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Nash Implementation

A social planner has an objective summarized by a social choice
function (SCF) f : Θ ! X .

An SCF is Nash implementable if there exists a
mechanism/game-form that satis�es two requirements:

Existence: there always exists a good NE whose outcome is socially
desirable;
Uniqueness: every NE results in the socially desirable outcome.
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Maskin (1977, 1999)

Maskin proposes a monotonicity condition and shows that it is a
necessary and almost su¢ cient condition for Nash implementation.

The su¢ ciency result has been criticized/improved on di¤erent
aspects:

Integer game;
Mixed NE;
Two agents.

Revelation principle does not hold.
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Abreu and Matsushima (1992, 1994)

AM (1992, 94) dispense with Maskin monotonicity and resolve all the
issues.

AM consider an economic environment with lotteries and transfers;
moreover,

AM (1992) appeal to virtual implementation and use rationalizability;
AM (1994) appeal to iterated weak dominance rather than NE.
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Robustness Necessitates Monotonicity

Complete information is an idealization

Agents receive signals (=states) that may be wrong with small yet
positive probability.
Want to implement f robustly: i.e., the closure of equilibrium
outcomes under nearly complete information.

Monotonicity is necessary for robustness:

UNE: Chung and Ely (2003);
SPE: Aghion et al. (2012).

Harsanyi�s puri�cation argument: for robustness we can�t ignore
mixed NE.
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Maskin Meets Abreu and Matsushima

In a (�nite) economic environment with lotteries and transfers, we
unify the two approaches to achieve NE implementation.

Main results:

When I � 3, an SCF is pure Nash implementable by a direct
mechanism if and only if it satis�es Maskin monotonicity.

When I � 2, an SCF is mixed Nash implementable by a �nite
mechanism if and only if it satis�es Maskin monotonicity.

Both implementation results are exact and robust.
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Model

I = f1, 2, ..., Ig: �nite set of players

X � ∆ (A)�RI : set of allocations

Θi : �nite set of types

Each θi induces a quasilinear EU ui (�, θi ) : X ! R

ui (�, 0, θi ) is bounded
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Model Cont.

θ 2 Θ � �i2IΘi is called a state

f : Θ ! X : a social choice function

θ is common knowledge among the agents but unknown to the
designer

Assumption: Any two types θi and θ0i induce distinct preference
orderings over ∆ (A).

There is a menu of dictator lotteries l�k : Θk ! ∆ (A) such that

uk (l
�
k (θk ) , θk ) > uk

�
l�k
�
θ0k
�
, θk
�
whenever θ0k 6= θk .
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(Maskin) Monotonicity

De�ne the strict lower-counter set of allocation x for type θi as

SLi (x , θi ) =
�
x 0 2 X : ui (x , θi ) > ui

�
x 0, θi

�	
.

De�ne the strict upper-contour set of allocation x for type θi as,

SU i (x , θi ) =
�
x 0 2 X : ui

�
x 0, θi

�
> ui (x , θi )

	
.

Say an SCF f satis�es (Maskin-)monotonicity if

f (θ) 6= f
�
θ0
�
) 9 agent i s.t. SLi (f (θ) , θi )\SU i

�
f (θ) , θ0i

�
6= ?.
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Best Challenge Scheme

Whenever SLi (f (θ̃), θ̃i ) \ SU i (f (θ̃), θi ) 6= ?, select a test allocation

x(θ̃, θi ) 2 SLi (f (θ̃), θ̃i ) \ SU i (f (θ̃), θi ).

The best challenge scheme for type θi against state θ̃ 2 Θ is de�ned
as

Bθi (θ̃) =

�
f (θ̃), if SLi (f (θ̃), θ̃i ) \ SU i (f (θ̃), θi ) = ?;
x(θ̃, θi ), if SLi (f (θ̃), θ̃i ) \ SUi (f (θ̃), θi ) 6= ?.
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Mechanism

A mechanism is a triplet ((Mi ), g , (τi ))i2I where Mi is the message
space; g : M ! X is an outcome function; and τi : M ! R is a
transfer rule.

Goal: �nd a mechanism
�
(Mi , τi )i2I , g

�
such that at each θ,

A pure NE exists;
For any mixed NE σ 2 �i2I∆ (Mi ), we have

σ (m) > 0) g (m) = f (θ) and τi (m) = 0 for every i .
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Pure NE Implementation in DRM

Rule 1. If I (� 3) agents all report θ̃, then implement f (θ̃);

Rule 2. If I � 1 agents report θ̃ and agent i reports θ 6= θ̃, then
implement Bθi (θ̃). Moreover, agent i + 1 has to pay a large penalty
of 2D.

