Maskin Meets Abreu and Matsushima

Yi-Chun Chen (NUS) Takashi Kunimoto (SMU) Yifei Sun (UIBE) Siyang Xiong (Bristol)

July 10, 2018
IMS, NUS

Nash Implementation

- A social planner has an objective summarized by a social choice function (SCF) $f: \Theta \rightarrow X$.

Nash Implementation

- A social planner has an objective summarized by a social choice function (SCF) $f: \Theta \rightarrow X$.
- An SCF is Nash implementable if there exists a mechanism/game-form that satisfies two requirements:

Nash Implementation

- A social planner has an objective summarized by a social choice function (SCF) $f: \Theta \rightarrow X$.
- An SCF is Nash implementable if there exists a mechanism/game-form that satisfies two requirements:
- Existence: there always exists a good NE whose outcome is socially desirable;

Nash Implementation

- A social planner has an objective summarized by a social choice function (SCF) $f: \Theta \rightarrow X$.
- An SCF is Nash implementable if there exists a mechanism/game-form that satisfies two requirements:
- Existence: there always exists a good NE whose outcome is socially desirable;
- Uniqueness: every NE results in the socially desirable outcome.

Maskin $(1977,1999)$

- Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.

Maskin $(1977,1999)$

- Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.
- The sufficiency result has been criticized/improved on different aspects:

Maskin $(1977,1999)$

- Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.
- The sufficiency result has been criticized/improved on different aspects:
- Integer game;

Maskin $(1977,1999)$

- Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.
- The sufficiency result has been criticized/improved on different aspects:
- Integer game;
- Mixed NE;

Maskin $(1977,1999)$

- Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.
- The sufficiency result has been criticized/improved on different aspects:
- Integer game;
- Mixed NE;
- Two agents.

Maskin $(1977,1999)$

- Maskin proposes a monotonicity condition and shows that it is a necessary and almost sufficient condition for Nash implementation.
- The sufficiency result has been criticized/improved on different aspects:
- Integer game;
- Mixed NE;
- Two agents.
- Revelation principle does not hold.

Abreu and Matsushima $(1992,1994)$

- AM $(1992,94)$ dispense with Maskin monotonicity and resolve all the issues.

Abreu and Matsushima $(1992,1994)$

- AM $(1992,94)$ dispense with Maskin monotonicity and resolve all the issues.
- AM consider an economic environment with lotteries and transfers; moreover,

Abreu and Matsushima $(1992,1994)$

- AM $(1992,94)$ dispense with Maskin monotonicity and resolve all the issues.
- AM consider an economic environment with lotteries and transfers; moreover,
- AM (1992) appeal to virtual implementation and use rationalizability;

Abreu and Matsushima $(1992,1994)$

- AM $(1992,94)$ dispense with Maskin monotonicity and resolve all the issues.
- AM consider an economic environment with lotteries and transfers; moreover,
- AM (1992) appeal to virtual implementation and use rationalizability;
- AM (1994) appeal to iterated weak dominance rather than NE.

Robustness Necessitates Monotonicity

- Complete information is an idealization

Robustness Necessitates Monotonicity

- Complete information is an idealization
- Agents receive signals (=states) that may be wrong with small yet positive probability.

Robustness Necessitates Monotonicity

- Complete information is an idealization
- Agents receive signals (=states) that may be wrong with small yet positive probability.
- Want to implement f robustly: i.e., the closure of equilibrium outcomes under nearly complete information.

Robustness Necessitates Monotonicity

- Complete information is an idealization
- Agents receive signals (=states) that may be wrong with small yet positive probability.
- Want to implement f robustly: i.e., the closure of equilibrium outcomes under nearly complete information.
- Monotonicity is necessary for robustness:

Robustness Necessitates Monotonicity

- Complete information is an idealization
- Agents receive signals (=states) that may be wrong with small yet positive probability.
- Want to implement f robustly: i.e., the closure of equilibrium outcomes under nearly complete information.
- Monotonicity is necessary for robustness:
- UNE: Chung and Ely (2003);

Robustness Necessitates Monotonicity

- Complete information is an idealization
- Agents receive signals (=states) that may be wrong with small yet positive probability.
- Want to implement f robustly: i.e., the closure of equilibrium outcomes under nearly complete information.
- Monotonicity is necessary for robustness:
- UNE: Chung and Ely (2003);
- SPE: Aghion et al. (2012).

