} \text{ for some } s \in M, a^s, b^s \in A^s.$$

- A path $\{P_i^1, \ldots, P_i^t\}$ is a sequence of preferences such that $P_i^k \sim P_i^{k+1}$ or $P_i^k \sim^+ P_i^{k+1}$ for all $k = 1, \ldots, t-1$.
- Grandmont (1978): The notion of betweenness is stronger than a path as it requires the inclusion of all preferences between two preferences. Monjardet (2009), Sato (2013) and Cho (2016): Only adjacency.
- We introduce some parsimony in the lengths of these paths via the notion of a **connected⁺ domain**.

Definition (The Interior⁺ property)

Given $P_i, P'_i \in \mathbb{D}$ with $r_1(P_i) = r_1(P'_i) \equiv a$, there exists a path $\{P^k_i\}_{k=1}^q \subseteq \mathbb{D}$ connecting P_i and P'_i such that $r_1(P^k_i) = a, k = 1, ..., q$.

Definition (The Exterior⁺ property)

Given $P_i, P'_i \in \mathbb{D}$ with $r_1(P_i) \neq r_1(P'_i)$, and $a, b \in A$ with aP_ib and aP'_ib , there exists a path $\{P_i^k\}_{k=1}^q \subseteq \mathbb{D}$ connecting P_i and P'_i such that $aP_i^k b, k = 1, \ldots, q$. In particular, when $r_1(P_i) \equiv (a^s, z^{-s}) \neq (b^s, z^{-s}) \equiv r_1(P'_i)$, the path $\{P_i^k\}_{k=1}^q$ satisfies the **non-detour property**, i.e., $r_1(P_i^k) \in (A^s, z^{-s}), k = 1, \ldots, q$.

A **connected**⁺ **domain**: A multidimensional domains satisfying the Interior⁺ Property and the Exterior⁺ Property.

- The top-separable domain
- The separable domain
- The multidimensional single-peaked domain
- The intersection of the separable domain and the multidimensional single-peaked domain
- The union of the separable domain and the multidimensional single-peaked domain(s)

- The complete domain (Gibbard, 1973)
- The single-peaked domain (Moulin, 1980; Demange, 1982)
- The single-dipped domain (Barberà, Berga and Moreno, 2012)
- Single-crossing domains (Saporiti, 2009; Carroll, 2012)
- The lexicographically separable domain (Chatterji, Roy and Sen, 2012)

Characterization of multidimensional single-peakedness

Theorem

Let \mathbb{D} be a minimally rich and connected⁺ domain. If it admits a unanimous and strategy-proof RSCF satisfying the constrained compromise property, it is multidimensional single-peaked.

Conversely, a multidimensional single-peaked domain admits a unanimous and strategy-proof RSCF satisfying the constrained compromise property.

• Multidimensional domains were excluded by Chatterji, Sen and Zeng (2016). Furthermore, we endogenize the tops-only property here and work with a weaker notion of the compromise property.

∃ > <</p>

Theorem

Let domain \mathbb{D} be minimally rich and connected⁺. If it admits a unanimous, anonymous and strategy-proof DSCF, it is multidimensional single-peaked.

- Generalize the results in Chatterji, Sanver and Sen (2013) and Chatterji and Massó (2018): No restriction on the number of voters, endogenize the tops-only property, and recover full single-peakedness.
- Nehring and Puppe (2007), Bogomolnaia (1998).

Elaboration: Necessity (con.)

For instance,

Step 1 The constrained compromise property implies $\varphi((a^1, 1), (b^1, 1)) = \alpha e_{(a^1, 1)} + (\beta - \alpha) e_{(c^1, 1)} + (1 - \beta) e_{(b^1, 1)}$, where $0 \le \alpha < \beta \le 1$.

Since $(a^1, 1) \sim^+ (a^1, 0)$, from profile $((a^1, 1), (b^1, 1))$ to $((a^1, 0), (b^1, 1))$, strategy-proofness implies $\varphi_{(c^1, 1)}((a^1, 0), (b^1, 1)) + \varphi_{(c^1, 0)}((a^1, 0), (b^1, 1)) = \beta - \alpha$.

Step 2 Since $(a^1, 0) \sim^+ (b^1, 0)$, unanimity and strategy-proofness imply $\varphi_{(a^1, 0)}((a^1, 0), (b^1, 0)) + \varphi_{(b^1, 0)}((a^1, 0), (b^1, 0)) = 1.$

Since $(b^1, 0) \sim^+ (b^1, 1)$, from profile $((a^1, 0), (b^1, 0))$ to $((a^1, 0), (b^1, 1))$, strategy-proofness implies $\varphi_{(c^1, 1)}((a^1, 0), (b^1, 1)) + \varphi_{(c^1, 0)}((a^1, 0), (b^1, 1)) = 0$. A contradiction to tops-onlyness.

Elaboration: Necessity (con.)

