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Motivation

� Governments distribute valuable resources to �nancially

constrained agents.

I Housing and development board (HDB) in Singapore

I Medicaid in the U.S.

� One justi�cation for this role is that competitive market fails

to maximize social surplus.

I Some high valuation agents will not obtain the resources while

low valuations agents with access to cash will.

� Governments face a mechanism design problem.

I Agents have private information about their preferences and

�nancial constraints.
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Costly veri�cation

Previous work focuses on mechanisms with only monetary transfers

and ignores the role of costly veri�cation.

� Government relies on agents' report of their ability to pay and

can verify this information.

I eligibility conditions on age, family, income, etc.

� An agent who makes a false statement can be punished.

I �ne or imprisonment

� Veri�cation is costly for the government.

This paper: What is the best way to allocate resources in the

presence of costly veri�cation?
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Preview of model

I characterize the optimal mechanism when . . .

� The principal has a limited supply of indivisible goods.

� There is a unit mass of continuum of agents.

� Each agent has two-dimensional private information:

I value v ∈ [v, v], and

I budget b ∈ {b1, b2} with b1 < b2

� Monetary transfer and costly veri�cation of budget.

I Principal can verify an agent's budget at a cost and impose an

exogenous penalty.

� The principal is also subject to a budget balance constraint.
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Main results

Characterization of the optimal (revelation) mechanism.

� Agents who report low budgets receive more cash and in-kind

subsidies.

I In-kind subsidies: provision of goods at discounted prices

� Only those who report low-budgets are randomly veri�ed.

� Veri�cation probability is increasing in reported value.

Comparative statics (via numerical experiments)
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Implementation via a two-stage mechanism

1st � Agents report their budgets and receive

I budget-dependent cash subsidies; and

I the opportunity to participate in a lottery at

budget-dependent prices.

� Randomly assign the goods among all lottery participants.

� Randomly inspect low-budget agents.

2nd � Resale market opens and agents can trade with each other.

� Sellers face budget-dependent sales taxes.

� Randomly inspect low-budget agents who keep their goods.

Example
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Main results (Cont'd)

E�ects of veri�cation

� w/o veri�cation: equally subsidized, priced and taxed.

� w/: higher cash subsidies, lower prices and higher taxes for

low-budget agents.

Intuition

� Higher cash subsidies and lower prices relax low-budget agents'

budget constraints.

� Higher taxes discourage low-budget low-valuation agents from

arbitrage.
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Housing and development board (HDB) in Singapore

This exhibits some of the features of HDB.

Types of �ats Minimum Occupation Periods

sell sublet

Resale �ats w/ Grants 5-7 years 5-7 years

Resale �ats w/o Grants 0-5 years 3 years

Feature

� More initial subsidies → more restrictions on resale/sublease
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Technical contribution

Technical di�culties

� One cannot anticipate a priori the set of binding incentive

compatibility constraints.

� IC constraints between distant types can bind.

Method

� Focus on a class of allocations rules (step functions) that

I allow one to keep track of binding ICs; and

I approximate a general allocation rule well.

� The optimal mechanism is obtained at the limit.
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Model

� A unit mass of continuum of risk neutral agents

� A mass S < 1 of indivisible goods

� Each agent has

I a private valuation of the good: v ∈ V ≡ [v, v], and

I a privately known budget: b ∈ B ≡ {b1, b2}.

� Agent's type: t = (v, b), and the type space: T = V× B

� v and b are independent.

I P(b1) = 1− π and P(b2) = π, and b1 < b2.

I v is distributed with CDF F and density f .
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Costly veri�cation

� Principal can verify an agent's budget at cost k ≥ 0, and

impose an exogenous non-monetary penalty c > 0.

� Veri�cation perfectly reveals an agent's budget.

� The cost to an agent to have his report veri�ed is zero.

� An agent is punished if and only if he is found to have lied.
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Mechanism

� A direct mechanism (a, p, q) consists of Details

I an allocation rule a : T → [0, 1],

I a payment rule p : T → R,

I a veri�cation rule q : T → [0, 1].

� The utility of an agent who has type t = (v, b) and reports

t̂ = (v̂, b̂):

u(t̂, t) =


a(t̂)v− p(t̂) if b̂ = b and p(t̂) ≤ b

a(t̂)v− p(t̂)− q(t̂)c if b̂ 6= b and p(t̂) ≤ b

−∞ if p(t̂) > b
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Principal's problem

max
a,p,q

Et [a(t)v− p(t)] , (P)

subject to

u(t, t) ≥ 0, ∀t ∈ T, (IR)

p(t) ≤ b, ∀t ∈ T, (BC)

u(t, t) ≥ u(t̂, t), ∀t, t̂ ∈ T, p(t̂) ≤ b, (IC)

Et[p(t)− kq(t)] ≥ 0, (BB)

Et [a(t)] ≤ S. (S)
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(IC) constraints

� Ignore constraints corresponding to over-reporting budget.