Robustness Necessitates Monotonicity

- Complete information is an idealization
- Agents receive signals (=states) that may be wrong with small yet positive probability.
- Want to implement f robustly: i.e., the closure of equilibrium outcomes under nearly complete information.
- Monotonicity is necessary for robustness:
- UNE: Chung and Ely (2003);
- SPE: Aghion et al. (2012).
- Harsanyi's purification argument: for robustness we can't ignore mixed NE.

Maskin Meets Abreu and Matsushima

- In a (finite) economic environment with lotteries and transfers, we unify the two approaches to achieve NE implementation.

Maskin Meets Abreu and Matsushima

- In a (finite) economic environment with lotteries and transfers, we unify the two approaches to achieve NE implementation.
- Main results:

Maskin Meets Abreu and Matsushima

- In a (finite) economic environment with lotteries and transfers, we unify the two approaches to achieve NE implementation.
- Main results:
- When $I \geq 3$, an SCF is pure Nash implementable by a direct mechanism if and only if it satisfies Maskin monotonicity.

Maskin Meets Abreu and Matsushima

- In a (finite) economic environment with lotteries and transfers, we unify the two approaches to achieve NE implementation.
- Main results:
- When $I \geq 3$, an SCF is pure Nash implementable by a direct mechanism if and only if it satisfies Maskin monotonicity.
- When $I \geq 2$, an SCF is mixed Nash implementable by a finite mechanism if and only if it satisfies Maskin monotonicity.

Maskin Meets Abreu and Matsushima

- In a (finite) economic environment with lotteries and transfers, we unify the two approaches to achieve NE implementation.
- Main results:
- When $I \geq 3$, an SCF is pure Nash implementable by a direct mechanism if and only if it satisfies Maskin monotonicity.
- When $I \geq 2$, an SCF is mixed Nash implementable by a finite mechanism if and only if it satisfies Maskin monotonicity.
- Both implementation results are exact and robust.

Model

- $\mathcal{I}=\{1,2, \ldots, I\}$: finite set of players

Model

- $\mathcal{I}=\{1,2, \ldots, I\}$: finite set of players
- $X \equiv \Delta(A) \times \mathbb{R}^{\prime}$: set of allocations

Model

- $\mathcal{I}=\{1,2, \ldots, I\}$: finite set of players
- $X \equiv \Delta(A) \times \mathbb{R}^{\prime}$: set of allocations
- Θ_{i} : finite set of types

Model

- $\mathcal{I}=\{1,2, \ldots, I\}$: finite set of players
- $X \equiv \Delta(A) \times \mathbb{R}^{\prime}$: set of allocations
- Θ_{i} : finite set of types
- Each θ_{i} induces a quasilinear EU $u_{i}\left(\cdot, \theta_{i}\right): X \rightarrow \mathbb{R}$

Model

- $\mathcal{I}=\{1,2, \ldots, I\}$: finite set of players
- $X \equiv \Delta(A) \times \mathbb{R}^{\prime}$: set of allocations
- Θ_{i} : finite set of types
- Each θ_{i} induces a quasilinear EU $u_{i}\left(\cdot, \theta_{i}\right): X \rightarrow \mathbb{R}$
- $u_{i}\left(\cdot, \mathbf{0}, \theta_{i}\right)$ is bounded

Model Cont.

- $\theta \in \Theta \subseteq \times_{i \in \mathcal{I}} \Theta_{i}$ is called a state

Model Cont.