- 5. Every separable preference is multidimensional single-peaked on $\times_{s \in M} G(A^s)$: A consequence of the constrained compromise property since each marginal preference is driven to be single-peaked.
- 6. Every preference is multidimensional single-peaked on $\times_{s \in M} G(A^s)$: A consequence of connectedness⁺.

Suppose that P_i is not multidimensional single-peaked, e.g., $(x^s, z^{-s}) \in \langle r_1(P_i), (y^s, z^{-s}) \rangle$ but $(y^s, z^{-s})P_i(x^s, z^{-s})$.

1. Let $I = \{1, 2\}$. The multidimensional single-peaked domain \mathbb{D}_{MSP} .

2. A projection rule: Fix a *threshold* $z \in A$. Given $P_1, P_2 \in \mathbb{D}_{MSP}$, assume $r_1(P_1) = x$ and $r_1(P_2) = y$. Then, $f^z(P_i, P_j) = \pi(z, \langle x, y \rangle)$. 3. A mixed projection rule: a mixture of all projection rules Let $\lambda^z > 0$ for all $z \in A$ and $\sum_{z \in A} \lambda^z = 1$.

For all $P_1, P_2 \in \mathbb{D}_{MSP}$, $\varphi(P_1, P_2) = \sum_{z \in A} \lambda^z f^z(P_1, P_2)$.

4. A mixed projection rule is unanimous and strategy-proof, and satisfies the constrained compromise property. Moreover, a mixed projection rule also satisfies the compromise property of Chatterji, Sen and Zeng (2016).

- Consider the top-separable domain \mathbb{D}_{TS} .
- A two-voter *point voting scheme* φ : D²_{TS} → Δ(A) introduced by Barberà (1979) is strategy-proof and satisfies the constrained compromise property:
 - Fix $(\alpha_1, \alpha_2, \dots, \alpha_{|A|}) \in \mathbb{R}^{|A|}_+$ such that $\alpha_1 > 0$, $\alpha_2 > 0$ and $\sum_{k=1}^{|A|} \alpha_k = \frac{1}{2}$.
 - Given $P_i, P_j \in \mathbb{D}_{TS}$, if $a = r_s(P_i)$ and $a = r_t(P_j)$, then $\varphi(P_i, P_j) = \alpha_s + \alpha_t$.

- Consider the top-separable domain \mathbb{D}_{TS} .
- A two-voter DSCF $f : \mathbb{D}^2_{TS} \to A$

$$f(P_i, P_j) = \begin{cases} a & \text{if } r_1(P_i) \neq r_1(P_j) \text{ and } r_2(P_i) = r_2(P_j) \equiv a; \\ r_1(P_i) & \text{otherwise.} \end{cases}$$

is unanimous and satisfies the constrained compromise property.

Indispensability of the constrained compromise property

- Consider the top-separable domain \mathbb{D}_{TS} .
- A generalized random dictatorship is unanimous and strategy-proof.

- Let $A = \times_{s \in M} A^s$ where $|A^s| = 2$ for all $s \in M$.
- The complete domain satisfies the Interior⁺ and Exterior⁺ properties.
- A random dictatorship is unanimous and strategy-proof, and satisfies the constrained compromise property *vacuously*.

Indispensability of minimal richness

• Let $A = A^1 \times A^2$, $A^1 = \{0, 1, 2\}$ and $A^2 = \{0, 1\}$. Specify domain \mathbb{D}_{MSP} on $G(A^1) \times G(A^2)$ below. Remove all preferences with peak (2, 0) or (2, 1), i.e., let $\hat{\mathbb{D}} = \{P_i \in \mathbb{D}_{MSP} | r_1(P_i) \neq (2, 0) \text{ and } r_1(P_i) \neq (2, 1)\}$. Add a new preference \bar{P}_i .

- Domain D = D̂ ∪ {P̄_i} is connected⁺ but never multidimensional single-peaked.
- A two-voter mixed projection rule associating positive weights to all projectors other than (2,0) and (2,1) is unanimous and strategy-proof and satisfies the constrained compromise property *vacuously*.

Indispensability of paths in connectedness⁺

• Let $A = A^1 \times A^2 \times A^3$, $A^1 = \{0, 1, 2\}$ and $A^2 = A^3 = \{0, 1\}$. Specify domain \mathbb{D}_{MSP} on $G(A^1) \times G(A^2) \times G(A^3)$ below. Moreover, add a new preference \overline{P}_i .

Domain D = D_{MSP} ∪ {P_i} is minimally rich and top-separable, but never multidimensional single-peaked.

- Domain \mathbb{D} satisfies the Interior⁺ property but violates the Exterior⁺ property since there exists no path connecting \overline{P}_i and a preference with peak (2, 1, 1) along which (2, 1, 1) always ranks above (1, 1, 1).
- A two-voter mixed projection rule associating positive weight to every projector other than (1, 1, 1) and (2, 1, 1) is unanimous and strategy-proof, and satisfies the constrained compromise property.

Why do we adopt randomization?

Theorem

Let domain \mathbb{D} be minimally rich and connected⁺. If it admits a unanimous, anonymous and strategy-proof DSCF, it is multidimensional single-peaked.