� Two categories

a(v, b)v− p(v, b) ≥ a(v̂, b)v− p(v̂, b), (IC-v)

a(v, b2)v− p(v, b2) ≥ a(v̂, b1)v− p(v̂, b1)− q(v̂, b1)c. (IC-b)

� By the standard argument, (IC-v) holds if and only if

I (monotonicity) a(v, b) is non-decreasing in v, and

I (envelope cond) p(v, b) = a(v, b)v−
∫ v

v a(ν, b)dν− u(v, b).

� Di�culty arises from (IC-b).

No Veri�cation
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(IC-b) constraint: (v, b2) misreports as (v̂, b1)

� (IC-b) Constraint:

q(v̂, b1)c ≥ a(v̂, b1)v− p(v̂, b1)︸ ︷︷ ︸
misreport as (v̂, b1)

− [a(v, b2)v− p(v, b2)]︸ ︷︷ ︸
report truthfully

.

� LHS = Expected punishment

� RHS = Incentive for (v, b2) to misreport as (v̂, b1)

� Fix v̂, RHS is concave in v and maximized at

vd(v̂) ≡ inf {v|a(v, b2) > a(v̂, b1)} .

I If a(·, b) is continuous, the a(vd(v̂), b2) = a(v, b1).

Detail
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Binding (IC-b) constraints

v

a

a(·, b1)

v̂ vd(v̂)

a(·, b2)

v̂vd(v̂)

� Binding (IC-b) constraints: a(vd(v̂), b2) = a(v̂, b1).

Detail
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Binding (IC-b) constraints

v

a

a(·, b1)

v̂ vd(v̂)

a(·, b2)

v̂vd(v̂)

� Binding (IC-b) constraints: a(vd(v̂), b2) = a(v̂, b1).

Detail
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Sketch of the problem-solving strategy

1. Consider the principal's problem (P ′) with two modi�cations:

V(M, d) = max
a,p,q

Et[a(t)v− p(t)], (P ′(M, d))

subject to (IR), (IC-v), (IC-b), (BC), (S),

a is a M′-step allocation rule for some M′ ≤ M,

E[p(t)− q(t)k] ≥ −d. (BB-d)

2. Take M→ ∞ and d→ 0.

Detail
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Regularity conditions

Assumption 1. 1−F
f is non-increasing.

Assumption 2. f is non-increasing.

Examples (Banciu and Mirchandani, 2013) uniform, exponential

and the left truncation of a normal distribution.

v
Cauchy

v
Normal

v
Normal

Back
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Optimal mechanism

Theorem

Under the regularity conditions, there exists v∗1 ≤ v∗2 ≤ v∗∗2 , u∗1 ≥ u∗2 and

0 ≤ a∗ ≤ 1 such that in the optimal mechanism of P

1. The allocation rule is

a(v, b1) =

{
0 if v < v∗1
a∗ if v > v∗1

,

a(v, b2) =


0 if v < v∗2
a∗ if v∗2 < v < v∗∗2
1 if v > v∗∗2

,
v

a

a(·, b1)

v∗1

a∗

a(·, b2)

v∗2 v∗∗2

1
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Optimal mechanism

Theorem

Under the regularity conditions, there exists v∗1 ≤ v∗2 ≤ v∗∗2 , u∗1 ≥ u∗2 and

0 ≤ a∗ ≤ 1 such that in the optimal mechanism of P

2. The payment rule is

p(v, b1) =

{
−u∗1 if v < v∗1
−u∗1 + a∗v∗1 if v > v∗1

,

p(v, b2) =


−u∗2 if v < v∗2
−u∗2 + a∗v∗2 if v∗2 < v < v∗∗2
−u∗2 + a∗v∗2 + (1− a∗)v∗∗2 if v > v∗∗2

.

3. The veri�cation rule is

q(v, b1) =

{
1
c
(
u∗1 − u∗2

)
if v < v∗1

1
c
[(

u∗1 − u∗2
)
+ a∗

(
v∗2 − v∗1

)]
if v > v∗1

,

q(v, b2) = 0.
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Subsidies in cash and in kind

� Subsidies in cash:

I High-budget: u∗2 .

I Low-budget: u∗1 .

