Order on Types based on Monotone Comparative Statics

Takashi Kunimoto (Singapore Management University) Takuro Yamashita (Toulouse School of Economics)

June 7, 2018

Comparative Statics

Comparative statics is one of the most important methodologies in Economics.

Parameter \Rightarrow Optimal Solution or Equilibrium

e.g) Wealth \Rightarrow Consumption

 $Cost \Rightarrow Production in Cournot$

Risk aversion \Rightarrow Portfolio

Classical approach often appeals to implicit function theorem.

Monotone Comparative Statics

Monotone comparative statics (MCS) is an approach that utilizes the order structure of the game in which whenever a parameter increases, the **set** of equilibria also increases.

- No concavity or differentiability is needed.
- Single-crossing / supermodularity (or strategic complementarity) play a big role.

Our goal is to enlarge the applicability of MCS.

Example: Carlson and van Damme (1993)

		Player 2	
		Invest	Not Invest
Player 1	Invest	heta, heta	heta-1,0
	Not Invest	0, heta - 1	0,0

where $\theta \in \mathbb{R}$ is the investment's profitability.

- $\theta > 1 \Rightarrow$ each player has a dominant strategy to invest.
- $\theta \in [0, 1] \Rightarrow$ two pure strategy NE
- $\theta < 0 \Rightarrow$ each player has a dominant strategy not to invest.

Example: Carlson and van Damme (1993) Cont.

Suppose θ is common knowledge. As θ increases, the **set** of equilibrium investment levels increase. Hence, MCS holds.

Milgrom and Shannon (1994) derive a necessary and sufficient condition for MCS to hold. It is the single-crossing condition.

But, what if there is incomplete information about θ ?

Example: Global Games

We use the same investment game but now assume the following:

- Each player *i* observes $s_i \in \mathbb{R}$ as a noisy signal about θ .
- There is a common prior on (θ, s_1, s_2) .
- *i*'s posterior over (θ, s_{-i}) upon observing s_i is derived via Bayesian updating.

This is the setup often used in global games.

MCS under Incomplete Information about $\boldsymbol{\theta}$

Athey (2002) extends Milgrom and Shannon (1994):

Suppose the common prior on (θ, s) exhibits affiliation. Then, as s_i increases, *i*'s equilibrium investment level increases.

To enlarge the applicability of MCS, we dispense with the assumptions Athey made.

- One-dimensional signal structure
- Common prior
- Bayesian updating

What This Paper Does

We introduce an order on types: t'_i is higher than t_i in the sense of **common certainty of optimism (CCO)** if t'_i is more optimistic that the news is good than t_i ; t'_i is more optimistic that all are optimistic that the news is good than t_i , and so on ad infinitum.

- Sufficiency: If t'_i is higher than t_i in the CCO order, t'_i takes a higher action than t_i in any supermodular game.
- Necessity: There is a supermodular game in which t'_i is "not" higher than t_i in the CCO order $\Rightarrow t'_i$ does "not" take a higher action than t_i . This is our main theoretical contribution.

Lattice

Given a set X and a partial order \geq : $\forall x, y \in X, x \lor y = \inf\{z \in X | z \ge x, z \ge y\}$ (join) and $x \land y = \sup\{z \in X | z \le x, z \le y\}$ (meet).

For $Y \subseteq X$, let $\forall Y \in X$ denote the least upper bound ("join") of Y, and $\land Y \in X$ denote the greatest lower bound ("meet") of Y.

A **lattice** is a set X together with a partial order \geq on X such that the set is closed under meet and join operations.

A lattice (X, \ge) is **complete** if every subset of X has a meet and a join.

Complete Info Supermodular Games

 $g = \langle I, \prod_{i \in I} A_i, \Theta, (u_i)_{i \in I} \rangle$ denotes a **supermodular** game where

(i) $I = \{1, \ldots, I\}$: Set of Players;

(ii) A_i : *i*'s action space; complete metric lattice;

(iii) Θ : a Polish parameter space; complete lattice;

(iv) $u_i : A \times \Theta \to \mathbb{R}$: *i*'s payoff function.

Complete Info Supermodular Games Cont.

