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Background

I Two-sided markets:

I Marriage market

I Job market

I College admission market

I School choice

I . . .



Complete Information Assumption

Assumption: Information is complete (CI), i.e.,

Every agent’s characteristics and preferences are common knowledge.



Outline

1. Incorporate firm-specific info by means of partitional information structure

2. Path to stability

3. Proof



Related Literature

1. One-to-one job market:
Shapley and Shubik (1971), Crawford and Knoer (1981), Chen et al. (2016),
Liu et al. (2014). . .

2. Incomplete information:
Roth (1989), Chakraborty et al. (2010), Liu et al. (2014) (LMPS),
Bikhchandani (2017), Pomatto (2015). . .

3. Path to stability:
Knuth (1976), Roth and Vande Vate (1990), Kojima and Ünver (2008),
Klaus and Klijn (2007), Chen et al. (2010, 2016), Fujishige and Yang
(2016). . .



The Model



Agents

I Agents

I I 3 i: a finite set of workers.

I J 3 j: a finite set of firms.

I Types

I w : I→ W, where W is finite.

I f : J → F, where F is finite. f is public information.

I Ω ⊂ W|I|: a set of possible type assignment functions.



Values and Payoffs

I Values for match (w, f )

I worker premuneration value: νwf ∈ R.

I firm premuneration value: φwf ∈ R.

I surplus of the match: νwf + φwf .

I Payoffs

I νw(i),f(j) + p for the worker.

I φw(i),f(j) − p for the firm.



Allocation

I matching: µ : I→ J ∪∅, one-to-one on µ−1(J).

I payment scheme: p associated with a matching function µ.
I pi,µ(i) ∈ R for each i ∈ I.

I pµ−1(j),j ∈ R for each j ∈ J.

I p∅j = pi∅ = 0.

I A 3 (µ, p): the set of all allocations.

I (µ, p)is observable for all agents.



Information

I Assumptions about w:

I w ∈ Ω ⊂ W|I|.

I Πj: Information Partition of a firm j ∈ J.

I Πj is a partition of Ω.

I w′ ∈ Πj(w):
Firm j thinks w′ is possible when w is true.
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Information

I Assumptions about w:

I w ∈ Ω ⊂ W|I|.

I Πj: Information Partition of a firm j ∈ J.

I Πj is a partition of Ω.

I w′ ∈ Πj(w):
Firm j thinks w′ is possible when w is true.

I Π := ({Πj}j∈J).

I Complete info: every partition cell is a singleton.

Πj Πj′

w1

w2

w3

w4

Ω

w1

w2

w3

w4

w1

w2

w3

w4



State of the Market

A state of the matching market, (µ, p, w, Π), specifies
I an allocation (µ, p);

I a type assignment function w; and

I a partition profile Π.



Stability



Requirement 1 of Stability: Individual Rationality

Definition 1
A state (µ, p, w, Π) is said to be individually rational if

νw(i),f(µ(i)) + pi,µ(i) ≥ 0 for all i ∈ I and

φw(µ−1(j)),f(j) − pµ−1(j),j ≥ 0 for all j ∈ J.



Requirement 2 of Stability: No Blocking
I Following LMPS, ’a firm cares about the worst case of worker if she does not

know his true type.’

Definition 2
A state (µ, p, w, Π) is said to be blocked if there exists a worker-firm pair (i, j)
and a payment p ∈ R such that

νw(i),f(j) + p > νw(i),f(µ(i)) + pi,µ(i) and

φw′(i),f(j) − p > φw′(µ−1(j)),f(j) − pµ−1(j),j

for all w′ ∈ Πj(w)

satisfying

νw′(i),f(j) + p > νw′(i),f(µ(i)) + pi,µ(i).

Consistency: A firm can observe the type of her own employee, if any.

∀w′ ∈ Πj(w), w′(µ−1(j)) = w(µ−1(j)).
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Example 1
I One worker α with possible types w = −1 (true) and w′ = 1.

Two firms a and b. Firms’ type: fa = 1 and fb = −1.
Values: νwf = φwf = wf .

I Allocation: No firm is matched with the worker.

I Πa = {{w}, {w′}} and
Πb = {{w, w′}}.

I (α, a) is a blocking pair at w′ but not at w, i.e., Na = {{w}, {w′}}.

I ’The state is not blocked by firm a’ =⇒ firm b can learn Na, i.e.,

Πb ∨Na = {{w}, {w′}}.
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Requirement 3 of Stability: Informational Stability

The fact of IR and no blocking︸ ︷︷ ︸ provides no information︸ ︷︷ ︸ to agents.