� Subsidies in kind: provision of goods at discounted prices.

� Use the additional payment made by a high-budget high-value

agent as a measure of �price�: pmarket = a∗v∗2 + (1− a∗)v∗∗2 .

� The amount of in-kind subsidies:

I High-budget: a∗
(

pmarket − v∗2
)
.

I Low-budget: a∗
(

pmarket − v∗1
)
.
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Subsidies in cash and in kind (cont'd)

� Veri�cation probability revisited

v

q

q(·, b1)

v∗1

q(·, b2)1
c (u
∗
1 − u∗2)

1
c a∗(v∗2 − v∗1)

� E�ects of veri�cation cost

I If k = 0, then high-budget agents receive no subsidies: u∗2 = 0

and pmarket = v∗2 .

I If k = ∞, then high-budget agents receive the same subsidies

as low-budget agents: u∗2 = u∗1 and v∗2 = v∗1 .
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Implementation via a two-stage mechanism

1st � Agents report their budgets and receive

I budget-dependent cash subsidies; and

I the opportunity to participate in a lottery at

budget-dependent prices.

� Randomly assign the goods among all lottery participants.

� Randomly inspect low-budget agents.

2nd � Resale market opens and agents can trade with each other.

� Sellers face budget-dependent sales taxes.

� Randomly inspect low-budget agents who keep their goods.
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Implementation (cont'd)

1st stage

v

a

a(·, b1)

v∗1

a∗

a(·, b2)

v∗2 v∗∗2

1

a(·, b1)

v∗1

a∗

a(·, b2)

v∗2 v∗∗2

1

buyers

sellers

� price = v∗∗2 ,

� high-budget tax = a∗(v∗∗2 − v∗2), low-budget tax = a∗(v∗∗2 − v∗1)
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Implementation (cont'd)

2nd stage

v

a

a(·, b1)

v∗1

a∗

a(·, b2)

v∗2 v∗∗2

1

a(·, b1)

v∗1

a∗

a(·, b2)

v∗2 v∗∗2

1

buyers

sellers

� price = v∗∗2 ,

� high-budget tax = a∗(v∗∗2 − v∗2), low-budget tax = a∗(v∗∗2 − v∗1)
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Implementation (cont'd)

2nd stage

v

a

a(·, b1)

v∗1

a∗

a(·, b2)

v∗2 v∗∗2

1

a(·, b1)

v∗1

a∗

a(·, b2)

v∗2 v∗∗2

1

buyers

sellers

� price = v∗∗2 ,

� high-budget tax = a∗(v∗∗2 − v∗2), low-budget tax = a∗(v∗∗2 − v∗1)
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Implementation (cont'd)

E�ects of veri�cation

� w/o veri�cation: equally subsidized, priced and taxed.

� w/: higher subsidies, lower price and higher sales taxes for

low-budget agents.

Intuition

� Higher subsidies and discounted price relax low-budget agents'

budget constraints.

� Higher taxes discourage low-budget low-valuation agents from

arbitrage.
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Properties of optimal mechanism

1. Who bene�ts if the supply of goods increases?

2. How does veri�cation cost a�ect the optimal mechanism's

reliance on cash and in-kind subsidies?
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Supply (S)

An increase in S improves the total welfare; but its impact on each

budget type is not monotonic.

0 0.2 0.4 0.6
0

0.2

0.4

S

w
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re

w1
w2
w

Figure: In this example, v ∼ U[0, 1], ρ = 0.08, b1 = 0.2 and π = 0.5.
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Supply (S)

Low-budget low-valuation agents can get worse o� as the amount of cash

subsidies to low-budget agents begins to decline for su�ciently large S.
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Figure: In this example, v ∼ U[0, 1], ρ = 0.08, b1 = 0.2 and π = 0.5.

Detail
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Supply (S)

High-budget high-valuation agents can get worse o� as their payments increase

because disproportionately more goods are allocated to low-budget agents.
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Figure: In this example, v ∼ U[0, 1], ρ = 0.08, b1 = 0.2 and π = 0.5.

Detail
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Veri�cation cost (ρ = k/c)
If veri�cation becomes more costly, then agents are inspected less

frequently in the optimal mechanism.

0 0.05 0.1 0.15 0.2

0

0.1

0.2

0.3

ρ

v
er
i�
ca
ti
o
n

probability

cost

Figure: In this example, v ∼ U[0, 1], b1 = 0.2, S = 0.4 and π = 0.5.
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E�ective veri�cation cost (ρ = k/c)
If veri�cation becomes more costly, then the opt. mechanism relies

more on in-kind than cash subsidies to help low-budget agents.
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Figure: In this example, v ∼ U[0, 1], b1 = 0.2, S = 0.4 and π = 0.5.
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E�ective veri�cation cost (ρ = k/c)

If veri�cation becomes more costly, then the opt. mechanism relies

more on in-kind than cash subsidies to help low-budget agents.