- $\theta \in \Theta \subseteq \times_{i \in \mathcal{I}} \Theta_{i}$ is called a state
- $f: \Theta \rightarrow X$: a social choice function

Model Cont.

- $\theta \in \Theta \subseteq \times_{i \in \mathcal{I}} \Theta_{i}$ is called a state
- $f: \Theta \rightarrow X$: a social choice function
- θ is common knowledge among the agents but unknown to the designer

Model Cont.

- $\theta \in \Theta \subseteq \times_{i \in \mathcal{I}} \Theta_{i}$ is called a state
- $f: \Theta \rightarrow X$: a social choice function
- θ is common knowledge among the agents but unknown to the designer
- Assumption: Any two types θ_{i} and θ_{i}^{\prime} induce distinct preference orderings over $\Delta(A)$.

Model Cont.

- $\theta \in \Theta \subseteq \times_{i \in \mathcal{I}} \Theta_{i}$ is called a state
- $f: \Theta \rightarrow X$: a social choice function
- θ is common knowledge among the agents but unknown to the designer
- Assumption: Any two types θ_{i} and θ_{i}^{\prime} induce distinct preference orderings over $\Delta(A)$.
- There is a menu of dictator lotteries $I_{k}^{*}: \Theta_{k} \rightarrow \Delta(A)$ such that

$$
u_{k}\left(I_{k}^{*}\left(\theta_{k}\right), \theta_{k}\right)>u_{k}\left(l_{k}^{*}\left(\theta_{k}^{\prime}\right), \theta_{k}\right) \text { whenever } \theta_{k}^{\prime} \neq \theta_{k} .
$$

(Maskin) Monotonicity

- Define the strict lower-counter set of allocation x for type θ_{i} as

$$
\mathcal{S} \mathcal{L}_{i}\left(x, \theta_{i}\right)=\left\{x^{\prime} \in X: u_{i}\left(x, \theta_{i}\right)>u_{i}\left(x^{\prime}, \theta_{i}\right)\right\} .
$$

(Maskin) Monotonicity

- Define the strict lower-counter set of allocation x for type θ_{i} as

$$
\mathcal{S} \mathcal{L}_{i}\left(x, \theta_{i}\right)=\left\{x^{\prime} \in X: u_{i}\left(x, \theta_{i}\right)>u_{i}\left(x^{\prime}, \theta_{i}\right)\right\} .
$$

- Define the strict upper-contour set of allocation x for type θ_{i} as,

$$
\mathcal{S U}_{i}\left(x, \theta_{i}\right)=\left\{x^{\prime} \in X: u_{i}\left(x^{\prime}, \theta_{i}\right)>u_{i}\left(x, \theta_{i}\right)\right\}
$$

(Maskin) Monotonicity

- Define the strict lower-counter set of allocation x for type θ_{i} as

$$
\mathcal{S} \mathcal{L}_{i}\left(x, \theta_{i}\right)=\left\{x^{\prime} \in X: u_{i}\left(x, \theta_{i}\right)>u_{i}\left(x^{\prime}, \theta_{i}\right)\right\} .
$$

- Define the strict upper-contour set of allocation x for type θ_{i} as,

$$
\mathcal{S U}_{i}\left(x, \theta_{i}\right)=\left\{x^{\prime} \in X: u_{i}\left(x^{\prime}, \theta_{i}\right)>u_{i}\left(x, \theta_{i}\right)\right\} .
$$

- Say an SCF f satisfies (Maskin-)monotonicity if

$$
f(\theta) \neq f\left(\theta^{\prime}\right) \Rightarrow \exists \text { agent } i \text { s.t. } \mathcal{S} \mathcal{L}_{i}\left(f(\theta), \theta_{i}\right) \cap \mathcal{S U}_{i}\left(f(\theta), \theta_{i}^{\prime}\right) \neq \varnothing
$$

