Maskin Meets Abreu and Matsushima

Yi-Chun Chen (NUS) T

Takashi Kunimoto (SMU) Yifei Sun (UIBE) Siyang Xiong (Bristol)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

July 10, 2018 IMS, NUS A social planner has an objective summarized by a social choice function (SCF) f : Θ → X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• A social planner has an objective summarized by a social choice function (SCF) $f: \Theta \to X$.

 An SCF is Nash implementable if there exists a mechanism/game-form that satisfies two requirements:

- A social planner has an objective summarized by a social choice function (SCF) $f: \Theta \to X$.
- An SCF is Nash implementable if there exists a mechanism/game-form that satisfies two requirements:
 - Existence: there always exists a good NE whose outcome is socially desirable;

- A social planner has an objective summarized by a social choice function (SCF) $f: \Theta \to X$.
- An SCF is Nash implementable if there exists a mechanism/game-form that satisfies two requirements:
 - Existence: there always exists a good NE whose outcome is socially desirable;

• Uniqueness: every NE results in the socially desirable outcome.

• Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.
- The sufficiency result has been criticized/improved on different aspects:

- Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.
- The sufficiency result has been criticized/improved on different aspects:

Integer game;

- Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.
- The sufficiency result has been criticized/improved on different aspects:

- Integer game;
- Mixed NE;

- Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.
- The sufficiency result has been criticized/improved on different aspects:

- Integer game;
- Mixed NE;
- Two agents.

- Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.
- The sufficiency result has been criticized/improved on different aspects:

- Integer game;
- Mixed NE;
- Two agents.
- Revelation principle does not hold.

• AM (1992, 94) dispense with Maskin monotonicity and resolve all the issues.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- AM (1992, 94) dispense with Maskin monotonicity and resolve all the issues.
- AM consider an economic environment with lotteries and transfers; moreover,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- AM (1992, 94) dispense with Maskin monotonicity and resolve all the issues.
- AM consider an economic environment with lotteries and transfers; moreover,
 - AM (1992) appeal to virtual implementation and use rationalizability;

- AM (1992, 94) dispense with Maskin monotonicity and resolve all the issues.
- AM consider an economic environment with lotteries and transfers; moreover,
 - AM (1992) appeal to virtual implementation and use rationalizability;

• AM (1994) appeal to iterated weak dominance rather than NE.

• Complete information is an idealization

- Complete information is an idealization
 - Agents receive signals (=states) that may be wrong with small yet positive probability.

- Complete information is an idealization
 - Agents receive signals (=states) that may be wrong with small yet positive probability.

• Want to implement *f* robustly: i.e., the closure of equilibrium outcomes under nearly complete information.

- Complete information is an idealization
 - Agents receive signals (=states) that may be wrong with small yet positive probability.

- Want to implement *f* robustly: i.e., the closure of equilibrium outcomes under nearly complete information.
- Monotonicity is necessary for robustness:

- Complete information is an idealization
 - Agents receive signals (=states) that may be wrong with small yet positive probability.

- Want to implement *f* robustly: i.e., the closure of equilibrium outcomes under nearly complete information.
- Monotonicity is necessary for robustness:
 - UNE: Chung and Ely (2003);

- Complete information is an idealization
 - Agents receive signals (=states) that may be wrong with small yet positive probability.

- Want to implement *f* robustly: i.e., the closure of equilibrium outcomes under nearly complete information.
- Monotonicity is necessary for robustness:
 - UNE: Chung and Ely (2003);
 - SPE: Aghion et al. (2012).

- Complete information is an idealization
 - Agents receive signals (=states) that may be wrong with small yet positive probability.
 - Want to implement *f* robustly: i.e., the closure of equilibrium outcomes under nearly complete information.
- Monotonicity is necessary for robustness:
 - UNE: Chung and Ely (2003);
 - SPE: Aghion et al. (2012).
- Harsanyi's purification argument: for robustness we can't ignore mixed NE.

Maskin Meets Abreu and Matsushima

• In a (finite) economic environment with lotteries and transfers, we unify the two approaches to achieve NE implementation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• In a (finite) economic environment with lotteries and transfers, we unify the two approaches to achieve NE implementation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Main results:

- In a (finite) economic environment with lotteries and transfers, we unify the two approaches to achieve NE implementation.
- Main results:
 - When *I* ≥ 3, an SCF is pure Nash implementable by a direct mechanism if and only if it satisfies Maskin monotonicity.

