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Nash Implementation

@ A social planner has an objective summarized by a social choice
function (SCF) f: @ — X.

@ An SCF is Nash implementable if there exists a
mechanism/game-form that satisfies two requirements:
e Existence: there always exists a good NE whose outcome is socially

desirable;
o Uniqueness: every NE results in the socially desirable outcome.
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Maskin (1977, 1999)

@ Maskin proposes a monotonicity condition and shows that it is a
necessary and almost sufficient condition for Nash implementation.

@ The sufficiency result has been criticized /improved on different
aspects:

o Integer game;
o Mixed NE;
e Two agents.

@ Revelation principle does not hold.
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Abreu and Matsushima (1992, 1994)

e AM (1992, 94) dispense with Maskin monotonicity and resolve all the
issues.

@ AM consider an economic environment with lotteries and transfers;
moreover,

o AM (1992) appeal to virtual implementation and use rationalizability;
o AM (1994) appeal to iterated weak dominance rather than NE.
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Robustness Necessitates Monotonicity

@ Complete information is an idealization
o Agents receive signals (=states) that may be wrong with small yet
positive probability.
o Want to implement f robustly: i.e., the closure of equilibrium
outcomes under nearly complete information.

@ Monotonicity is necessary for robustness:

o UNE: Chung and Ely (2003);
o SPE: Aghion et al. (2012).

@ Harsanyi's purification argument: for robustness we can't ignore
mixed NE.
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Maskin Meets Abreu and Matsushima

@ In a (finite) economic environment with lotteries and transfers, we
unify the two approaches to achieve NE implementation.

@ Main results:

e When / > 3, an SCF is pure Nash implementable by a direct
mechanism if and only if it satisfies Maskin monotonicity.

e When /| > 2, an SCF is mixed Nash implementable by a finite
mechanism if and only if it satisfies Maskin monotonicity.

@ Both implementation results are exact and robust.
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T =1{1,2,...,1}: finite set of players

X =A(A) x R’: set of allocations

e O;: finite set of types

e Each 0, induces a quasilinear EU u; (+,60;) : X - R

e u;(-,0,0)) is bounded
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Model Cont.

0 0 €O C X;c70; is called a state
e f:® — X: a social choice function

@ 6 is common knowledge among the agents but unknown to the
designer

e Assumption: Any two types 0; and @’ induce distinct preference
orderings over A (A).

o There is a menu of dictator lotteries /; : @, — A (A) such that

Uy (/;(k (Gk) ,Gk) > Uy (/;(< (9;() ,Gk) whenever 9;( #- 0.
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(Maskin) Monotonicity

@ Define the strict lower-counter set of allocation x for type 6; as
SLi(x,0;) = {x' € X:ui(x,0;) > u (x',9,-)} )

@ Define the strict upper-contour set of allocation x for type 6; as,
SU; (x,0;) = {x' e Xy (x',9,-) > u; (X,Q,-)}.

@ Say an SCF f satisfies (Maskin-)monotonicity if

f(0) #f(0) = Jagentist. SLi(F(0),0))NSU; (f(0),6)) # .
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Best Challenge Scheme

o Whenever SL;(f(9),0,) NSU;(f(0),0;) # @, select a test allocation

x(8,8;) € SLi((B),8;) N SU(f(B),8)).

@ The best challenge scheme for type 6§, against state § € ©® is defined
as

f(9), if SL;(f(9),6
] 0

A -)ﬂSLl,-(f(é) i) =@,
BG/(Q) _{ X( ,9,‘), if Sﬁ,(f(é), .

.0
i) N SU(F(),0) #
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Mechanism

@ A mechanism is a triplet ((M;), g, (T;))ie; where M; is the message
space; g : M — X is an outcome function; and 7, : M — R is a
transfer rule.