Best Challenge Scheme

- Whenever $\mathcal{S L}_{i}\left(f(\tilde{\theta}), \tilde{\theta}_{i}\right) \cap \mathcal{S U}_{i}\left(f(\tilde{\theta}), \theta_{i}\right) \neq \varnothing$, select a test allocation

$$
x\left(\tilde{\theta}, \theta_{i}\right) \in \mathcal{S} \mathcal{L}_{i}\left(f(\tilde{\theta}), \tilde{\theta}_{i}\right) \cap \mathcal{S} \mathcal{U}_{i}\left(f(\tilde{\theta}), \theta_{i}\right)
$$

Best Challenge Scheme

- Whenever $\mathcal{S} \mathcal{L}_{i}\left(f(\tilde{\theta}), \tilde{\theta}_{i}\right) \cap \mathcal{S U}_{i}\left(f(\tilde{\theta}), \theta_{i}\right) \neq \varnothing$, select a test allocation

$$
x\left(\tilde{\theta}, \theta_{i}\right) \in \mathcal{S} \mathcal{L}_{i}\left(f(\tilde{\theta}), \tilde{\theta}_{i}\right) \cap \mathcal{S} \mathcal{U}_{i}\left(f(\tilde{\theta}), \theta_{i}\right)
$$

- The best challenge scheme for type θ_{i} against state $\tilde{\theta} \in \Theta$ is defined as

$$
B_{\theta_{i}}(\tilde{\theta})= \begin{cases}f(\tilde{\theta}), & \text { if } \mathcal{S} \mathcal{L}_{i}\left(f(\tilde{\theta}), \tilde{\theta}_{i}\right) \cap \mathcal{S U}_{i}\left(f(\tilde{\theta}), \theta_{i}\right)=\varnothing \\ x\left(\tilde{\theta}, \theta_{i}\right), & \text { if } \mathcal{S} \mathcal{L}_{i}\left(f(\tilde{\theta}), \tilde{\theta}_{i}\right) \cap S \mathcal{U}_{i}\left(f(\tilde{\theta}), \theta_{i}\right) \neq \varnothing\end{cases}
$$

Mechanism

- A mechanism is a triplet $\left(\left(M_{i}\right), g,\left(\tau_{i}\right)\right)_{i \in I}$ where M_{i} is the message space; $g: M \rightarrow X$ is an outcome function; and $\tau_{i}: M \rightarrow \mathbb{R}$ is a transfer rule.

Mechanism

- A mechanism is a triplet $\left(\left(M_{i}\right), g,\left(\tau_{i}\right)\right)_{i \in I}$ where M_{i} is the message space; $g: M \rightarrow X$ is an outcome function; and $\tau_{i}: M \rightarrow \mathbb{R}$ is a transfer rule.
- Goal: find a mechanism $\left(\left(M_{i}, \tau_{i}\right)_{i \in \mathcal{I}}, g\right)$ such that at each θ,

Mechanism

- A mechanism is a triplet $\left(\left(M_{i}\right), g,\left(\tau_{i}\right)\right)_{i \in I}$ where M_{i} is the message space; $g: M \rightarrow X$ is an outcome function; and $\tau_{i}: M \rightarrow \mathbb{R}$ is a transfer rule.
- Goal: find a mechanism $\left(\left(M_{i}, \tau_{i}\right)_{i \in \mathcal{I}}, g\right)$ such that at each θ,
- A pure NE exists;

Mechanism

- A mechanism is a triplet $\left(\left(M_{i}\right), g,\left(\tau_{i}\right)\right)_{i \in I}$ where M_{i} is the message space; $g: M \rightarrow X$ is an outcome function; and $\tau_{i}: M \rightarrow \mathbb{R}$ is a transfer rule.
- Goal: find a mechanism $\left(\left(M_{i}, \tau_{i}\right)_{i \in \mathcal{I}}, g\right)$ such that at each θ,
- A pure NE exists;
- For any mixed NE $\sigma \in \times_{i \in \mathcal{I}} \Delta\left(M_{i}\right)$, we have

$$
\sigma(m)>0 \Rightarrow g(m)=f(\theta) \text { and } \tau_{i}(m)=0 \text { for every } i .
$$