- In a (finite) economic environment with lotteries and transfers, we unify the two approaches to achieve NE implementation.
- Main results:
 - When *I* ≥ 3, an SCF is pure Nash implementable by a direct mechanism if and only if it satisfies Maskin monotonicity.
 - When I ≥ 2, an SCF is mixed Nash implementable by a finite mechanism if and only if it satisfies Maskin monotonicity.

- In a (finite) economic environment with lotteries and transfers, we unify the two approaches to achieve NE implementation.
- Main results:
 - When *I* ≥ 3, an SCF is pure Nash implementable by a direct mechanism if and only if it satisfies Maskin monotonicity.
 - When I ≥ 2, an SCF is mixed Nash implementable by a finite mechanism if and only if it satisfies Maskin monotonicity.

• Both implementation results are exact and robust.

• $\mathcal{I} = \{1, 2, ..., I\}$: finite set of players

•
$$\mathcal{I} = \{1, 2, ..., I\}$$
: finite set of players

•
$$X \equiv \Delta(A) \times \mathbb{R}^{I}$$
: set of allocations

•
$$\mathcal{I} = \{1, 2, ..., I\}$$
: finite set of players

•
$$X \equiv \Delta(A) \times \mathbb{R}^{l}$$
: set of allocations

• Θ_i : finite set of types

•
$$\mathcal{I} = \{1, 2, ..., I\}$$
: finite set of players

•
$$X \equiv \Delta(A) \times \mathbb{R}^{I}$$
: set of allocations

- Θ_i : finite set of types
- Each θ_i induces a quasilinear EU $u_i(\cdot, \theta_i) : X \to \mathbb{R}$

•
$$\mathcal{I} = \{1, 2, ..., I\}$$
: finite set of players

•
$$X \equiv \Delta(A) \times \mathbb{R}^{I}$$
: set of allocations

- Θ_i : finite set of types
- Each θ_i induces a quasilinear EU $u_i(\cdot, \theta_i) : X \to \mathbb{R}$

• $u_i(\cdot, \mathbf{0}, \theta_i)$ is bounded

• $\theta \in \Theta \subseteq \times_{i \in \mathcal{I}} \Theta_i$ is called a state

• $\theta \in \Theta \subseteq \times_{i \in \mathcal{I}} \Theta_i$ is called a state

• $f: \Theta \to X$: a social choice function

(ロ)、(型)、(E)、(E)、 E) の(の)

• $\theta \in \Theta \subseteq \times_{i \in \mathcal{I}} \Theta_i$ is called a state

- $f: \Theta \to X$: a social choice function
- $\boldsymbol{\theta}$ is common knowledge among the agents but unknown to the designer

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $\theta \in \Theta \subseteq \times_{i \in \mathcal{I}} \Theta_i$ is called a state

• $f: \Theta \to X$: a social choice function

- $\boldsymbol{\theta}$ is common knowledge among the agents but unknown to the designer
- Assumption: Any two types θ_i and θ'_i induce distinct preference orderings over Δ (A).

Model Cont.

• $\theta \in \Theta \subseteq \times_{i \in \mathcal{I}} \Theta_i$ is called a state

- $f: \Theta \to X$: a social choice function
- $\boldsymbol{\theta}$ is common knowledge among the agents but unknown to the designer
- Assumption: Any two types θ_i and θ'_i induce distinct preference orderings over Δ (A).
 - There is a menu of dictator lotteries $l_{k}^{*}: \Theta_{k} \to \Delta(A)$ such that

 $u_k\left(l_k^*\left(\theta_k\right),\theta_k\right) > u_k\left(l_k^*\left(\theta_k'\right),\theta_k\right) \text{ whenever } \theta_k' \neq \theta_k.$

・ロト・西ト・ヨト・ヨー シック

• Define the strict lower-counter set of allocation x for type θ_i as

$$\mathcal{SL}_{i}(x,\theta_{i}) = \left\{ x' \in X : u_{i}(x,\theta_{i}) > u_{i}(x',\theta_{i}) \right\}.$$

• Define the strict lower-counter set of allocation x for type θ_i as

$$\mathcal{SL}_{i}(x,\theta_{i}) = \left\{ x' \in X : u_{i}(x,\theta_{i}) > u_{i}(x',\theta_{i}) \right\}.$$

