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Comparative Statics

Comparative statics is one of the most important methodologies

in Economics.

Parameter ⇒ Optimal Solution or Equilibrium

e.g) Wealth ⇒ Consumption

Cost ⇒ Production in Cournot

Risk aversion ⇒ Portfolio

Classical approach often appeals to implicit function theorem.
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Monotone Comparative Statics

Monotone comparative statics (MCS) is an approach that utilizes

the order structure of the game in which whenever a parameter

increases, the set of equilibria also increases.

• No concavity or differentiability is needed.

• Single-crossing / supermodularity (or strategic complemen-

tarity) play a big role.

Our goal is to enlarge the applicability of MCS.
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Example: Carlson and van Damme (1993)

Player 2
Invest Not Invest

Player 1 Invest θ, θ θ − 1,0
Not Invest 0, θ − 1 0,0

where θ ∈ R is the investment’s profitability.

• θ > 1⇒ each player has a dominant strategy to invest.

• θ ∈ [0,1]⇒ two pure strategy NE

• θ < 0⇒ each player has a dominant strategy not to invest.
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Example: Carlson and van Damme (1993) Cont.

Suppose θ is common knowledge. As θ increases, the set of

equilibrium investment levels increase. Hence, MCS holds.

Milgrom and Shannon (1994) derive a necessary and sufficient

condition for MCS to hold. It is the single-crossing condition.

But, what if there is incomplete information about θ?
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Example: Global Games

We use the same investment game but now assume the following:

• Each player i observes si ∈ R as a noisy signal about θ.

• There is a common prior on (θ, s1, s2).

• i’s posterior over (θ, s−i) upon observing si is derived via

Bayesian updating.

This is the setup often used in global games.
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MCS under Incomplete Information about θ

Athey (2002) extends Milgrom and Shannon (1994):

Suppose the common prior on (θ, s) exhibits affiliation. Then,
as si increases, i’s equilibrium investment level increases.

To enlarge the applicability of MCS, we dispense with the as-
sumptions Athey made.

• One-dimensional signal structure

• Common prior

• Bayesian updating
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What This Paper Does

We introduce an order on types: t
′
i is higher than ti in the sense of

common certainty of optimism (CCO) if t
′
i is more optimistic

that the news is good than ti; t
′
i is more optimistic that all are

optimistic that the news is good than ti, and so on ad infinitum.

• Sufficiency: If t
′
i is higher than ti in the CCO order, t

′
i takes

a higher action than ti in any supermodular game.

• Necessity: There is a supermodular game in which t
′
i is

“not” higher than ti in the CCO order ⇒ t
′
i does “not” take

a higher action than ti. This is our main theoretical con-

tribution.
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Lattice

Given a set X and a partial order ≥: ∀x, y ∈ X, x ∨ y = inf{z ∈
X| z ≥ x, z ≥ y} (join) and x ∧ y = sup{z ∈ X| z ≤ x, z ≤ y}
(meet).

For Y ⊆ X, let
∨
Y ∈ X denote the least upper bound (“join”)

of Y , and
∧
Y ∈ X denote the greatest lower bound (“meet”) of

Y .

A lattice is a set X together with a partial order ≥ on X such

that the set is closed under meet and join operations.

A lattice (X,≥) is complete if every subset of X has a meet and

a join.
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Complete Info Supermodular Games

g = 〈I,
∏
i∈I Ai,Θ, (ui)i∈I〉 denotes a supermodular game where

(i) I = {1, . . . , I}: Set of Players;

(ii) Ai: i’s action space; complete metric lattice;

(iii) Θ: a Polish parameter space; complete lattice;

(iv) ui : A×Θ→ R: i’s payoff function.
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Complete Info Supermodular Games Cont.

(v) ui(·) is supermodular on Ai: ∀θ, a−i, ai, a
′
i,

ui(ai ∨ a
′
i, a−i; θ) + ui(ai ∧ a

′
i, a−i; θ) ≥ ui(ai, a−i; θ) + ui(a

′
i, a−i; θ).

and

(vi) ui(·) has increasing differences in both (ai, a−i) and (ai, θ):

∀ai, a′i ∈ Ai, a−i, a
′
−i ∈ A−i, and θ, θ

′ ∈ Θ, whenever (a−i, θ) ≥
(a′−i, θ

′), it follows that

ui((a; θ) ∨ (a′; θ′)) + ui((a; θ) ∧ (a′; θ′)) ≥ ui(a; θ) + ui(a
′; θ′).
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Incomplete Information Supermodular Games

(Ti,Ti, πi)i∈I is a type space where

• Ti: i’s set of types;

• Ti: a sigma-algebra over Ti; and

• πi : Ti →∆(Θ× T−i): i’s Ti-measurable belief map.