Pure NE Implementation in DRM

- Rule 1. If $I(\geq 3)$ agents all report $\tilde{\theta}$, then implement $f(\tilde{\theta})$;

Pure NE Implementation in DRM

- Rule 1. If $I(\geq 3)$ agents all report $\tilde{\theta}$, then implement $f(\tilde{\theta})$;
- Rule 2. If $I-1$ agents report $\tilde{\theta}$ and agent i reports $\theta \neq \tilde{\theta}$, then implement $B_{\theta_{i}}(\tilde{\theta})$. Moreover, agent $i+1$ has to pay a large penalty of $2 D$.

Pure NE Implementation in DRM

- Rule 1. If $I(\geq 3)$ agents all report $\tilde{\theta}$, then implement $f(\tilde{\theta})$;
- Rule 2. If $I-1$ agents report $\tilde{\theta}$ and agent i reports $\theta \neq \tilde{\theta}$, then implement $B_{\theta_{i}}(\tilde{\theta})$. Moreover, agent $i+1$ has to pay a large penalty of $2 D$.
- Rule 3. Otherwise, implement $f\left(m_{1}\right)$. Moreover, any agent i who does not report a state in the unique majority is asked to pay D.

Mixed NE Implementation

- Consider $I=2$. Each agent reports

$$
m_{i}=\left(m_{i}^{1},\left(m_{i, i}^{2}, m_{i, j}^{2}\right), m_{i}^{3}\right) \in \Theta_{i} \times \Theta \times \Theta_{i}
$$

Mixed NE Implementation

- Consider $I=2$. Each agent reports

$$
m_{i}=\left(m_{i}^{1},\left(m_{i, i}^{2}, m_{i, j}^{2}\right), m_{i}^{3}\right) \in \Theta_{i} \times \Theta \times \Theta_{i}
$$

- The outcome is either [1 checks 2] or [2 checks 1] with equal probability.

Mixed NE Implementation

- Consider $I=2$. Each agent reports

$$
m_{i}=\left(m_{i}^{1},\left(m_{i, i}^{2}, m_{i, j}^{2}\right), m_{i}^{3}\right) \in \Theta_{i} \times \Theta \times \Theta_{i}
$$

- The outcome is either [1 checks 2] or [2 checks 1] with equal probability.
- Two key notions:

Mixed NE Implementation

- Consider $I=2$. Each agent reports

$$
m_{i}=\left(m_{i}^{1},\left(m_{i, i}^{2}, m_{i, j}^{2}\right), m_{i}^{3}\right) \in \Theta_{i} \times \Theta \times \Theta_{i}
$$

- The outcome is either [1 checks 2] or [2 checks 1] with equal probability.
- Two key notions:
- consistency: $m_{i}^{2}=m_{j}^{2}$.

Mixed NE Implementation

- Consider $I=2$. Each agent reports

$$
m_{i}=\left(m_{i}^{1},\left(m_{i, i}^{2}, m_{i, j}^{2}\right), m_{i}^{3}\right) \in \Theta_{i} \times \Theta \times \Theta_{i}
$$

- The outcome is either [1 checks 2] or [2 checks 1] with equal probability.
- Two key notions:
- consistency: $m_{i}^{2}=m_{j}^{2}$.
- no challenge: $B_{m_{i}^{3}}\left(m_{j}^{2}\right)=f\left(m_{j}^{2}\right)$.

i Checks j: Outcome Function

- If it is consistent and no challenge, then implement $f\left(m_{j}^{2}\right)$.

i Checks j: Outcome Function

- If it is consistent and no challenge, then implement $f\left(m_{j}^{2}\right)$.
- If there is either inconsistency or challenge, then implement

$\frac{1}{2}\left(l_{i}^{*}\left(m_{i}^{1}\right)+l_{j}^{*}\left(m_{j}^{1}\right)\right)$	with probability ε
$B_{m_{i}^{3}}\left(m_{j}^{2}\right)$	with probability $1-\varepsilon$

where I_{k}^{*} is the dictator lotteries constructed earlier.

