Optimal Delay in Committees

Ettore Damiano Li, Hao Wing Suen

July 10, 2018—Mechanism Design Workshop

Introduction

- We study collective decision problems (with no transfers) in which disagreements can be either preference-driven or information-driven
- Examples: legislative bargaining, trade negotiations, adoption of industry standards, recruitment committee, workplace practices
- Information aggregation is a key aspect of the model.

Limited Commitment

- Large enough delay (punishment) induces people to give up preference-driven disagreement to achieve first-best, without actually incurring the delay cost, but:
 - a "mistake" made by one player can produce a very bad outcome for all
 - requires commitment power because imposing lengthy delay is costly ex post
- We consider a dynamic mechanism design problem in which:
 - there is an upper bound to the length of delay in each round
 - players commit to a sequence of delays subject to this bound

Research Questions

- Does dynamic mechanism dominate static mechanism when there is an upper bound on delay?
- Does punishment work better when it is front-loaded, back-loaded, or constant through time?
- Is it optimal to have binding deadlines?
- Does the optimal mechanism always produce the efficient decision?

Model

- Two players (*A* and *B*); each of whom has a "favorite" alternative (*a* and *b*, resp.)
- Each player can be high type (*H*) or low type (*L*); the types of the two players are *not* independent
- $\gamma_1 =$ low type's belief that opponent is *low* type
- μ_1 = high type's belief that opponent is *low* type
- Assumption 1: $\gamma_1 < \mu_1$ (negative correlation)

Payoffs

- each player prefers opponent's favorite alternative when he is low type and opponent is high type
 - otherwise prefers his own favorite
- when opponent is low type; payoff gain from choosing own favorite (relative to choosing opponent's favorite) is larger for high type than for low type
- Example: payoff to player *I* from alternative *j* is $\theta_j + \mathbf{1}(i = j)\pi$
- Assumption 1 and the payoff assumptions ensure that high type expects to gains more (than a low type does) from an increase in probability that the opponent low type concedes

Impossibility of Information Aggregation

- First-best is to choose a player's favorite if he is high type and opponent is low type; otherwise flip a coin
- If $\gamma_1 \leq \gamma_*$, first-best can be implemented via a voting game (high type always votes for his favorite; low type always concedes)
- If γ₁ > γ_{*}, no mechanism without transfers can achieve first-best
 think of γ₁ as the degree of conflict within the group

One Round Delay Mechanism

- if both players choose their favorite alternatives, impose a delay cost δ_1 before the decision is made by flipping a coin
- x_1 = probability low type votes for own favorite
- second-best mechanism: choose lowest δ_1 such that low type concedes ($x_1 = 0$):
 - achieve first-best decision
 - incur some delay cost when two high types meet
- if there is an upper bound Δ on the delay cost, then second-best is not achievable when $\gamma_1 > \gamma^*$

How Does Repeated Voting Help?

- One round: choose $\delta_1 = \Delta$, induce low type to choose own favorite with probability $x_1 < 1$.
- Two rounds:
 - second round: choose some $\delta_2 \le \Delta$ such that $x_2 < 1$ and continuation payoff for low type is the same as coin flip
 - this is feasible because information revealed in first round reduces conflict
 - first round: choose $\delta_1 = \Delta$ to induce the same x_1
 - Iow type is indifferent between one-round mechanism and two-round mechanism but high type prefers the latter

Repeated Voting

- Each player votes for *a* or *b* simultaneously at each round *t*.
 - If the votes agree, that decision is implemented immediately and the game ends.
 - If both players concede, then flip a coin to decide immediately.
 - If both persist (vote his own favorite), then each player incurs a delay cost of $\delta_t \leq \Delta$ and votes again in the next round.
- The game can in principal go on indefinitely.
- If the game is finite with T rounds, then flip a coin at the very end.

Key results

- Any optimal delay mechanism is finite with a binding deadline *T*.
- The terminal belief γ_T on entering the last round T is less than or equal to γ^* .
 - efficient decision is always achieved
 - if Δ is not too large and γ₁ is not too close to γ*, then terminal belief is exactly equal to γ*
- Stop-and-start: equilibrium play alternates between some concession ($x_t < 1$) and no concession ($x_{t+1} = 1$)

optimal delay sequence alternates between $\delta_t = \Delta$ and $\delta_{t+1} < \Delta$.

Remarks about the Design Problem

- Screening Lemma says that $x_t > 0$ implies $y_t = 1$
 - can focus on equilibria in which high type always votes for own favorite
 - equilibrium play depends only on U_t but welfare analysis depends also on V_t .
- The problem is difficult to study because beliefs are solved forwards while payoffs are solved backwards, and the length of the horizon is not fixed:
 - introduce localized variations method

Finite Deadline

- An *active round* is one in which $x_t < 1$.
- Proposition 1: Any optimal delay mechanism has a finite number of active rounds. Moreover, x_t > 0 for all t before the deadline T.
- Idea of proof:
 - Belief goes down in each active round. If it converges to a positive limit, $\lim_{n\to\infty} \prod_{t=\tau}^{\tau+n} x_t$ is arbitrarily close to 1 for τ large. But then persisting is bad for high type in round τ .
 - If $x_N = 0$ for some N < T, the high types are playing a pure war of attrition after round *N*. We can show that truncating the game after round *N* and replacing it with a coin toss is better.