G = (g, (Ti), (Ti), (πi))i∈I now describes an incomplete-information

supermodular game.
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Belief Hierarchies induced by type ti

h1(ti) ∈ Z1
i = ∆(Θ): the set of player i’s first-order beliefs;

h2(ti) ∈ Z1
i = ∆(Θ× Z1

−i): the set of i’s second-order beliefs;

...

hk(ti) ∈ Zki = ∆(Θ × Z1
−i × · · · × Zk−1

−i ): i’s kth-order beliefs

where k ≥ 2.

...

Finally, Z∞i =
∏∞
k=1Z

k
i : the set of i’s all coherent infinite belief

hierarchies.
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First-Order Stochastic Dominance (FOSD)

Let X be a Polish space endowed with a closed partial order �.

A closed subset Y ⊆ X is an upper event of X if, ∀y, z ∈ X,

[y ∈ Y and z � y]⇒ z ∈ Y .

Let U(X) denote the set of all upper events of X.

Definition: Let β, β
′ ∈ ∆(X). β

′
(first-order) stochastically

dominates β (denoted β
′ �SD β) if β

′
(Y ) ≥ β(Y ) for any Y ∈

U(X).
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Common Certainty of Optimism (CCO)

Suppose that (i) t
′
i is more optimistic about Θ than ti; (ii) t

′
i is

more optimistic about the optimism of other players about Θ;

(iii) t
′
i is more optimistic about the optimism about the optimism

of other players about Θ than ti; and so on ad infinitum.

In such a case, we say that t
′
i is at least high as ti in the order of

common certainty of optimism and we denote it by t
′
i �CCO ti.

Formally:

Definition: t
′
i �CCO ti if hk(t

′
i) �SD hk(ti) for each k ∈ N.
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Bayesian Nash Equilibrium (BNE)

Fix G = (g, (Ti), (Ti), (πi))i∈I. σi : Ti → Ai denotes i’s Ti-

measurable pure strategy.

Definition: A strategy profile σ∗ is a (pure-strategy) Bayesian

Nash equilibrium if, for each i ∈ I, ti ∈ Ti, and ai ∈ Ai,∫
Θ×T−i

{
ui(σ

∗
i (ti), σ

∗
−i(t−i), θ)− ui(ai, σ∗−i(t−i), θ)

}
dπi(ti)[θ, t−i] ≥ 0.

Σ∗: the set of “all” BNE of G = (g, (Ti), (Ti), (πi))i∈I.

It may be the case that Σ∗ is empty.
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Lattice Structure of the set of BNE

We call σ ∈ Σ∗ the least equilibrium if, for each σ∗ ∈ Σ∗, i, and

ti, we have σ∗i (ti) �Ai σi(ti),

and similarly, call σ̄ ∈ Σ∗ the greatest equilibrium if, for each

σ∗ ∈ Σ∗, i ∈ I, and ti, we have σi(ti) �Ai σ
∗
i (ti).

In addition, Σ∗ has the following lattice structure: for any σ∗ ∈
Σ∗, i ∈ I, and ti, we have that σ̄i(ti) �Ai σ

∗
i (ti) �Ai σi(ti).

Due to this structure, we only focus on the least equilibrium in

the rest of the analysis.
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The Least Interim Correlated Rationalizability (ICR)

Let A0
i [ti] = Ai and a0

i [ti] =
∧
A0
i [ti].

A1
i (ti) = arg max

ai∈A0
i (ti)

∫
Θ×T−i

ui(ai, a
0
−i(t−i); θ)dπi(ti)[θ, t−i],

and a1
i (ti) =

∧
A1
i (ti).

We assume that a1
i (·) is a measurable mapping and A1

i (ti) is a

complete sublattice.

⇒ a1
i (ti) ∈ A1

i (ti).

By supermodularity, any ai such that ai 6�Aia
1
i (ti) is a never-best

response against a0
−i(·).
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The Least Interim Correlated Rationalizability (ICR) Cont.

By induction, for each k ≥ 1,

Ak+1
i (ti) = arg max

ai∈Aki (ti)

∫
Θ×T−i

ui(ai, a
k
−i(t−i); θ)dπi(ti)[θ, t−i],

and ak+1
i (ti) =

∧
Ak+1
i (ti).

Again, we assume ak+1
i (·) is a measurable mapping and Ak+1

i (ti)

is a complete sublattice.

⇒ ak+1
i (ti) ∈ Ak+1

i (ti).

By supermodularity, any ai such that ai 6�Aia
k+1
i (ti) is a never-

best response against ak−i(·).
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The Least Interim Correlated Rationalizability (ICR) Cont.

Finally, define

a∞i (ti) =
∨
{a1
i (ti), a

2
i (ti), . . .}.