(v) $u_i(\cdot)$ is supermodular on A_i : $\forall \theta, a_{-i}, a_i, a'_i$, $u_i(a_i \lor a'_i, a_{-i}; \theta) + u_i(a_i \land a'_i, a_{-i}; \theta) \ge u_i(a_i, a_{-i}; \theta) + u_i(a'_i, a_{-i}; \theta)$. and

(vi) $u_i(\cdot)$ has increasing differences in both (a_i, a_{-i}) and (a_i, θ) : $\forall a_i, a'_i \in A_i, a_{-i}, a'_{-i} \in A_{-i}$, and $\theta, \theta' \in \Theta$, whenever $(a_{-i}, \theta) \geq (a'_{-i}, \theta')$, it follows that

$$u_i((a;\theta) \vee (a';\theta')) + u_i((a;\theta) \wedge (a';\theta')) \ge u_i(a;\theta) + u_i(a';\theta').$$

Incomplete Information Supermodular Games

- $(T_i, \mathscr{T}_i, \pi_i)_{i \in I}$ is a **type space** where
 - T_i : *i*'s set of types;
 - \mathscr{T}_i : a sigma-algebra over T_i ; and
 - $\pi_i : T_i \to \Delta(\Theta \times T_{-i})$: *i*'s \mathscr{T}_i -measurable belief map.

 $G = (g, (T_i), (\mathscr{T}_i), (\pi_i))_{i \in I}$ now describes an **incomplete-information** supermodular game.

Belief Hierarchies induced by type t_i

 $h^1(t_i) \in Z_i^1 = \Delta(\Theta)$: the set of player *i*'s **first-order beliefs**;

 $h^{2}(t_{i}) \in Z_{i}^{1} = \Delta(\Theta \times Z_{-i}^{1})$: the set of *i*'s **second-order beliefs**;

 $h^k(t_i) \in Z_i^k = \Delta(\Theta \times Z_{-i}^1 \times \cdots \times Z_{-i}^{k-1})$: *i*'s *k*th-order beliefs where $k \ge 2$.

÷

Ξ

Finally, $Z_i^{\infty} = \prod_{k=1}^{\infty} Z_i^k$: the set of *i*'s all coherent infinite belief hierarchies.

First-Order Stochastic Dominance (FOSD)

Let X be a Polish space endowed with a closed partial order \succeq .

A closed subset $Y \subseteq X$ is an **upper event** of X if, $\forall y, z \in X$, $[y \in Y \text{ and } z \succeq y] \Rightarrow z \in Y$.

Let U(X) denote the set of all upper events of X.

Definition: Let $\beta, \beta' \in \Delta(X)$. β' (first-order) **stochastically dominates** β (denoted $\beta' \succeq_{SD} \beta$) if $\beta'(Y) \ge \beta(Y)$ for any $Y \in U(X)$.

Common Certainty of Optimism (CCO)

Suppose that (i) t'_i is more optimistic about Θ than t_i ; (ii) t'_i is more optimistic about the optimism of other players about Θ ; (iii) t'_i is more optimistic about the optimism about the optimism of other players about Θ than t_i ; and so on ad infinitum.

In such a case, we say that t'_i is at least high as t_i in the order of **common certainty of optimism** and we denote it by $t'_i \succeq_{CCO} t_i$. Formally:

Definition: $t'_i \succeq_{CCO} t_i$ if $h^k(t'_i) \succeq_{SD} h^k(t_i)$ for each $k \in \mathbb{N}$.

Bayesian Nash Equilibrium (BNE)

Fix $G = (g, (T_i), (\mathscr{T}_i), (\pi_i))_{i \in I}$. $\sigma_i : T_i \to A_i$ denotes *i*'s \mathscr{T}_i -measurable **pure strategy**.

Definition: A strategy profile σ^* is a (pure-strategy) **Bayesian Nash equilibrium** if, for each $i \in I$, $t_i \in T_i$, and $a_i \in A_i$,

$$\int_{\Theta \times T_{-i}} \left\{ u_i(\sigma_i^*(t_i), \sigma_{-i}^*(t_{-i}), \theta) - u_i(a_i, \sigma_{-i}^*(t_{-i}), \theta) \right\} d\pi_i(t_i)[\theta, t_{-i}] \ge 0.$$

 Σ^* : the set of "all" BNE of $G = (g, (T_i), (\mathscr{T}_i), (\pi_i))_{i \in I}$.

It may be the case that Σ^* is empty.

Lattice Structure of the set of BNE

We call $\underline{\sigma} \in \Sigma^*$ the **least** equilibrium if, for each $\sigma^* \in \Sigma^*$, *i*, and t_i , we have $\sigma_i^*(t_i) \succeq_{A_i} \underline{\sigma}_i(t_i)$,

and similarly, call $\overline{\sigma} \in \Sigma^*$ the **greatest** equilibrium if, for each $\sigma^* \in \Sigma^*$, $i \in I$, and t_i , we have $\overline{\sigma}_i(t_i) \succeq_{A_i} \sigma_i^*(t_i)$.