Rule 3. Otherwise, implement f (m1). Moreover, any agent i who
does not report a state in the unique majority is asked to pay D.
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Mixed NE Implementation

Consider I = 2. Each agent reports

mi =
�
m1i ,

�
m2i ,i ,m

2
i ,j

�
,m3i

�
2 Θi �Θ�Θi .

The outcome is either [1 checks 2] or [2 checks 1] with equal
probability.

Two key notions:

consistency: m2i = m
2
j .

no challenge: Bm3i

�
m2j

�
= f (m2j ).
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i Checks j: Outcome Function

If it is consistent and no challenge, then implement f (m2j ).

If there is either inconsistency or challenge, then implement

1
2

�
l�i
�
m1i
�
+ l�j

�
m1j
��

with probability ε

Bm3i

�
m2j
�

with probability 1� ε

where l�k is the dictator lotteries constructed earlier.

Choose ε small so that all test allocations remain valid.
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i Checks j: Transfer Rule

Choose D large so that transfers dominate:

Transfer to agents m2i ,j = m
2
j ,j m2i ,j 6= m2j ,j

m2i ,j = m
1
j m2i ,j 6= m1j

(τi (m) , τj (m)) (0, 0) (D,�D) (�D,�D)

j�s 1st report is truthful) i�s 2nd report is truthful:

Transfer to i
�
m1j ,m

2
j ,j

�
= (θj , θj )

�
m1j ,m

2
j ,j

�
=
�
θj , θ

0
j

�
m2i ,j = θj 0 D
m2i ,j 6= θj �D 0 or �D
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Summary

To sum up,

m1i controls (only) dictator lotteries l
�
i ;

m2i controls consistency and transfers;
m3i controls whether to challenge m

2
j .

We show that in any equilibrium, we have

consistency () τi (m) = 0);
no challenge () g (m) = f (θ)).
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By consistency, there can only be a unanimous 2nd report
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We argue that
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which implies

SLi (f (θ̃), θ̃i ) \ Ui (f (θ̃), θi ) = ? for every i

which further implies no challenge.
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Dictator lottery happens with probability 1. Then, contagion of truth
implies
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Counterexample which shows we can�t implement in DRM even in
pure NE with I = 2.

Rationalizable implementation of any monotonic� SCF (Bergemann,
Morris, Tercieux (2011));
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Small transfers (Abreu and Matsushima (1994));

In�nite Θ;
Implementation for every cardinalization (Mezzetti and Renou
(2012)).



Extension

Counterexample which shows we can�t implement in DRM even in
pure NE with I = 2.

Rationalizable implementation of any monotonic� SCF (Bergemann,
Morris, Tercieux (2011));

Social choice correspondences;

Small transfers (Abreu and Matsushima (1994));

In�nite Θ;
Implementation for every cardinalization (Mezzetti and Renou
(2012)).



Extension

Counterexample which shows we can�t implement in DRM even in
pure NE with I = 2.

Rationalizable implementation of any monotonic� SCF (Bergemann,
Morris, Tercieux (2011));

Social choice correspondences;

Small transfers (Abreu and Matsushima (1994));

In�nite Θ;
Implementation for every cardinalization (Mezzetti and Renou
(2012)).



Extension

Counterexample which shows we can�t implement in DRM even in
pure NE with I = 2.

Rationalizable implementation of any monotonic� SCF (Bergemann,
Morris, Tercieux (2011));

Social choice correspondences;

Small transfers (Abreu and Matsushima (1994));

In�nite Θ;
Implementation for every cardinalization (Mezzetti and Renou
(2012)).



Extension

Counterexample which shows we can�t implement in DRM even in
pure NE with I = 2.

Rationalizable implementation of any monotonic� SCF (Bergemann,
Morris, Tercieux (2011));

Social choice correspondences;

Small transfers (Abreu and Matsushima (1994));

In�nite Θ;

Implementation for every cardinalization (Mezzetti and Renou
(2012)).



Extension

Counterexample which shows we can�t implement in DRM even in
pure NE with I = 2.

Rationalizable implementation of any monotonic� SCF (Bergemann,
Morris, Tercieux (2011));

Social choice correspondences;

Small transfers (Abreu and Matsushima (1994));

In�nite Θ;
Implementation for every cardinalization (Mezzetti and Renou
(2012)).