• Define the strict upper-contour set of allocation x for type θ_i as,

$$\mathcal{SU}_{i}(x,\theta_{i}) = \left\{x' \in X : u_{i}(x',\theta_{i}) > u_{i}(x,\theta_{i})\right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Define the strict lower-counter set of allocation x for type θ_i as

$$\mathcal{SL}_{i}(x,\theta_{i}) = \left\{ x' \in X : u_{i}(x,\theta_{i}) > u_{i}(x',\theta_{i}) \right\}.$$

• Define the strict upper-contour set of allocation x for type θ_i as,

$$\mathcal{SU}_{i}(x,\theta_{i}) = \left\{x' \in X : u_{i}(x',\theta_{i}) > u_{i}(x,\theta_{i})\right\}.$$

• Say an SCF f satisfies (Maskin-)monotonicity if

 $f\left(\theta\right)\neq f\left(\theta'\right) \Rightarrow \exists \text{ agent } i \text{ s.t. } \mathcal{SL}_{i}\left(f\left(\theta\right),\theta_{i}\right)\cap\mathcal{SU}_{i}\left(f\left(\theta\right),\theta_{i}'\right)\neq\varnothing.$

• Whenever $\mathcal{SL}_i(f(\tilde{\theta}), \tilde{\theta}_i) \cap \mathcal{SU}_i(f(\tilde{\theta}), \theta_i) \neq \emptyset$, select a test allocation $x(\tilde{\theta}, \theta_i) \in \mathcal{SL}_i(f(\tilde{\theta}), \tilde{\theta}_i) \cap \mathcal{SU}_i(f(\tilde{\theta}), \theta_i).$

• Whenever $\mathcal{SL}_i(f(\tilde{\theta}), \tilde{\theta}_i) \cap \mathcal{SU}_i(f(\tilde{\theta}), \theta_i) \neq \emptyset$, select a test allocation $x(\tilde{\theta}, \theta_i) \in \mathcal{SL}_i(f(\tilde{\theta}), \tilde{\theta}_i) \cap \mathcal{SU}_i(f(\tilde{\theta}), \theta_i).$

• The best challenge scheme for type θ_i against state $\tilde{\theta} \in \Theta$ is defined as

$$B_{\theta_i}(\tilde{\theta}) = \begin{cases} f(\tilde{\theta}), & \text{if } \mathcal{SL}_i(f(\tilde{\theta}), \tilde{\theta}_i) \cap \mathcal{SU}_i(f(\tilde{\theta}), \theta_i) = \emptyset; \\ x(\tilde{\theta}, \theta_i), & \text{if } \mathcal{SL}_i(f(\tilde{\theta}), \tilde{\theta}_i) \cap \mathcal{SU}_i(f(\tilde{\theta}), \theta_i) \neq \emptyset. \end{cases}$$

A mechanism is a triplet ((M_i), g, (τ_i))_{i∈I} where M_i is the message space; g : M → X is an outcome function; and τ_i : M → ℝ is a transfer rule.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A mechanism is a triplet ((M_i), g, (τ_i))_{i∈I} where M_i is the message space; g : M → X is an outcome function; and τ_i : M → ℝ is a transfer rule.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Goal: find a mechanism $((M_i, \tau_i)_{i \in \mathcal{I}}, g)$ such that at each θ ,

• A mechanism is a triplet $((M_i), g, (\tau_i))_{i \in I}$ where M_i is the message space; $g : M \to X$ is an outcome function; and $\tau_i : M \to \mathbb{R}$ is a transfer rule.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Goal: find a mechanism $((M_i, \tau_i)_{i \in \mathcal{I}}, g)$ such that at each θ ,
 - A pure NE exists;

A mechanism is a triplet ((M_i), g, (τ_i))_{i∈I} where M_i is the message space; g : M → X is an outcome function; and τ_i : M → ℝ is a transfer rule.

- Goal: find a mechanism $((M_i, \tau_i)_{i \in \mathcal{I}}, g)$ such that at each θ ,
 - A pure NE exists;
 - For any mixed NE $\sigma \in \times_{i \in \mathcal{I}} \Delta(M_i)$, we have

 $\sigma\left(m\right)>0\Rightarrow g\left(m\right)=f\left(\theta\right) \text{ and } \tau_{i}\left(m\right)=0 \text{ for every } i.$

• Rule 1. If $I(\geq 3)$ agents all report $\tilde{\theta}$, then implement $f(\tilde{\theta})$;

- Rule 1. If $I(\geq 3)$ agents all report $\tilde{\theta}$, then implement $f(\tilde{\theta})$;
- **Rule 2.** If I 1 agents report $\tilde{\theta}$ and agent *i* reports $\theta \neq \tilde{\theta}$, then implement $B_{\theta_i}(\tilde{\theta})$. Moreover, agent i + 1 has to pay a large penalty of 2*D*.

