Learning by Matching

Yi-Chun Chen
Department of Economics National University of Singapore

Gaoji Hu
Nanyang Business School
Nanyang Technological University

Workshop on Matching, Search and Market Design @ NUS
July 24, 2018

Background

- Two-sided markets:
- Marriage market
- Job market
- College admission market
- School choice
- ...

Complete Information Assumption

Assumption: Information is complete (CI), i.e.,

Every agent's characteristics and preferences are common knowledge.

Outline

1. Incorporate firm-specific info by means of partitional information structure
2. Path to stability
3. Proof

Related Literature

1. One-to-one job market:

Shapley and Shubik (1971), Crawford and Knoer (1981), Chen et al. (2016), Liu et al. (2014)...
2. Incomplete information:

Roth (1989), Chakraborty et al. (2010), Liu et al. (2014) (LMPS), Bikhchandani (2017), Pomatto (2015)...
3. Path to stability:

Knuth (1976), Roth and Vande Vate (1990), Kojima and Ünver (2008), Klaus and Klijn (2007), Chen et al. $(2010,2016)$, Fujishige and Yang (2016)...

The Model

Agents

- Agents
- $I \ni i$: a finite set of workers.
- $J \ni j$: a finite set of firms.
- Types
- $\mathbf{w}: I \rightarrow W$, where W is finite.
- $\mathbf{f}: J \rightarrow F$, where F is finite. \mathbf{f} is public information.
- $\Omega \subset W^{|I|}:$ a set of possible type assignment functions.

Values and Payoffs

- Values for match (w, f)
- worker premuneration value: $v_{w f} \in \mathbb{R}$.
- firm premuneration value: $\phi_{w f} \in \mathbb{R}$.
- surplus of the match: $v_{w f}+\phi_{w f}$.
- Payoffs
- $v_{\mathbf{w}(i), \mathbf{f}(j)}+p$ for the worker.
- $\phi_{\mathbf{w}(i), \mathbf{f}(j)}-p$ for the firm.

Allocation

- matching: $\mu: I \rightarrow J \cup \varnothing$, one-to-one on $\mu^{-1}(J)$.
- payment scheme: \mathbf{p} associated with a matching function μ.
- $\mathbf{p}_{i, \mu(i)} \in \mathbb{R}$ for each $i \in I$.
- $\mathbf{p}_{\mu^{-1}(j), j} \in \mathbb{R}$ for each $j \in J$.
- $\mathbf{p}_{\not \subset j}=\mathbf{p}_{i \varnothing}=0$.
- $\mathscr{A} \ni(\mu, \mathbf{p})$: the set of all allocations.
- (μ, \mathbf{p}) is observable for all agents.

Information

- Assumptions about \mathbf{w} :
- $\mathbf{w} \in \Omega \subset W^{|I|}$.

Information

- Assumptions about w:
- $\mathbf{w} \in \Omega \subset W^{|I|}$.
- Π_{j} : Information Partition of a firm $j \in J$.
- Π_{j} is a partition of Ω.
- $\mathbf{w}^{\prime} \in \Pi_{j}(\mathbf{w}):$

Firm j thinks \mathbf{w}^{\prime} is possible when \mathbf{w} is true.

Information

- Assumptions about \mathbf{w} :
- $\mathbf{w} \in \Omega \subset W^{|I|}$.
- Π_{j} : Information Partition of a firm $j \in J$.
- Π_{j} is a partition of Ω.
- $\mathbf{w}^{\prime} \in \Pi_{j}(\mathbf{w})$:

Firm j thinks \mathbf{w}^{\prime} is possible when \mathbf{w} is true.

- $\Pi:=\left(\left\{\Pi_{j}\right\}_{j \in J}\right)$.

- Complete info: every partition cell is a singleton.

State of the Market

A state of the matching market, $(\mu, \mathbf{p}, \mathbf{w}, \Pi)$, specifies

- an allocation (μ, \mathbf{p});
- a type assignment function \mathbf{w}; and
- a partition profile Π.