@ Goal: find a mechanism ((M,-,T,-)iez,g) such that at each 6,

e A pure NE exists;
o For any mixed NE 0 € x;c7A (M;), we have

o(m)>0=g(m)="f(0) and T; (m) = 0 for every i.
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Pure NE Implementation in DRM

o Rule 1. If /(> 3) agents all report 8, then implement f(8);

@ Rule 2. If / — 1 agents report @ and agent i reports 8 # 8, then
implement Bgi<é). Moreover, agent i 4+ 1 has to pay a large penalty
of 2D.

@ Rule 3. Otherwise, implement f(m;). Moreover, any agent i who
does not report a state in the unique majority is asked to pay D.
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Mixed NE Implementation

o Consider | = 2. Each agent reports

mj = (m:l (m%,/, m,z,j) m,3) €0; x0 x 0.
@ The outcome is either [1 checks 2] or [2 checks 1] with equal
probability.

@ Two key notions:

; B
@ consistency: m; = mj.

o no challenge: B3 (mf) = f(mjz).
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i Checks j: Outcome Function

o If it is consistent and no challenge, then implement f(mf).

@ If there is either inconsistency or challenge, then implement

J A\
B3 (mf) with probability 1 — ¢

3 (i (m}) + 17 (m})) | with probability ¢

where [} is the dictator lotteries constructed earlier.

@ Choose € small so that all test allocations remain valid.



i Checks j: Transfer Rule

Choose D large so that transfers dominate:

Transfer to agents m/?,j e mfj m/?,j 7 mJZJ
mi;=m; | m;#m
(ti(m). 5 (m) | (0,0) [ (D.=D) [(=D,=D)

@ j's 1st report is truthful=- i's 2nd report is truthful:

D] D]
J =0 0 D
i #Oj —-D Oor —D

Transfer to i (ml m? ) (0,,0)) (ml m? ) (6;,67)
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Contagion of Truth

°
1st report | 2nd report
Agent 1 01 By B,
Agent 2 no Y1 Y2
°
1st report | 2nd report
Agent 1 01 By B,
Agent 2 oy 01, v,
°
1st report | 2nd report
Agent 1 61 01, B,
Agent 2 ®) 01,7,

@ Truth-telling all the way constitutes a pure-strategy NE.
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@ To sum up,
1

; controls (only) dictator lotteries /;
e m? controls consistency and transfers;

I
o m3 controls whether to challenge mJZ.

]

em

@ We show that in any equilibrium, we have

e consistency (= T; (m) = 0);
e no challenge (= g (m) = £(6)).
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@ For instance, it cannot be both agents randomize their 2nd reports.

o If so, inconsistency (and dictator lotteries) occurs with ¢j-positive
probability for every m;. Hence, for some (B;.B,) # (1. 72).

1st report | 2nd report

Agent 2 0o Y1 Y2

e This contradicts contagion of truth.

@ Similarly, it cannot be both agents choose a deterministic yet
inconsistent 2nd report.

@ Similarly, it cannot be only one agent who randomizes his 2nd report.
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No Challenge

@ By consistency, there can only be a unanimous 2nd report

2st report | 3nd report
Agent 1 601,02 01
Agent 2 01,0 )

@ We argue that

Sﬁ,-(f(é),é,-) NSU;(f(0),0;) = & for every |
which implies
SLi(f(8),0,)NU;i(f(B),0;) = @ for every i

which further implies no challenge.
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No Challenge

@ Suppose to the contrary that
SL1(f(0),01)NSU1(F(0),01) # @

@ When 1 checks 2, 8 will also be challenged by every 3rd report J1,
SLi(f(0),0:)NSUL(f(D),61) # @

@ Dictator lottery happens with probability 1. Then, contagion of truth

implies y
0 =26.
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Extension

Counterexample which shows we can’t implement in DRM even in
pure NE with | = 2.

Rationalizable implementation of any monotonic* SCF (Bergemann,
Morris, Tercieux (2011));

@ Social choice correspondences;
e Small transfers (Abreu and Matsushima (1994));
@ Infinite O;

@ Implementation for every cardinalization (Mezzetti and Renou
(2012)).