i Checks j: Outcome Function

- If it is consistent and no challenge, then implement $f\left(m_{j}^{2}\right)$.
- If there is either inconsistency or challenge, then implement

$\frac{1}{2}\left(l_{i}^{*}\left(m_{i}^{1}\right)+l_{j}^{*}\left(m_{j}^{1}\right)\right)$	with probability ε
$B_{m_{i}^{3}}\left(m_{j}^{2}\right)$	with probability $1-\varepsilon$

where I_{k}^{*} is the dictator lotteries constructed earlier.

- Choose ε small so that all test allocations remain valid.

i Checks j: Transfer Rule

Choose D large so that transfers dominate:

Transfer to agents	$m_{i, j}^{2}=m_{j, j}^{2}$	$m_{i, j}^{2} \neq m_{j, j}^{2}$	
		$m_{i, j}^{2}=m_{j}^{1}$	$m_{i, j}^{2} \neq m_{j}^{1}$
$\left(\tau_{i}(m), \tau_{j}(m)\right)$	$(0,0)$	$(D,-D)$	$(-D,-D)$

- j 's 1st report is truthful \Rightarrow i's 2 nd report is truthful:

Transfer to i	$\left(m_{j}^{1}, m_{j, j}^{2}\right)=\left(\theta_{j}, \theta_{j}\right)$	$\left(m_{j}^{1}, m_{j, j}^{2}\right)=\left(\theta_{j}, \theta_{j}^{\prime}\right)$
$m_{i, j}^{2}=\theta_{j}$	0	D
$m_{i, j}^{2} \neq \theta_{j}$	$-D$	0 or $-D$

Contagion of Truth

	1st report	2nd report
Agent 1	θ_{1}	β_{1}, β_{2}
Agent 2	α_{2}	γ_{1}, γ_{2}

Contagion of Truth

	1st report	2nd report
Agent 1	θ_{1}	β_{1}, β_{2}
Agent 2	α_{2}	γ_{1}, γ_{2}

	1st report	2nd report
Agent 1	θ_{1}	β_{1}, β_{2}
Agent 2	α_{2}	θ_{1}, γ_{2}

Contagion of Truth

	1st report	2nd report
Agent 1	θ_{1}	β_{1}, β_{2}
Agent 2	α_{2}	γ_{1}, γ_{2}

	1st report	2nd report
Agent 1	θ_{1}	β_{1}, β_{2}
Agent 2	α_{2}	θ_{1}, γ_{2}

	1st report	2nd report
Agent 1	θ_{1}	θ_{1}, β_{2}
Agent 2	α_{2}	θ_{1}, γ_{2}

Contagion of Truth

	1st report	2nd report
Agent 1	θ_{1}	β_{1}, β_{2}
Agent 2	α_{2}	γ_{1}, γ_{2}

	1st report	2nd report
Agent 1	θ_{1}	β_{1}, β_{2}
Agent 2	α_{2}	θ_{1}, γ_{2}

	1st report	2nd report
Agent 1	θ_{1}	θ_{1}, β_{2}
Agent 2	α_{2}	θ_{1}, γ_{2}

- Truth-telling all the way constitutes a pure-strategy NE.

Summary

- To sum up,

Summary

- To sum up,
- m_{i}^{1} controls (only) dictator lotteries I_{i}^{*};

Summary

- To sum up,
- m_{i}^{1} controls (only) dictator lotteries I_{i}^{*};
- m_{i}^{2} controls consistency and transfers;

Summary

- To sum up,
- m_{i}^{1} controls (only) dictator lotteries l_{i}^{*};
- m_{i}^{2} controls consistency and transfers;
- m_{i}^{3} controls whether to challenge m_{j}^{2}.