Stability

Requirement 1 of Stability: Individual Rationality

Definition 1
A state $(\mu, \mathbf{p}, \mathbf{w}, \Pi)$ is said to be individually rational if

$$
\begin{aligned}
v_{\mathbf{w}(i), \mathbf{f}(\mu(i))}+\mathbf{p}_{i, \mu(i)} & \geq 0 \text { for all } i \in I \text { and } \\
\phi_{\mathbf{w}\left(\mu^{-1}(j)\right), \mathbf{f}(j)}-\mathbf{p}_{\mu^{-1}(j), j} & \geq 0 \text { for all } j \in J .
\end{aligned}
$$

Requirement 2 of Stability: No Blocking

- Following LMPS, 'a firm cares about the worst case of worker if she does not know his true type.'

Definition 2

A state $(\mu, \mathbf{p}, \mathbf{w}, \Pi)$ is said to be blocked if there exists a worker-firm pair (i, j) and a payment $p \in \mathbb{R}$ such that

$$
\begin{gathered}
v_{\mathbf{w}(i), \mathbf{f}(j)}+p>v_{\mathbf{w}(i), \mathbf{f}(\mu(i))}+\mathbf{p}_{i, \mu(i)} \text { and } \\
\phi_{\mathbf{w}^{\prime}(i), \mathbf{f}(j)}-p>\phi_{\mathbf{w}^{\prime}\left(\mu^{-1}(j)\right), \mathbf{f}(j)}-\mathbf{p}_{\mu^{-1}(j), j}
\end{gathered}
$$

for all $\mathbf{w}^{\prime} \in \Pi_{j}(\mathbf{w})$

Requirement 2 of Stability: No Blocking

- Following LMPS, 'a firm cares about the worst case of worker if she does not know his true type.'

Definition 2

A state $(\mu, \mathbf{p}, \mathbf{w}, \Pi)$ is said to be blocked if there exists a worker-firm pair (i, j) and a payment $p \in \mathbb{R}$ such that

$$
\begin{gathered}
v_{\mathbf{w}(i), \mathbf{f}(j)}+p>v_{\mathbf{w}(i), \mathbf{f}(\mu(i))}+\mathbf{p}_{i, \mu(i)} \text { and } \\
\phi_{\mathbf{w}^{\prime}(i), \mathbf{f}(j)}-p>\phi_{\mathbf{w}^{\prime}\left(\mu^{-1}(j)\right), \mathbf{f}(j)}-\mathbf{p}_{\mu^{-1}(j), j}
\end{gathered}
$$

for all $\mathbf{w}^{\prime} \in \Pi_{j}(\mathbf{w})$ satisfying

$$
v_{\mathbf{w}^{\prime}(i), \mathbf{f}(j)}+p>v_{\mathbf{w}^{\prime}(i), \mathbf{f}(\mu(i))}+\mathbf{p}_{i, \mu(i)}
$$

Requirement 2 of Stability: No Blocking

- Following LMPS, 'a firm cares about the worst case of worker if she does not know his true type.'

Definition 2

A state $(\mu, \mathbf{p}, \mathbf{w}, \Pi)$ is said to be blocked if there exists a worker-firm pair (i, j) and a payment $p \in \mathbb{R}$ such that

$$
\begin{gathered}
v_{\mathbf{w}(i), \mathbf{f}(j)}+p>v_{\mathbf{w}(i), \mathbf{f}(\mu(i))}+\mathbf{p}_{i, \mu(i)} \text { and } \\
\phi_{\mathbf{w}^{\prime}(i), \mathbf{f}(j)}-p>\phi_{\mathbf{w}^{\prime}\left(\mu^{-1}(j)\right), \mathbf{f}(j)}-\mathbf{p}_{\mu^{-1}(j), j}
\end{gathered}
$$

for all $\mathbf{w}^{\prime} \in \Pi_{j}(\mathbf{w})$ satisfying

$$
v_{\mathbf{w}^{\prime}(i), \mathbf{f}(j)}+p>v_{\mathbf{w}^{\prime}(i), \mathbf{f}(\mu(i))}+\mathbf{p}_{i, \mu(i)} .
$$

Consistency: A firm can observe the type of her own employee, if any.

$$
\forall \mathbf{w}^{\prime} \in \Pi_{j}(\mathbf{w}), \mathbf{w}^{\prime}\left(\mu^{-1}(j)\right)=\mathbf{w}\left(\mu^{-1}(j)\right) .
$$

Example 1

- One worker α with possible types $w=-1$ (true) and $w^{\prime}=1$. Two firms a and b. Firms' type: $f_{a}=1$ and $f_{b}=-1$.
Values: $v_{w f}=\phi_{w f}=w f$.
- Allocation: No firm is matched with the worker.
- $\Pi_{a}=\left\{\{w\},\left\{w^{\prime}\right\}\right\}$ and $\Pi_{b}=\left\{\left\{w, w^{\prime}\right\}\right\}$.