- Rule 1. If $I(\geq 3)$ agents all report $\tilde{\theta}$, then implement $f(\tilde{\theta})$;
- Rule 2. If *I* − 1 agents report θ̃ and agent *i* reports θ ≠ θ̃, then implement B_{θi}(θ̃). Moreover, agent *i* + 1 has to pay a large penalty of 2D.
- Rule 3. Otherwise, implement $f(m_1)$. Moreover, any agent *i* who does not report a state in the unique majority is asked to pay *D*.

(日) (同) (三) (三) (三) (○) (○)

$$m_i = \left(m_i^1, \left(m_{i,i}^2, m_{i,j}^2\right), m_i^3\right) \in \Theta_i imes \Theta imes \Theta_i.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$m_i = \left(m_i^1, \left(m_{i,i}^2, m_{i,j}^2\right), m_i^3
ight) \in \Theta_i imes \Theta imes \Theta_i.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• The outcome is either [1 checks 2] or [2 checks 1] with equal probability.

$$m_i = \left(m_i^1, \left(m_{i,i}^2, m_{i,j}^2\right), m_i^3
ight) \in \Theta_i imes \Theta imes \Theta_i.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- The outcome is either [1 checks 2] or [2 checks 1] with equal probability.
- Two key notions:

$$m_i = \left(m_i^1, \left(m_{i,i}^2, m_{i,j}^2\right), m_i^3
ight) \in \Theta_i imes \Theta imes \Theta_i.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- The outcome is either [1 checks 2] or [2 checks 1] with equal probability.
- Two key notions:

• consistency:
$$m_i^2 = m_j^2$$
.

$$m_i = \left(m_i^1, \left(m_{i,i}^2, m_{i,j}^2\right), m_i^3
ight) \in \Theta_i imes \Theta imes \Theta_i.$$

- The outcome is either [1 checks 2] or [2 checks 1] with equal probability.
- Two key notions:
 - consistency: $m_i^2 = m_i^2$.
 - no challenge: $B_{m_i^3}\left(m_j^2\right) = f(m_j^2).$

• If it is consistent and no challenge, then implement $f(m_i^2)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- If it is consistent and no challenge, then implement $f(m_i^2)$.
- If there is either inconsistency or challenge, then implement

$\boxed{\frac{1}{2}\left(I_{i}^{*}\left(m_{i}^{1}\right)+I_{j}^{*}\left(m_{j}^{1}\right)\right)}$	with probability $arepsilon$
$B_{m_i^3}\left(m_j^2\right)$	with probability $1-arepsilon$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where I_k^* is the dictator lotteries constructed earlier.

- If it is consistent and no challenge, then implement $f(m_i^2)$.
- If there is either inconsistency or challenge, then implement

$\boxed{\frac{1}{2}\left(I_{i}^{*}\left(m_{i}^{1}\right)+I_{j}^{*}\left(m_{j}^{1}\right)\right)}$	with probability $arepsilon$
$B_{m_i^3}\left(m_j^2\right)$	with probability $1-arepsilon$

where l_k^* is the dictator lotteries constructed earlier.

• Choose ε small so that all test allocations remain valid.

Choose D large so that transfers dominate:

Transfer to agents	$m_{i,j}^2 = m_{j,j}^2$	$m_{i,j}^2$;	$\neq m_{j,j}^2$
		$m_{i,j}^2 = m_j^1$	$m_{i,j}^2 eq m_j^1$
$\left(au_{i}\left(m ight)$, $ au_{j}\left(m ight) ight)$	(0, 0)	(D, -D)	(-D, -D)

• *j*'s 1st report is truthful \Rightarrow *i*'s 2nd report is truthful:

Transfer to <i>i</i>	$\left(m_{j}^{1},m_{j,j}^{2} ight) =\left(heta_{j}, heta_{j} ight)$	$\left(\left(m_{j}^{1},m_{j,j}^{2} ight) =\left(heta_{j}, heta_{j}^{\prime} ight) ight)$
$m_{i,j}^2 = heta_j$	0	D
$m_{i,j}^2 eq heta_j$	- <i>D</i>	0 or <i>-D</i>