� Cash subsidy is more e�cient because it introduces less

distortion into allocation.

� Cash subsidy is more costly because it is attractive to agents

with all valuations while in-kind subsidy is attractive to only

have-valuation agents.
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Extensions

� Ex-post individual rationality

� Costly disclosure
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Ex-post individual rationality

� Optimal mechanism may not be ex-post individually rational.

I Lotteries with positive payments.

� Budget constraint vs. per unit price constraint

p(t) ≤ b, ∀t = (v, b), (BC)

p(t) ≤ a(t)b, ∀t = (v, b). (PC)

� Why study (BC)?

I Optimal mechanisms in these two settings share qualitatively

similar features.

I For some parameter values, there is no rationing (a∗ = 1).

I Rationing is realistic if b1 is close to zero.
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Ex-post individual rationality (cont'd)

k = ∞
All results extend.

The latter extends Che, Gale and Kim (2013).

k < ∞

Multiple levels of in-kind subsidies.

Incremental change in di�. in

in-kind subsidies is increasing.

k < ∞, f is regular ?
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Costly disclosure

� Agents also bear a cost of being veri�ed.

� An agent incurs cost cT from being veri�ed if he reported his

budget truthfully and cF ≥ cT if he lied.

� The utility of an agent who has type t = (v, b) and reports t̂ is

u(t̂, t) =


a(t̂)v− p(t̂)− q(t̂)cT if b̂ = b and p(t̂) ≤ b,

a(t̂)v− p(t̂)− q(t̂)
(
cF + c

)
if b̂ 6= b and p(t̂) ≤ b,

−∞ if p(t̂) > b.
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E�ects of costly disclosure

� Relax an agent's budget constraint:

u(v, b) = a(v, b)v−
[
p(v, b) + q(v, b)cT

]
︸ ︷︷ ︸
e�ective payment, pe(v,b)

.

� Increase punishment:

a(v, b2)v− pe(v, b2) ≥ a(v̂, b1)v− q(v̂, b1)(c+ cF− cT)− pe(v̂, b1).

� Veri�cation is more costly:

Et

[
pe(t)− (k + cT)q(t)

]
≥ 0.
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Welfare

Proposition

If k
c ≥

cT

cF−cT , then the presence of disclosure costs improves welfare.
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Conclusion

Recap

� Solved a multidimensional mechanism design problem

motivated by transfer programs.

� Mechanisms with transfers and costly veri�cation of budget.

� Characterized the surplus-maximizing/optimal mechanism.

Future work

� Interactions between transfers and costly veri�cation.

� Repeated interactions between the principal and agents.



Revelation principle

A general direct mechanism (a, p, q, θ) consists of

� an allocation rule a : T → [0, 1],

� a payment rule p : T → R,

� an inspection rule q : T → [0, 1],

� a punishment rule θ : T× {b1, b2, n} → [0, 1].

I θ(t̂, n): prob. for an agent who reports t̂ and is not inspected.

I θ(t̂, b): prob. for an agent who reports t̂ and whose budget is

revealed to be b.

Back



Optimal punishment rule

Lemma

In an optimal mechanism, θ((v, b), b) = 0 and θ((v, b̂), b) = 1.

Punishment without veri�cation

� Relax an agent's budget constraint:

u(t) = a(t)v− [p(t) + (1− q(t))θ(t, n)c]︸ ︷︷ ︸
e�ective payment, pe(t)

.

� But this is costly:

Et [pe(t)− kq(t)− (1− q(t))θ(t, n)c] ≥ 0.

Back



Benchmark: no veri�cation (k = ∞)

� Two categories

a(v, b)v− p(v, b) ≥ a(v̂, b)v− p(v̂, b), (IC-v)

a(v, b2)v− p(v, b2) ≥ a(v̂, b1)v− p(v̂, b1)− q(v̂, b1)c. (IC-b)

� It is su�cient to consider two one-dimensional deviations:

a(v, b)v− p(v, b) ≥ a(v̂, b)v− p(v̂, b),

a(v, b2)v− p(v, b2) ≥ a(v, b1)v− p(v, b1).

� To see this, note that

a(v, b2)v− p(v, b2) ≥ a(v, b1)v− p(v, b1)

≥ a(v̂, b1)v− p(v̂, b1).