Example 1

- One worker α with possible types $w=-1$ (true) and $w^{\prime}=1$. Two firms a and b. Firms' type: $f_{a}=1$ and $f_{b}=-1$.
Values: $v_{w f}=\phi_{w f}=w f$.
- Allocation: No firm is matched with the worker.
- $\Pi_{a}=\left\{\{w\},\left\{w^{\prime}\right\}\right\}$ and $\Pi_{b}=\left\{\left\{w, w^{\prime}\right\}\right\}$.
- (α, a) is a blocking pair at w^{\prime} but not at w, i.e., $N_{a}=\left\{\{w\},\left\{w^{\prime}\right\}\right\}$.

Example 1

- One worker α with possible types $w=-1$ (true) and $w^{\prime}=1$. Two firms a and b. Firms' type: $f_{a}=1$ and $f_{b}=-1$.
Values: $v_{w f}=\phi_{w f}=w f$.
- Allocation: No firm is matched with the worker.
- $\Pi_{a}=\left\{\{w\},\left\{w^{\prime}\right\}\right\}$ and $\Pi_{b}=\left\{\left\{w, w^{\prime}\right\}\right\}$.
- (α, a) is a blocking pair at w^{\prime} but not at w, i.e., $N_{a}=\left\{\{w\},\left\{w^{\prime}\right\}\right\}$.
- 'The state is not blocked by firm $a>$ firm b can learn N_{a}, i.e.,

$$
\Pi_{b} \vee N_{a}=\left\{\{w\},\left\{w^{\prime}\right\}\right\} .
$$

Requirement 3 of Stability: Informational Stability

$\underbrace{\text { The fact of IR and no blocking }} \underbrace{\text { provides no information }}$ to agents.

1. Partition Representation 2. Information Aggregation

Requirement 3 of Stability: Informational Stability

$\underbrace{\text { The fact of IR and no blocking }}_{\text {1. Partition Representation }} \underbrace{\text { provides no information }}_{\text {2. Information Aggregation }}$ to agents.

1. Given a state $(\mu, \mathbf{p}, \mathbf{w}, \Pi)$, let $N^{(\mu, \mathbf{p}, \Pi)}$ be a partition of Ω :

$$
\begin{gathered}
N^{(\mu, \mathbf{p}, \Pi)}\left(\mathbf{w}^{\prime}\right)=N^{(\mu, \mathbf{p}, \Pi)}\left(\mathbf{w}^{\prime \prime}\right) \text { if and only if either neither }\left(\mu, \mathbf{p}, \mathbf{w}^{\prime}, \Pi\right) \text { nor } \\
\left(\mu, \mathbf{p}, \mathbf{w}^{\prime \prime}, \Pi\right) \text { is blocked or both of them are blocked. }
\end{gathered}
$$

Requirement 3 of Stability: Informational Stability

$\underbrace{\text { The fact of IR and no blocking }}_{\text {1. Partition Representation }} \underbrace{\text { provides no information }}_{\text {2. Information Aggregation }}$ to agents.

1. Given a state $(\mu, \mathbf{p}, \mathbf{w}, \Pi)$, let $N^{(\mu, \mathbf{p}, \Pi)}$ be a partition of Ω :

$$
\begin{gathered}
N^{(\mu, \mathbf{p}, \Pi)}\left(\mathbf{w}^{\prime}\right)=N^{(\mu, \mathbf{p}, \Pi)}\left(\mathbf{w}^{\prime \prime}\right) \text { if and only if either neither }\left(\mu, \mathbf{p}, \mathbf{w}^{\prime}, \Pi\right) \text { nor } \\
\left(\mu, \mathbf{p}, \mathbf{w}^{\prime \prime}, \Pi\right) \text { is blocked or both of them are blocked. }
\end{gathered}
$$