Ai is a complete lattice ⇒ a∞i (ti) ∈ Ai.

if a∞i (ti) is a best response to a∞−i(·) ⇒ σ defined by σi(ti) =

a∞i (ti) constitutes an equilibrium.

By construction, σ must be the least equilibrium of the game.
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Characterization of the Least Equilibrium

Therefore,

Proposition: Assume that, for each i, ti, and k ≥ 1, (i) Aki (ti)

is a complete sublattice, (ii) aki (·) =
∧
Aki (·) is a measurable

mapping, and (iii) a∞i (ti) is a best response to a∞−i(·). Then, σ

defined by σi(ti) = a∞i (ti) for each i and ti constitutes the least

equilibrium.

Van Zandt and Vives (2007) propose more primitive assumptions

for the existence of the least equilibrium: (i) Ai is a compact met-

ric lattice; (ii) ui(·) is bounded, continuous in ai and measurable

in θ; and (iii) πi(·) is measurable.
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Sufficiency of Common Certainty of Optimism for MCS

Theorem: Let G = (g, (Ti), (Ti), (πi))i∈I be an incomplete infor-

mation supermodular game that satisfies: for each i ∈ I, ti ∈ Ti,
and k ≥ 1, (i) Aki (ti) is a complete sublattice; (ii) aki (·) =

∧
Aki (·)

is a measurable mapping; and (iii) a∞i (ti) is a best response to

a∞−i.

Then, t
′
i �CCO ti ⇒ σi(t

′
i) �Ai σi(ti).
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Necessity of CCO: Optimism-Elicitation Game

This is our main result.

Theorem: There is a supermodular game with the property

that, for any player i ∈ I and two types ti, t
′
i, we have that

t
′
i �CCO ti if and only if σi(t

′
i) �Ai σi(ti), where σ is the least

equilibrium of this supermodular game.
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Flavor of the Proof: a Single Agent Case

Step 1: Any upper set on Θ can be approximated by a countable

set.

Each Un denotes an upper set such that the closure of
⋃∞
n=1Un

is equivalent to the set of all upper sets.

Step 2: The agent’s strategy is β : Un 7→ [0,1] and β is mono-

tone: Un ⊆ Um ⇒ β(Un) ≤ β(Um).

β is defined as a capacity rather than a probability measure so

that B = {β : Un 7→ [0,1]| β is monotone} constitutes a complete

lattice. If we choose a topology on B right, we can make B a

compact metric space.
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Step 3: The agent’s payoff function using a strategy β in state

θ is

u(β, θ) =
∞∑
n=1

[
β(Un)1Un(θ)−

β(Un)2

2

]
µ(Un),

where 1Un denotes the indicator function and µ is a full support

distribution over all {Un}.

Step 4: It is always optimal to choose the truthful probability

assessment of Un.
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Flavor of How to Extend to the Multiple Players Case

Set X1 = Θ; X2 = (∆(X1))I−1; and Xk = (∆(X1 × · · · ×
Xk−1))I−1 for each k ≥ 3, where I stands for the number of

players.

Finally, define X∞ =
∏∞
k=1X

k.

Step I: Any upper set over Xk can be approximated by a count-

able set.

Each U
(k)
n denotes an upper set on Xk such that the closure of⋃∞

n=1U
(k)
n is equivalent to the set of all upper sets on Xk.
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Step II: Each agent’s strategy β = (βk)∞k=1 is such that βk :

U
(k)
n 7→ [0,1].

βk is monotone: U(k)
n ⊆ U(k)

m ⇒ βk(U(k)
n ) ≤ βk(U(k)

m )

Step III: Each agent’s payoff function using strategy β in state

x ∈ X∞ is

u(β, x) =
∞∑
k=1

δk−1

 ∞∑
n=1

βk(Un)1k
U

(k)
n

(xk)−
(βk(U(k)

n ))2

2

µk(Un)

 ,
where 0 < δ < 1; xk is the restriction of x to Xk; 1k

U
(k)
n

denotes

the indicator function on Xk; and µk is a full support distribution

over all {U(k)
n }.
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Step IV: The unique rationalizable strategy profile leads to each

agent’s choosing the truthful probability assessment of U(k)
n .

So, σi(ti) = σ̄i(ti).
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Summary

• This paper introduces an order on types by which MCS is
valid in all supermodular games with incomplete information.

• We fully characterize this order in terms of common cer-
tainty of optimism: t

′
i is higher than ti if t

′
i is more optimistic

that the news is good for all than ti; t
′
i is more optimistic

that all are more optimistic that the news is good for all than
ti, and so on ad infinitum.

• Our work-in-progress investigates all possible orders on types
induced by stochastic dominance and shows that our CCO
order is the maximal one.
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