イロト イポト イヨト イヨ

Theorem

Let domain \mathbb{D} be minimally rich and connected⁺. If it admits a unanimous, anonymous and strategy-proof DSCF, it is multidimensional single-peaked.

- Generalize the results in Chatterji, Sanver and Sen (2013) and Chatterji and Massó (2018): No restriction on the number of voters, endogenize the tops-only property, and recover the full single-peakedness.
- Elicit a product of tree $\times_{s \in M} G(A^s)$.

Four cases:

$$f((a^{1},0),(b^{1},1)) = (a^{1},0).$$

$$f((a^{1},0),(b^{1},1)) = (b^{1},1).$$

$$f((a^{1},0),(b^{1},1)) = (b^{1},0).$$

$$f((a^{1},0),(b^{1},1)) \notin \{(a^{1},0),(b^{1},1),(b^{1},0)\}$$

• Loosely speaking, all these four cases are covered *simultaneously* in the random setting.

• • • • • • • • • • • • •

- Generalized random dictatorships and top-separability.
- Connectedness⁺ and a characterization of multidimensional single-peakedness in both random and deterministic settings.
- The characterization of multidimensional single-peakedness remains robust to the voting under constraints.

Generalized random dictatorships

Assumption: Let $A = \times_{s \in M} A^s$ where *M* is finite with $|M| \ge 2$, and A^s is finite with $|A^s| \ge 2$ for all $s \in M$.

- For each $s \in M$, a voter $i^s \in I$ is fixed. A voter sequence: $\underline{i} \equiv (i^s)_{s \in M}$.
- A generalized dictatorship: For instance, fix voter sequence (1, 2). Let $r_1(P_1) = (a^1, a^2)$ and $r_1(P_2) = (b^1, b^2)$, we have $f^{\underline{i}}(P_1, P_2) = (a^1, b^2)$.

Definition

An RSCF φ^{GRD} : $\mathbb{D}^N \to \Delta(A)$ is a **generalized random dictatorship** if there exists $\gamma(\underline{i}) \ge 0$ for each $\underline{i} \in I^N$ with $\sum_{i \in I^N} \gamma(\underline{i}) = 1$ such that for all $P \in \mathbb{D}^N$,

$$\varphi^{GRD}(P) = \sum\nolimits_{\underline{i} \in I^N} \gamma(\underline{i}) f^{\underline{i}}(P)$$

イロト イ団ト イヨト イヨト

A GRD does not admit non-assemblable compromise

- For instance, assume $\gamma(\underline{i}) > 0$ for all $\underline{i} \in I^N$.
- Let $r_1(P_1) = (x^1, x^2)$, $r_1(P_2) = (y^1, y^2)$ and $r_2(P_1) = r_2(P_2) = (x^1, y^2)$. Thus, the compromise alternative (x^1, y^2) can be assembled via voter sequence (1, 2) at (P_1, P_2) , i.e., $f^{(1,2)}(P_1, P_2) = (x^1, y^2)$. Hence, $\varphi_{(x^1, y^2)}^{GRD}(P_1, P_2) > 0$.
- Let $r_1(P_1) = (x^1, a^2)$, $r_1(P_2) = (y^1, a^2)$ and $r_2(P_1) = r_2(P_2) = (z^1, a^2)$. Thus, the compromise alternative (z^1, a^2) is unable to be assembled via any voter sequence at (P_1, P_2) , i.e., $f^{\underline{i}}(P_1, P_2) \neq (z^1, a^2)$ for all $\underline{i} \in I^2$. Hence, $\varphi_{(z^1, a^2)}^{GRD}(P_1, P_2) = 0$

・ 何 ト ・ ヨ ト ・ ヨ

\{}begin{frame}{Elaboration: Necessity}\{}rm \{}begin{enumerate} \{}item[1.] Two preferences disagreeing on peaks are never adjacent: \{}\{}A consequence of top-separability.\{}medskip \{}item[2.] Every unanimous and strategy-proof RSCF satisfies \{}textbf{the tops-only property}: given \$P, P' \{}in \{}mathbb{D}^{N}\$, $\{begin{center} \ i\} = r \{1\} (P \{i\}) = r \{1\} (P \{i\}) \}$ $i \in I \in \mathbb{R}$ A consequence of connectedness \{ \textsuperscript {+}. \{ \medskip Degenerate $P \{i\} \setminus P \{i\}$ with $r \{1\}(P \{i\}) \setminus equiv a \}$ b \{}equiv r {1}(P {i}')\$ to \$a \{}sim^{+} b\$.\{}medskip $\{1, 1, 1, 1\}$ item[3.] If $A^s = 2$ for all $s \in \mathbb{N}$ top-separability implies multidimensional single-peakedness immediately.\{}medskip $\{1 \in [4,] | f | A^s| > 2 \$ for some $s \in M$, we elicit a product of tree \$\{}times {s \{}in M}G(A^{s})\$: A consequence of the constrained compromise property. \{}end{enumerate} \{}end{frame}

イロン イ理 とくほ とくほ とう