Summary

- To sum up,
- m_{i}^{1} controls (only) dictator lotteries I_{i}^{*};
- m_{i}^{2} controls consistency and transfers;
- m_{i}^{3} controls whether to challenge m_{j}^{2}.
- We show that in any equilibrium, we have

Summary

- To sum up,
- m_{i}^{1} controls (only) dictator lotteries l_{i}^{*};
- m_{i}^{2} controls consistency and transfers;
- m_{i}^{3} controls whether to challenge m_{j}^{2}.
- We show that in any equilibrium, we have
- consistency $\left(\Rightarrow \tau_{i}(m)=0\right)$;

Summary

- To sum up,
- m_{i}^{1} controls (only) dictator lotteries l_{i}^{*};
- m_{i}^{2} controls consistency and transfers;
- m_{i}^{3} controls whether to challenge m_{j}^{2}.
- We show that in any equilibrium, we have
- consistency $\left(\Rightarrow \tau_{i}(m)=0\right)$;
- no challenge $(\Rightarrow g(m)=f(\theta))$.

Consistency

- For instance, it cannot be both agents randomize their 2nd reports.

Consistency

- For instance, it cannot be both agents randomize their $2 n d$ reports.
- If so, inconsistency (and dictator lotteries) occurs with σ_{j}-positive probability for every m_{i}. Hence, for some $\left(\beta_{1}, \beta_{2}\right) \neq\left(\gamma_{1}, \gamma_{2}\right)$,

	1st report	2nd report
Agent 1	θ_{1}	β_{1}, β_{2}
Agent 2	θ_{2}	γ_{1}, γ_{2}

Consistency

- For instance, it cannot be both agents randomize their $2 n d$ reports.
- If so, inconsistency (and dictator lotteries) occurs with σ_{j}-positive probability for every m_{i}. Hence, for some $\left(\beta_{1}, \beta_{2}\right) \neq\left(\gamma_{1}, \gamma_{2}\right)$,

	1st report	2nd report
Agent 1	θ_{1}	β_{1}, β_{2}
Agent 2	θ_{2}	γ_{1}, γ_{2}

- This contradicts contagion of truth.

Consistency

- For instance, it cannot be both agents randomize their 2 nd reports.
- If so, inconsistency (and dictator lotteries) occurs with σ_{j}-positive probability for every m_{i}. Hence, for some $\left(\beta_{1}, \beta_{2}\right) \neq\left(\gamma_{1}, \gamma_{2}\right)$,

	1st report	2nd report
Agent 1	θ_{1}	β_{1}, β_{2}
Agent 2	θ_{2}	γ_{1}, γ_{2}

- This contradicts contagion of truth.
- Similarly, it cannot be both agents choose a deterministic yet inconsistent 2nd report.

Consistency

- For instance, it cannot be both agents randomize their 2 nd reports.
- If so, inconsistency (and dictator lotteries) occurs with σ_{j}-positive probability for every m_{i}. Hence, for some $\left(\beta_{1}, \beta_{2}\right) \neq\left(\gamma_{1}, \gamma_{2}\right)$,

	1st report	2nd report
Agent 1	θ_{1}	β_{1}, β_{2}
Agent 2	θ_{2}	γ_{1}, γ_{2}

- This contradicts contagion of truth.
- Similarly, it cannot be both agents choose a deterministic yet inconsistent 2nd report.
- Similarly, it cannot be only one agent who randomizes his 2nd report.

No Challenge

- By consistency, there can only be a unanimous 2nd report

	2st report	3nd report
Agent 1	$\tilde{\theta}_{1}, \tilde{\theta}_{2}$	δ_{1}
Agent 2	$\tilde{\theta}_{1}, \hat{\theta}_{2}$	δ_{2}

No Challenge

- By consistency, there can only be a unanimous 2nd report

	2st report	3nd report
Agent 1	$\tilde{\theta}_{1}, \tilde{\theta}_{2}$	δ_{1}
Agent 2	$\tilde{\theta}_{1}, \tilde{\theta}_{2}$	δ_{2}

- We argue that

$$
\mathcal{S} \mathcal{L}_{i}\left(f(\tilde{\theta}), \tilde{\theta}_{i}\right) \cap \mathcal{S U}_{i}\left(f(\tilde{\theta}), \theta_{i}\right)=\varnothing \text { for every } i
$$

which implies

$$
\mathcal{S} \mathcal{L}_{i}\left(f(\tilde{\theta}), \tilde{\theta}_{i}\right) \cap \mathcal{U}_{i}\left(f(\tilde{\theta}), \theta_{i}\right)=\varnothing \text { for every } i
$$

which further implies no challenge.