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへで

	1st report	2nd report
Agent 1	$ heta_1$	eta_1 , eta_2
Agent 2	α2	γ_1 , γ_2

	1st report	2nd report
Agent 1	$ heta_1$	eta_1 , eta_2
Agent 2	α2	γ_1 , γ_2

۲

	1st report	2nd report
Agent 1	$ heta_1$	eta_1 , eta_2
Agent 2	α2	$ heta_1$, γ_2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

٢

	1st report	2nd report
Agent 1	$ heta_1$	eta_1 , eta_2
Agent 2	α2	γ_1 , γ_2

	1st report	2nd report
Agent 1	$ heta_1$	eta_1,eta_2
Agent 2	α2	$ heta_1$, γ_2

	1st report	2nd report
Agent 1	$ heta_1$	$ heta_1$, eta_2
Agent 2	α2	$ heta_1$, γ_2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

	1st report	2nd report
Agent 1	$ heta_1$	eta_1,eta_2
Agent 2	α2	γ_1 , γ_2

۲

	1st report	2nd report
Agent 1	$ heta_1$	eta_1 , eta_2
Agent 2	α2	$ heta_1$, γ_2

	1st report	2nd report
Agent 1	$ heta_1$	$ heta_1$, eta_2
Agent 2	α2	$ heta_1$, γ_2

• Truth-telling all the way constitutes a pure-strategy NE.

• To sum up,

<ロト (個) (目) (目) (目) (0) (0)</p>

- To sum up,
 - m_i^1 controls (only) dictator lotteries I_i^* ;

- To sum up,
 - m_i^1 controls (only) dictator lotteries l_i^* ;

• m_i^2 controls consistency and transfers;

• To sum up,

- m_i^1 controls (only) dictator lotteries l_i^* ;
- m_i^2 controls consistency and transfers;
- m_i^3 controls whether to challenge m_i^2 .

To sum up,

- m_i^1 controls (only) dictator lotteries l_i^* ;
- m_i^2 controls consistency and transfers;
- m_i^3 controls whether to challenge m_i^2 .
- We show that in any equilibrium, we have

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

To sum up,

- m_i^1 controls (only) dictator lotteries l_i^* ;
- m_i^2 controls consistency and transfers;
- m_i^3 controls whether to challenge m_i^2 .
- We show that in any equilibrium, we have

• consistency ($\Rightarrow \tau_i(m) = 0$);

To sum up,

- m_i^1 controls (only) dictator lotteries l_i^* ;
- m_i^2 controls consistency and transfers;
- m_i^3 controls whether to challenge m_i^2 .
- We show that in any equilibrium, we have

- consistency ($\Rightarrow \tau_i(m) = 0$);
- no challenge ($\Rightarrow g(m) = f(\theta)$).

• For instance, it cannot be both agents randomize their 2nd reports.

- For instance, it cannot be both agents randomize their 2nd reports.
 - If so, inconsistency (and dictator lotteries) occurs with σ_j -positive probability for every m_i . Hence, for some $(\beta_1, \beta_2) \neq (\gamma_1, \gamma_2)$,

	1st report	2nd report
Agent 1	$ heta_1$	eta_1 , eta_2
Agent 2	θ_2	γ_1 , γ_2

- For instance, it cannot be both agents randomize their 2nd reports.
 - If so, inconsistency (and dictator lotteries) occurs with σ_j -positive probability for every m_i . Hence, for some $(\beta_1, \beta_2) \neq (\gamma_1, \gamma_2)$,

	1st report	2nd report
Agent 1	$ heta_1$	eta_1 , eta_2
Agent 2	θ_2	γ_1 , γ_2

• This contradicts contagion of truth.

- For instance, it cannot be both agents randomize their 2nd reports.
 - If so, inconsistency (and dictator lotteries) occurs with σ_j -positive probability for every m_i . Hence, for some $(\beta_1, \beta_2) \neq (\gamma_1, \gamma_2)$,

	1st report	2nd report
Agent 1	$ heta_1$	eta_1 , eta_2
Agent 2	θ_2	γ_1,γ_2

- This contradicts contagion of truth.
- Similarly, it cannot be both agents choose a deterministic yet inconsistent 2nd report.