2. Aggregating two pieces of information \rightarrow Join of two partitions.

- Inferences: $\left[H_{\mu, \mathbf{p}}(\Pi)\right]_{j}:=N^{(\mu, \mathbf{p}, \Pi)} \vee \Pi_{j}, \forall j \in J$, i.e.,

$$
\left[H_{\mu, \mathbf{p}}(\Pi)\right]_{j}\left(\mathbf{w}^{\prime}\right):=\Pi_{j}\left(\mathbf{w}^{\prime}\right) \cap N^{(\mu, \mathbf{p}, \Pi)}\left(\mathbf{w}^{\prime}\right), \forall \mathbf{w}^{\prime} \in \Omega, \forall j \in J
$$

Stability

Definition 3

A state ($\mu, \mathbf{p}, \mathbf{w}, \Pi$) is said to be stable if

1. it is individually rational,
2. it is not blocked by any pair, and
3. Π is a fixed point of $H_{\mu, \mathbf{p}}$, i.e. $H_{\mu, \mathbf{p}}(\Pi)=\Pi$.

Learning and Blocking

Consider $\left(\mu, \mathbf{p}, \mathbf{w}^{*}, \Pi\right)$ where Π and (μ, \mathbf{p}) are common knowledge.

- The state is not blocked:

$$
\Pi \longrightarrow H_{\mu, \mathbf{p}}(\Pi) .
$$

Learning and Blocking

Consider ($\mu, \mathbf{p}, \mathbf{w}^{*}, \Pi$) where Π and (μ, \mathbf{p}) are common knowledge.

- The state is not blocked:

$$
\Pi \longrightarrow H_{\mu, \mathbf{p}}(\Pi) .
$$

- The state is blocked by $(i, j ; p)$.

Extra information described by $B^{(\mu, \mathbf{p}, \Pi ; i, j ; p)}$:
$B^{(\mu, \mathbf{p}, \Pi ; i, j ; p)}\left(\mathbf{w}^{\prime}\right)=B^{(\mu, \mathbf{p}, \Pi i ; i, j ;)}\left(\mathbf{w}^{\prime \prime}\right)$ if and only if either $(i, j ; p)$ blocks both $\left(\mu, \mathbf{p}, \mathbf{w}^{\prime}, \Pi\right)$ and $\left(\mu, \mathbf{p}, \mathbf{w}^{\prime \prime}, \Pi\right)$ or neither.

$$
\forall j^{\prime}, \Pi_{j^{\prime}} \longrightarrow \Pi_{j^{\prime}} \vee B^{(\mu, \mathbf{p}, \Pi ; i, j ; p)}
$$

Learning and Blocking

Consider $\left(\mu, \mathbf{p}, \mathbf{w}^{*}, \Pi\right)$ where Π and (μ, \mathbf{p}) are common knowledge.

- The state is not blocked:

$$
\Pi \longrightarrow H_{\mu, \mathbf{p}}(\Pi) .
$$

- The state is blocked by $(i, j ; p)$.

Extra information described by $B^{(\mu, \mathbf{p}, \Pi ; i, j ; p)}$:
$B^{(\mu, \mathbf{p}, \Pi ; i, j ; p)}\left(\mathbf{w}^{\prime}\right)=B^{(\mu, \mathbf{p}, \Pi i, i, j ; p)}\left(\mathbf{w}^{\prime \prime}\right)$ if and only if either $(i, j ; p)$ blocks both $\left(\mu, \mathbf{p}, \mathbf{w}^{\prime}, \Pi\right)$ and $\left(\mu, \mathbf{p}, \mathbf{w}^{\prime \prime}, \Pi\right)$ or neither.

$$
\forall j^{\prime}, \Pi_{j^{\prime}} \longrightarrow \Pi_{j^{\prime}} \vee B^{(\mu, \mathbf{p}, \Pi ; i, j ; p)}
$$

State updating: $\left(\mu^{\prime}, \mathbf{p}^{\prime}, \mathbf{w}^{*}, \Pi^{\prime}\right) \stackrel{(i, j ; p)}{\Leftarrow}\left(\mu, \mathbf{p}, \mathbf{w}^{*}, \Pi\right)$, if

- $(i, j ; p)$ is satisfied in the new state, and
- for all $j^{\prime} \neq j, \Pi_{j^{\prime}}^{\prime}=\Pi_{j^{\prime}} \vee B^{(\mu, \mathbf{p}, \Pi ; i, j ; p)}$.