In addition, Σ^* has the following lattice structure: for any $\sigma^* \in \Sigma^*, i \in I$, and t_i , we have that $\overline{\sigma}_i(t_i) \succeq_{A_i} \sigma_i^*(t_i) \succeq_{A_i} \underline{\sigma}_i(t_i)$.

Due to this structure, we only focus on the least equilibrium in the rest of the analysis.

The Least Interim Correlated Rationalizability (ICR)

Let
$$A_i^0[t_i] = A_i$$
 and $\underline{a}_i^0[t_i] = \bigwedge A_i^0[t_i]$.

$$\underline{A}_i^1(t_i) = \arg \max_{a_i \in A_i^0(t_i)} \int_{\Theta \times T_{-i}} u_i(a_i, \underline{a}_{-i}^0(t_{-i}); \theta) d\pi_i(t_i)[\theta, t_{-i}],$$
and $\underline{a}_i^1(t_i) = \bigwedge \underline{A}_i^1(t_i).$

We assume that $\underline{a}_i^1(\cdot)$ is a measurable mapping and $\underline{A}_i^1(t_i)$ is a complete sublattice.

 $\Rightarrow \underline{a}_i^1(t_i) \in \underline{A}_i^1(t_i).$

By supermodularity, any a_i such that $a_i \not\succeq_{A_i} \underline{a}_i^1(t_i)$ is a never-best response against $\underline{a}_{-i}^0(\cdot)$.

The Least Interim Correlated Rationalizability (ICR) Cont.

By induction, for each $k \geq 1$,

$$\underline{A}_{i}^{k+1}(t_{i}) = \arg \max_{a_{i} \in A_{i}^{k}(t_{i})} \int_{\Theta \times T_{-i}} u_{i}(a_{i}, \underline{a}_{-i}^{k}(t_{-i}); \theta) d\pi_{i}(t_{i})[\theta, t_{-i}],$$

and $\underline{a}_{i}^{k+1}(t_{i}) = \bigwedge \underline{A}_{i}^{k+1}(t_{i}).$

Again, we assume $\underline{a}_i^{k+1}(\cdot)$ is a measurable mapping and $\underline{A}_i^{k+1}(t_i)$ is a complete sublattice.

 $\Rightarrow \underline{a}_i^{k+1}(t_i) \in \underline{A}_i^{k+1}(t_i).$

By supermodularity, any a_i such that $a_i \not\succeq_{A_i} \underline{a}_i^{k+1}(t_i)$ is a neverbest response against $\underline{a}_{-i}^k(\cdot)$.

The Least Interim Correlated Rationalizability (ICR) Cont.

Finally, define

$$\underline{a}_i^{\infty}(t_i) = \bigvee \{\underline{a}_i^1(t_i), \underline{a}_i^2(t_i), \ldots \}.$$

 A_i is a complete lattice $\Rightarrow \underline{a}_i^{\infty}(t_i) \in A_i$.

if $\underline{a}_i^{\infty}(t_i)$ is a best response to $\underline{a}_{-i}^{\infty}(\cdot) \Rightarrow \underline{\sigma}$ defined by $\underline{\sigma}_i(t_i) = \underline{a}_i^{\infty}(t_i)$ constitutes an equilibrium.

By construction, $\underline{\sigma}$ must be the least equilibrium of the game.

Characterization of the Least Equilibrium

Therefore,

Proposition: Assume that, for each i, t_i , and $k \ge 1$, (i) $\underline{A}_i^k(t_i)$ is a complete sublattice, (ii) $\underline{a}_i^k(\cdot) = \bigwedge \underline{A}_i^k(\cdot)$ is a measurable mapping, and (iii) $\underline{a}_i^{\infty}(t_i)$ is a best response to $\underline{a}_{-i}^{\infty}(\cdot)$. Then, $\underline{\sigma}$ defined by $\underline{\sigma}_i(t_i) = \underline{a}_i^{\infty}(t_i)$ for each i and t_i constitutes the least equilibrium.

Van Zandt and Vives (2007) propose more primitive assumptions for the existence of the least equilibrium: (i) A_i is a compact metric lattice; (ii) $u_i(\cdot)$ is bounded, continuous in a_i and measurable in θ ; and (iii) $\pi_i(\cdot)$ is measurable.

Sufficiency of Common Certainty of Optimism for MCS

Theorem: Let $G = (g, (T_i), (\mathscr{T}_i), (\pi_i))_{i \in I}$ be an incomplete information supermodular game that satisfies: for each $i \in I$, $t_i \in T_i$, and $k \geq 1$, (i) $\underline{A}_i^k(t_i)$ is a complete sublattice; (ii) $\underline{a}_i^k(\cdot) = \bigwedge \underline{A}_i^k(\cdot)$ is a measurable mapping; and (iii) $\underline{a}_i^{\infty}(t_i)$ is a best response to $\underline{a}_{-i}^{\infty}$.