- For instance, it cannot be both agents randomize their 2nd reports.
 - If so, inconsistency (and dictator lotteries) occurs with σ_j -positive probability for every m_i . Hence, for some $(\beta_1, \beta_2) \neq (\gamma_1, \gamma_2)$,

	1st report	2nd report
Agent 1	$ heta_1$	eta_1,eta_2
Agent 2	θ_2	γ_1,γ_2

- This contradicts contagion of truth.
- Similarly, it cannot be both agents choose a deterministic yet inconsistent 2nd report.
- Similarly, it cannot be only one agent who randomizes his 2nd report.

• By consistency, there can only be a unanimous 2nd report

	2st report	3nd report
Agent 1	$ ilde{ heta}_1$, $ ilde{ heta}_2$	δ_1
Agent 2	$ ilde{ heta}_1$, $ ilde{ heta}_2$	δ_2

(ロ)、(型)、(E)、(E)、 E) の(の)

• By consistency, there can only be a unanimous 2nd report

	2st report	3nd report
Agent 1	$ ilde{ heta}_1$, $ ilde{ heta}_2$	δ_1
Agent 2	$ ilde{ heta}_1$, $ ilde{ heta}_2$	δ_2

We argue that

$$\mathcal{SL}_i(f(ilde{ heta}), ilde{ heta}_i)\cap\mathcal{SU}_i(f(ilde{ heta}), heta_i)=arnothing$$
 for every i

which implies

$$\mathcal{SL}_i(f(ilde{ heta}), ilde{ heta}_i)\cap\mathcal{U}_i(f(ilde{ heta}), heta_i)=arnothing$$
 for every i

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

which further implies no challenge.

• Suppose to the contrary that

 $\mathcal{SL}_1(f(\tilde{ heta}), \tilde{ heta}_1) \cap \mathcal{SU}_1(f(\tilde{ heta}), heta_1)
eq arnothing$

• Suppose to the contrary that

 $\mathcal{SL}_1(f(\tilde{\theta}), \tilde{ heta}_1) \cap \mathcal{SU}_1(f(\tilde{\theta}), heta_1) \neq \varnothing$

• When 1 checks 2, $\tilde{\theta}$ will also be challenged by every 3rd report δ_1 ,

 $\mathcal{SL}_1(f(\tilde{ heta}), \tilde{ heta}_1) \cap \mathcal{SU}_1(f(\tilde{ heta}), \delta_1) \neq arnothing$

• Suppose to the contrary that

$$\mathcal{SL}_1(f(\tilde{ heta}), \tilde{ heta}_1) \cap \mathcal{SU}_1(f(\tilde{ heta}), heta_1) \neq \varnothing$$

• When 1 checks 2, $\tilde{\theta}$ will also be challenged by every 3rd report δ_1 ,

$$\mathcal{SL}_1(f(\tilde{ heta}), \tilde{ heta}_1) \cap \mathcal{SU}_1(f(\tilde{ heta}), \delta_1) \neq arnothing$$

• Dictator lottery happens with probability 1. Then, contagion of truth implies

$$\tilde{\theta} = \theta$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Counterexample which shows we can't implement in DRM even in pure NE with I = 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Counterexample which shows we can't implement in DRM even in pure NE with *I* = 2.
- Rationalizable implementation of any monotonic* SCF (Bergemann, Morris, Tercieux (2011));

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Counterexample which shows we can't implement in DRM even in pure NE with *I* = 2.
- Rationalizable implementation of any monotonic* SCF (Bergemann, Morris, Tercieux (2011));

• Social choice correspondences;

- Counterexample which shows we can't implement in DRM even in pure NE with *I* = 2.
- Rationalizable implementation of any monotonic* SCF (Bergemann, Morris, Tercieux (2011));

- Social choice correspondences;
- Small transfers (Abreu and Matsushima (1994));

- Counterexample which shows we can't implement in DRM even in pure NE with *I* = 2.
- Rationalizable implementation of any monotonic* SCF (Bergemann, Morris, Tercieux (2011));

- Social choice correspondences;
- Small transfers (Abreu and Matsushima (1994));
- Infinite Θ;

- Counterexample which shows we can't implement in DRM even in pure NE with *I* = 2.
- Rationalizable implementation of any monotonic* SCF (Bergemann, Morris, Tercieux (2011));
- Social choice correspondences;
- Small transfers (Abreu and Matsushima (1994));
- Infinite Θ;
- Implementation for every cardinalization (Mezzetti and Renou (2012)).