1. Partition Representation 2. Information Aggregation

1. Given a state (µ, p, w, Π), let N(µ,p,Π) be a partition of Ω:

N(µ,p,Π)(w′) = N(µ,p,Π)(w′′) if and only if either neither (µ, p, w′, Π) nor
(µ, p, w′′, Π) is blocked or both of them are blocked.

2. Aggregating two pieces of information → Join of two partitions.

I Inferences: [Hµ,p(Π)]j := N(µ,p,Π) ∨Πj, ∀j ∈ J, i.e.,

[Hµ,p(Π)]j(w
′) := Πj(w

′) ∩N(µ,p,Π)(w′), ∀w′ ∈ Ω, ∀j ∈ J.
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Stability

Definition 3
A state (µ, p, w, Π) is said to be stable if

1. it is individually rational,
2. it is not blocked by any pair, and
3. Π is a fixed point of Hµ,p, i.e. Hµ,p(Π) = Π.



Learning and Blocking
Consider (µ, p, w∗, Π) where Π and (µ, p) are common knowledge.

I The state is not blocked:

Π −→ Hµ,p(Π).

I The state is blocked by (i, j; p).
Extra information described by B(µ,p,Π;i,j;p):

B(µ,p,Π;i,j;p)(w′) = B(µ,p,Π;i,j;p)(w′′) if and only if either (i, j; p) blocks both
(µ, p, w′, Π) and (µ, p, w′′, Π) or neither.

∀j′, Πj′ −→ Πj′ ∨ B(µ,p,Π;i,j;p)

State updating: (µ′, p′, w∗, Π′)
(i,j;p)←−−− (µ, p, w∗, Π), if

I (i, j; p) is satisfied in the new state, and

I for all j′ 6= j, Π′j′ = Πj′ ∨ B(µ,p,Π;i,j;p).
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Learning-Blocking Path

A learning-blocking path is a sequence of states {(µl, pl, w∗, Πl)}L
l=0 s.t.

for any two adjacent states (µl, pl, w∗, Πl) and (µl+1, pl+1, w∗, Πl+1),

I if (µl, pl, w∗, Πl) is not blocked,

then (µl+1, pl+1) = (µl, pl) and Πl+1 = Hµl,pl(Πl);

I if (µl, pl, w∗, Πl) is blocked,

then (µl+1, pl+1, w∗, Πl+1)
(i,j;p)←−−− (µl, pl, w∗, Πl),

where (i, j; p) is a blocking combination for (µl, pl, w∗, Πl).



Main Result

Theorem 1
Suppose payments permitted in the job market are all integers.
Then for an arbitrary initial state, there exists a finite Learning-Blocking Path
starting with it that leads to a stable state.

Theorem 2
Suppose payments permitted in the job market are all integers.
Then the random learning-blocking path starting from an arbitrary state
converges with probability one to a stable state.

Theorem 3
(µ, p, w) is an incomplete-info. stable outcome in the sense of LMPS
if and only if
there exists a partition profile Π such that (µ, p, w, Π) is stable.
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Proof of Theorem 1

Initial state: (µ, p, t∗, Π), assumed to be IR.

(µ, p, t∗, Π) :


Blocked

Not blocked, (µ, p, t∗, Hµ,p(Π)) :

{
Blocked
Not blocked . . .

Finite time: blocked OR stable.



Proof of Theorem 1
Initial state: (µ, p, t∗, Π) is blocked, where (i1, j1) is a blocking pair.

A new state: (µ′, p′, t∗, Π′).
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Proof of Theorem 1
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When tracking stops: the set contains no blocking pair
OR there is one more direct observation.



Efficiency (CI Stability) of Stable States?

A partial answer:

(LMPS) Under Monotonicity and Supermodularity,
every incomplete-information stable outcome is efficient.

Example 2
I One worker β with possible types wβ = 1 (true) and w′β = −1.

One firm b with type: fb = 1.
Values: νwf = |wf | and φwf = wf .

I Status quo: no match and Πb = {{wβ, w′β}}.

I The status quo is

I incomplete-information stable but

I not efficient (not complete-information stable).
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Conclusion
1. Stability with one-sided incomplete information.

i Describes firms’ information by firm specific and flexible partitions.

ii Makes (II) stability a natural extension of (CI) stability.
Isolates the role played by information (requirement 3).

iii Allows for natural definition of stability with two-sided (II). CH2017.

2. Path to stability.

i Describes information updating along a blocking path.

ii Shows the convergence of Learning-Blocking Paths.

iii Robustness of convergence w.r.t. learning pattern.

3. Connection with LMPS’s stability notions.

i Generates the same set of stable allocations as LMPS.

ii Different conceptual starting points: one state V.S. a set of outcomes.
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