No Challenge

- Suppose to the contrary that

$$
\mathcal{S} \mathcal{L}_{1}\left(f(\tilde{\theta}), \tilde{\theta}_{1}\right) \cap \mathcal{S} \mathcal{U}_{1}\left(f(\tilde{\theta}), \theta_{1}\right) \neq \varnothing
$$

No Challenge

- Suppose to the contrary that

$$
\mathcal{S} \mathcal{L}_{1}\left(f(\tilde{\theta}), \tilde{\theta}_{1}\right) \cap \mathcal{S} \mathcal{U}_{1}\left(f(\tilde{\theta}), \theta_{1}\right) \neq \varnothing
$$

- When 1 checks $2, \tilde{\theta}$ will also be challenged by every 3 rd report δ_{1},

$$
\mathcal{S} \mathcal{L}_{1}\left(f(\tilde{\theta}), \tilde{\theta}_{1}\right) \cap \mathcal{S} \mathcal{U}_{1}\left(f(\tilde{\theta}), \delta_{1}\right) \neq \varnothing
$$

No Challenge

- Suppose to the contrary that

$$
\mathcal{S} \mathcal{L}_{1}\left(f(\tilde{\theta}), \tilde{\theta}_{1}\right) \cap \mathcal{S} \mathcal{U}_{1}\left(f(\tilde{\theta}), \theta_{1}\right) \neq \varnothing
$$

- When 1 checks $2, \tilde{\theta}$ will also be challenged by every 3 rd report δ_{1},

$$
\mathcal{S} \mathcal{L}_{1}\left(f(\tilde{\theta}), \tilde{\theta}_{1}\right) \cap \mathcal{S} \mathcal{U}_{1}\left(f(\tilde{\theta}), \delta_{1}\right) \neq \varnothing
$$

- Dictator lottery happens with probability 1 . Then, contagion of truth implies

$$
\tilde{\theta}=\theta
$$

Extension

- Counterexample which shows we can't implement in DRM even in pure NE with $I=2$.

Extension

- Counterexample which shows we can't implement in DRM even in pure NE with $I=2$.
- Rationalizable implementation of any monotonic* SCF (Bergemann, Morris, Tercieux (2011));

Extension

- Counterexample which shows we can't implement in DRM even in pure NE with $I=2$.
- Rationalizable implementation of any monotonic* SCF (Bergemann, Morris, Tercieux (2011));
- Social choice correspondences;

Extension

- Counterexample which shows we can't implement in DRM even in pure NE with $I=2$.
- Rationalizable implementation of any monotonic* SCF (Bergemann, Morris, Tercieux (2011));
- Social choice correspondences;
- Small transfers (Abreu and Matsushima (1994));

Extension

- Counterexample which shows we can't implement in DRM even in pure NE with $I=2$.
- Rationalizable implementation of any monotonic* SCF (Bergemann, Morris, Tercieux (2011));
- Social choice correspondences;
- Small transfers (Abreu and Matsushima (1994));
- Infinite Θ;

Extension

- Counterexample which shows we can't implement in DRM even in pure NE with $I=2$.
- Rationalizable implementation of any monotonic* SCF (Bergemann, Morris, Tercieux (2011));
- Social choice correspondences;
- Small transfers (Abreu and Matsushima (1994));
- Infinite Θ;
- Implementation for every cardinalization (Mezzetti and Renou (2012)).