Back



Benchmark: no veri�cation (k = ∞)
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Back



(IC-b) constraint: (v, b2) misreports as (v̂, b1)

� (IC-b) Constraint:

q(v̂, b1)c ≥ a(v̂, b1)v− p(v̂, b1)︸ ︷︷ ︸
misreport as (v̂, b1)

− [a(v, b2)v− p(v, b2)]︸ ︷︷ ︸
report truthfully

.

� Fix v̂, ∂RHS/∂v = a(v̂, b1)− a(v, b2), which is non-increasing in v.

� Hence, RHS is concave in v and maximized at

vd(v̂) ≡ inf {v|a(v, b2) > a(v̂, b1)} .

Back



(IC-b) constraint: (v, b2) misreports as (v̂, b1)

� Using the envelope condition, (IC-b) becomes:

q(v̂, b1)c ≥ u(v, b1) + a(v̂, b1)(v− v̂) +
∫ v̂

v
a(ν, b1)dν︸ ︷︷ ︸

misreport as (v̂, b1)

−
[

u(v, b2) +
∫ v

v
a(ν, b2)dν

]
︸ ︷︷ ︸

report truthfully

� Fix v̂, ∂RHS/∂v = a(v̂, b1)− a(v, b2), which is non-increasing in v.

� Hence, RHS is concave in v and maximized at

vd(v̂) ≡ inf {v|a(v, b2) > a(v̂, b1)} .

Back
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Back



(IC-b) constraint: (v, b2) misreports as (v̂, b1)
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v vd

� gain = gray area, loss = blue area
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Approximate allocation rules using step functions
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� Assume that a(·, b1) takes M distinct values. −→ a(·, b2) takes at

most M + 2 distinct values.

� M-step allocation rule
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Approximate allocation rules using step functions
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� Assume that a(·, b1) takes M distinct values. −→ a(·, b2) takes at

most M + 2 distinct values.

� M-step allocation rule
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Sketch of the problem-solving strategy

1. Consider the principal's problem (P ′) with two modi�cations:

V(M, d) = max
a,p,q

Et[a(t)v− p(t)], (P ′(M, d))

subject to (IR), (IC-v), (IC-b), (BC), (S),

a is a M′-step allocation rule for some M′ ≤ M,

E[p(t)− q(t)k] ≥ −d. (BB-d)

2. Take M→ ∞ and d→ 0.



Sketch of the problem-solving strategy (cont'd)

Under the regularity conditions,

1. Consider the principal's modi�ed problem P ′(M, d)

Lemma 1: V(M, d) = V(2, d) for all M ≥ 2 and d ≥ 0.

Proof

2. Take M→ ∞ and d→ 0.

Lemma 2: V = V(2, 0), where V is the value of P .
Proof
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Optimal mechanism of P ′(M, d)

Consider the principal's problem (P ′) with two modi�cations:

max
a,p,q

Et[a(t)v− p(t)], (P ′(M, d))

subject to (IR), (IC-v), (IC-b), (BC), (S),

a is a M′-step allocation rule for some M′ ≤ M,

E[p(t)− q(t)k] ≥ −d. (BB-d)



Lemma 1

Let V(M, d) denote the value of P ′(M, d). Then V(M, d) = V(2, d) for

all M ≥ 2 and d ≥ 0.

Proof Sketch.
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v1
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1

� For each m = 1, . . . , M− 1, vm
1 and vm

2 satisfy a set of FOCs.

� If f is �regular�, then this set of FOCs has a unique solution.



Intuition of Lemma 1

� Every linear program has an extreme point that is an optimal soln.

� vm
2 − vm

1 is non-negative and increasing.

I Incremental change in di�. in in-kind subsidies is increasing.

I The number of active constraints is �nite.

v
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v1
2 v2

2 v3
2

1

� If f is �regular�, V(M, d) = V(5, d) for all M ≥ 5 and d ≥ 0.
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Optimal mechanism of P (M→ ∞, d→ 0)

Lemma 2

Let V denote the value of P . Then V = V(2, 0).

Proof sketch.

� ∀d > 0, ∃ M(d) > 0 such that ∀M > M(d)

V−V(M, d) ≤ (1− π)
E[v]
M

.

� Fix d > 0 and let M→ ∞: V(2, 0) ≤ V ≤ V(2, d) ∀d > 0.

� V = V(2, 0) by the continuity of V(2, d).
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Figure: In this example, v ∼ U[0, 1], ρ = 0.08, b1 = 0.2 and π = 0.5.
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