Learning-Blocking Path

A learning-blocking path is a sequence of states $\left\{\left(\mu^{l}, \mathbf{p}^{l}, \mathbf{w}^{*}, \Pi^{l}\right)\right\}_{l=0}^{L}$ s.t. for any two adjacent states $\left(\mu^{l}, \mathbf{p}^{l}, \mathbf{w}^{*}, \Pi^{l}\right)$ and $\left(\mu^{l+1}, \mathbf{p}^{l+1}, \mathbf{w}^{*}, \Pi^{l+1}\right)$,

- if $\left(\mu^{l}, \mathbf{p}^{l}, \mathbf{w}^{*}, \Pi^{l}\right)$ is not blocked, then $\left(\mu^{l+1}, \mathbf{p}^{l+1}\right)=\left(\mu^{l}, \mathbf{p}^{l}\right)$ and $\Pi^{l+1}=H_{\mu^{l}, \mathbf{p}^{l}}\left(\Pi^{l}\right)$;
- if $\left(\mu^{l}, \mathbf{p}^{l}, \mathbf{w}^{*}, \Pi^{l}\right)$ is blocked,
then $\left(\mu^{l+1}, \mathbf{p}^{l+1}, \mathbf{w}^{*}, \Pi^{l+1}\right) \stackrel{(i, j ; p)}{\rightleftarrows}\left(\mu^{l}, \mathbf{p}^{l}, \mathbf{w}^{*}, \Pi^{l}\right)$,
where $(i, j ; p)$ is a blocking combination for $\left(\mu^{l}, \mathbf{p}^{l}, \mathbf{w}^{*}, \Pi^{l}\right)$.

Main Result

Theorem 1
Suppose payments permitted in the job market are all integers.
Then for an arbitrary initial state, there exists a finite Learning-Blocking Path starting with it that leads to a stable state.

Main Result

Theorem 1
Suppose payments permitted in the job market are all integers.
Then for an arbitrary initial state, there exists a finite Learning-Blocking Path starting with it that leads to a stable state.

Theorem 2
Suppose payments permitted in the job market are all integers. Then the random learning-blocking path starting from an arbitrary state converges with probability one to a stable state.

Main Result

Theorem 1
Suppose payments permitted in the job market are all integers.
Then for an arbitrary initial state, there exists a finite Learning-Blocking Path starting with it that leads to a stable state.

Theorem 2
Suppose payments permitted in the job market are all integers. Then the random learning-blocking path starting from an arbitrary state converges with probability one to a stable state.

Theorem 3
($\mu, \mathbf{p}, \mathbf{w})$ is an incomplete-info. stable outcome in the sense of LMPS
if and only if
there exists a partition profile Π such that $(\mu, \mathbf{p}, \mathbf{w}, \Pi)$ is stable.

Proof of Theorem 1

Initial state: $\left(\mu, \mathbf{p}, \mathbf{t}^{*}, \Pi\right)$, assumed to be IR.

$$
\left(\mu, \mathbf{p}, \mathbf{t}^{*}, \Pi\right):\left\{\begin{array}{l}
\text { Blocked } \\
\text { Not blocked, } \quad\left(\mu, \mathbf{p}, \mathbf{t}^{*}, H_{\mu, \mathbf{p}}(\Pi)\right):\left\{\begin{array}{l}
\text { Blocked } \\
\text { Not blocked }
\end{array}\right.
\end{array}\right.
$$

Finite time: blocked OR stable.

Proof of Theorem 1

Initial state: $\left(\mu, \mathbf{p}, \mathbf{t}^{*}, \Pi\right)$ is blocked, where $\left(i^{1}, j^{1}\right)$ is a blocking pair.
A new state: $\left(\mu^{\prime}, \mathbf{p}^{\prime}, \mathbf{t}^{*}, \Pi^{\prime}\right)$.

Proof of Theorem 1

Proof of Theorem 1

Proof of Theorem 1

$$
\alpha=i
$$

Proof of Theorem 1

$$
\alpha=i^{2}
$$

Proof of Theorem 1

$$
\alpha=i^{2}
$$

When tracking stops: the set contains no blocking pair

Proof of Theorem 1

$$
\alpha=i^{2}
$$

When tracking stops: the set contains no blocking pair OR there is one more direct observation.

Efficiency (CI Stability) of Stable States?

A partial answer:
(LMPS) Under Monotonicity and Supermodularity, every incomplete-information stable outcome is efficient.