Efficient Deadline Concession

- Proposition 2: Any optimal delay mechanism with at least two rounds has efficient deadline concession (i.e., $x_T = 0$ and $y_T = 1$ if $T \ge 2$).
 - $\blacksquare \text{ means } \gamma_T \leq \gamma^*$
 - proof uses a localized variations method

Localized Variations

- Suppose $\gamma_T > \gamma^*$. Consider a way to marginally drive down γ_T .
- Let (*n*) be the last active round prior to *T*. Insert another round round *s* after (*n*) but before *T* with appropriately chosen $\delta_s > 0$ to induces $x_s < 1$
- But a lower x_s means a higher continuation value for the low type after round (*n*), which would change the entire sequence of play.
- Neutralize this effect by inserting yet another round s' between (n) and s and choose $\delta_{s'} > 0$ equal to the increase in continuation payoff above
- This variation leaves the sequence of play the same up to round (n) and therefore has no effect on U_1 , but it induces more concession from the low type, which improves V_1 .

Maximal Concession

- Persisting is a worse option is $-\delta_t + U_{t+1}$ is low
- δ_t is bounded above by Δ
- U_{t+1} is bounded below by the payoff from immediately conceding in round t + 1

• the latter payoff is lowest when $x_{t+1} = 1$

• there is *maximal concession* by the low type in round *t* when $\delta_t = \Delta$ and $x_{t+1} = 1$

Front Loading

- Proposition 3: Any optimal delay mechanism with at least two rounds induces the maximal concession in the first round.
- If concession is not maximal, we employ the following localized variation:
 - maximize concessions (i.e., lower x_1) by increasing the delay penalty (by inserting extra rounds after round 1 if necessary)
 - raise $x_{(2)}$ by lowering delay penalty in the next active round (2) in such a way to keep $x_1x_{(2)}$ (and therefore $\gamma_{(3)}$) unchanged
 - Because the continuation play starting from round (3) remains the same, we can use a direct computation of these two changes to show that the gain from a lower x_1 is larger than the loss from a higher $x_{(2)}$

Efficient Deadline Belief

- Proposition 4: In any optimal mechanism with more than two active rounds, $\gamma_T = \gamma_*$.
- If $\gamma_T < \gamma_*$, we consider the following localized variation:
 - reduce delay cost $\delta_{(n)}$ prior to round T to drive the belief up to γ_* .
 - a higher $x_{(n)}$ lowers the payoff to the uninformed; we neutralize this by reducing the delay $\delta_{(n-1)}$ to keep $U_{(n-1)}$ unchanged
 - we show that this variation raises $V_{(n-1)}$

- An active round (*i*) has *no slack* if *x*_(*i*) is equal to the maximal concession; it has *slack* if *x*_(*i*) is less than the maximal concession.
- A mechanism with slack in two successive active rounds is not optimal.

Corner Solution

- Suppose there is slack in both round (*i*) and round (*i* + 1). The localized variation involves:
 - □ change $\delta_{(i)}$ to change $x_{(i)}$ marginally (up or down)
 - □ change $\delta_{(i+1)}$ to change $x_{(i+1)}$ in such a way to keep $x_{(i)}x_{(i+1)}$ constant. This guarantees that $\gamma_{(i+2)}$ and hence the subsequent equilibrium play is unaffected.
 - change $\delta_{(i-1)}$ in such a way to keep the continuation value at round (i-1) constant. This guarantees that the equilibrium play prior to and including round (i-1) is unaffected.
- Equivalent to choosing $\gamma_{(i+1)}$ to maximize total delay, while holding $\gamma_{(i)}$ and $\gamma_{(i+2)}$ constant.
- This maximization problem is convex in $\gamma_{t(i+1)}$.
- Corner solution means no slack in either round (*i*) or round (i + 1).
- Which corner to choose is payoff-equivalent.

Stop-and-Start

- Proposition 5: In any optimal mechanism with at least two active rounds, there can be at most one active round with slack.
- Proof: If there are active two rounds (*i*) and (*j*) with slack, we can use the payoff equivalent result to reshuffle these two rounds to make them adjacent. But then it cannot be optimal.
- No slack at round (*i*) requires x = 1 in the next round. Hence it is optimal to have maximal concession followed by no concession.

- Initial belief is γ_1 and terminal belief is γ_* .
- Belief evolves according to $\gamma_{(i+1)} = g(\gamma_{(i)})$ in each active round where $g(\cdot)$ is given by Bayes' rule under the maximal concession $x_{(i)}$.
- The concession in the last active round x_(n) is chosen in such a way that γ_(n) updates to γ_{*}.
- This pins down the entire evolution of beliefs.
- Use definition of no slack to figure out the implied sequence $\{\delta\}_{t=1}^{T}$.

- (a) If γ_1 is very close to γ_* , then one-round mechanism with $\delta_1 = \Delta$ is optimal.
- (b) For larger γ₁, there is no slack in round 1 and the game immediately enters the deadline phase. Terminal belief is γ_T ∈ (γ_{*}, g(γ₁)).
- (c) For still larger γ_1 , there are both stop-and-start phase and deadline phase. Terminal belief is γ_* .
- (d) For γ_1 close to 1, optimal mechanism is to flip a coin.

Discussion

- Continuous-delay limit as ∆ goes to 0 is the same as in companion paper, but the optimal mechanism with non-constant delay does strictly better in any discrete time mechanism.
- Can be extended to more general payoff structures. The key component is that the informed type benefits more from concession by the uninformed type than the uninformed type does.
- May do even better if there is delay in implementing agreed decision, but then this also requires commitment power.

Thank you!