Then, $t'_i \succeq_{CCO} t_i \Rightarrow \underline{\sigma}_i(t'_i) \succeq_{A_i} \underline{\sigma}_i(t_i)$.

Necessity of CCO: Optimism-Elicitation Game

This is our main result.

Theorem: There is a supermodular game with the property that, for any player $i \in I$ and two types t_i, t'_i , we have that $t'_i \succeq_{CCO} t_i$ if and only if $\underline{\sigma}_i(t'_i) \succeq_{A_i} \underline{\sigma}_i(t_i)$, where $\underline{\sigma}$ is the least equilibrium of this supermodular game.

Flavor of the Proof: a Single Agent Case

Step 1: Any upper set on Θ can be approximated by a countable set.

Each U_n denotes an upper set such that the closure of $\bigcup_{n=1}^{\infty} U_n$ is equivalent to the set of all upper sets.

Step 2: The agent's strategy is $\beta : U_n \mapsto [0,1]$ and β is monotone: $U_n \subseteq U_m \Rightarrow \beta(U_n) \leq \beta(U_m)$.

 β is defined as a capacity rather than a probability measure so that $B = \{\beta : U_n \mapsto [0, 1] | \beta$ is monotone constitutes a complete lattice. If we choose a topology on B right, we can make B a compact metric space.

Step 3: The agent's payoff function using a strategy β in state θ is

$$u(\beta,\theta) = \sum_{n=1}^{\infty} \left[\beta(U_n) \mathbf{1}_{U_n}(\theta) - \frac{\beta(U_n)^2}{2} \right] \mu(U_n),$$

where $\mathbf{1}_{U_n}$ denotes the indicator function and μ is a full support distribution over all $\{U_n\}$.

Step 4: It is always optimal to choose the truthful probability assessment of U_n .

Flavor of How to Extend to the Multiple Players Case

Set $X^1 = \Theta$; $X^2 = (\Delta(X^1))^{I-1}$; and $X^k = (\Delta(X^1 \times \cdots \times X^{k-1}))^{I-1}$ for each $k \ge 3$, where I stands for the number of players.

Finally, define $X^{\infty} = \prod_{k=1}^{\infty} X^k$.

Step I: Any upper set over X^k can be approximated by a countable set.

Each $U_n^{(k)}$ denotes an upper set on X^k such that the closure of $\bigcup_{n=1}^{\infty} U_n^{(k)}$ is equivalent to the set of all upper sets on X^k .

Step II: Each agent's strategy $\beta = (\beta^k)_{k=1}^{\infty}$ is such that β^k : $U_n^{(k)} \mapsto [0, 1]$.

$$\beta^k$$
 is monotone: $U_n^{(k)} \subseteq U_m^{(k)} \Rightarrow \beta^k(U_n^{(k)}) \le \beta^k(U_m^{(k)})$

Step III: Each agent's payoff function using strategy β in state $x \in X^{\infty}$ is

$$\begin{split} u(\beta, x) &= \sum_{k=1}^{\infty} \delta^{k-1} \left[\sum_{n=1}^{\infty} \left[\beta^k(U_n) \mathbf{1}_{U_n^{(k)}}^k(x^k) - \frac{(\beta^k(U_n^{(k)}))^2}{2} \right] \mu^k(U_n) \right], \\ \text{where } 0 < \delta < 1; \ x^k \text{ is the restriction of } x \text{ to } X^k; \ \mathbf{1}_{U_n^{(k)}}^k \text{ denotes} \\ \text{the indicator function on } X^k; \text{ and } \mu^k \text{ is a full support distribution} \\ \text{over all } \{U_n^{(k)}\}. \end{split}$$

Step IV: The unique rationalizable strategy profile leads to each agent's choosing the truthful probability assessment of $U_n^{(k)}$.

So, $\underline{\sigma}_i(t_i) = \overline{\sigma}_i(t_i)$.

Summary

- This paper introduces an order on types by which MCS is valid in all supermodular games with incomplete information.
- We fully characterize this order in terms of **common certainty of optimism**: t'_i is higher than t_i if t'_i is more optimistic that the news is good for all than t_i ; t'_i is more optimistic that all are more optimistic that the news is good for all than t_i , and so on ad infinitum.
- Our work-in-progress investigates all possible orders on types induced by stochastic dominance and shows that our CCO order is the maximal one.