Efficiency (CI Stability) of Stable States?

A partial answer:
(LMPS) Under Monotonicity and Supermodularity, every incomplete-information stable outcome is efficient.

Example 2

- One worker β with possible types $w_{\beta}=1$ (true) and $w_{\beta}^{\prime}=-1$. One firm b with type: $f_{b}=1$.
Values: $v_{w f}=|w f|$ and $\phi_{w f}=w f$.

Efficiency (CI Stability) of Stable States?

A partial answer:
(LMPS) Under Monotonicity and Supermodularity, every incomplete-information stable outcome is efficient.

Example 2

- One worker β with possible types $w_{\beta}=1$ (true) and $w_{\beta}^{\prime}=-1$. One firm b with type: $f_{b}=1$.
Values: $v_{w f}=|w f|$ and $\phi_{w f}=w f$.
- Status quo: no match and $\Pi_{b}=\left\{\left\{w_{\beta}, w_{\beta}^{\prime}\right\}\right\}$.

Efficiency (CI Stability) of Stable States?

A partial answer:
(LMPS) Under Monotonicity and Supermodularity, every incomplete-information stable outcome is efficient.

Example 2

- One worker β with possible types $w_{\beta}=1$ (true) and $w_{\beta}^{\prime}=-1$. One firm b with type: $f_{b}=1$.
Values: $v_{w f}=|w f|$ and $\phi_{w f}=w f$.
- Status quo: no match and $\Pi_{b}=\left\{\left\{w_{\beta}, w_{\beta}^{\prime}\right\}\right\}$.
- The status quo is
- incomplete-information stable but
- not efficient (not complete-information stable).

Conclusion

1. Stability with one-sided incomplete information.
i Describes firms' information by firm specific and flexible partitions.
ii Makes (II) stability a natural extension of (CI) stability. Isolates the role played by information (requirement 3).
iii Allows for natural definition of stability with two-sided (II). CH2017.
2. Path to stability.
i Describes information updating along a blocking path.
ii Shows the convergence of Learning-Blocking Paths.
iii Robustness of convergence w.r.t. learning pattern.
3. Connection with LMPS's stability notions.
i Generates the same set of stable allocations as LMPS.
ii Different conceptual starting points: one state V.S. a set of outcomes.

Bikhchandani, S. (2017). Stability with one-sided incomplete information. Journal of Economic Theory, 168:372-399.
Chakraborty, A., Citanna, A., and Ostrovsky, M. (2010). Two-sided matching with interdependent values. Journal of Economic Theory, 145(1):85-105.
Chen, B., Fujishige, S., and Yang, Z. (2010). Decentralized market processes to stable job matchings with competitive salaries. KIER Discussion Paper, 749.
Chen, B., Fujishige, S., and Yang, Z. (2016). Random decentralized market processes for stable job matchings with competitive salaries. Journal of Economic Theory, 165:25-36.
Crawford, V. P. and Knoer, E. M. (1981). Job matching with heterogeneous firms and workers. Econometrica, pages 437-450.
Fujishige, S. and Yang, Z. (2016). Decentralised random competitive dynamic market processes. University of York, Discussion Papers in Economics.
Klaus, B. and Klijn, F. (2007). Paths to stability for matching markets with couples. Games and Economic Behavior, 58(1):154-171.
Knuth, D. E. (1976). Mariages stables et leurs relations avec d\&autres problèmes combinatoires. Presses de l'Université de Montréal.
Kojima, F. and Ünver, M. U. (2008). Random paths to pairwise stability in many-to-many matching problems: a study on market equilibration. International Journal of Game Theory, 36(3-4):473-488.

Liu, Q., Mailath, G. J., Postlewaite, A., and Samuelson, L. (2014). Stable matching with incomplete information. Econometrica, 82(2):541-587.
Pomatto, L. (2015). Stable matching under forward-induction reasoning. Working Paper.
Roth, A. E. (1989). Two-sided matching with incomplete information about others' preferences. Games and Economic Behavior, 1(2):191-209.
Roth, A. E. and Vande Vate, J. H. (1990). Random paths to stability in two-sided matching. Econometrica, pages 1475-1480.
Shapley, L. S. and Shubik, M. (1971). The assignment game i: The core. International Journal of Game Theory, 1(1):111-130.

