

Mechanism Design with Financially Constrained Agents and Costly Verification

Yunan Li

City University of Hong Kong

IMS at NUS

July 9, 2018

Introduction	Model	Optimal Mechanism	Extensions	Conclusion
Motivation				

- Governments distribute valuable resources to financially constrained agents.
 - ► Housing and development board (HDB) in Singapore
 - Medicaid in the U.S.
- One justification for this role is that competitive market fails to maximize social surplus.
 - Some high valuation agents will not obtain the resources while low valuations agents with access to cash will.
- Governments face a mechanism design problem.
 - Agents have private information about their preferences and financial constraints.

Previous work *focuses* on mechanisms with only monetary transfers and *ignores* the role of costly verification.

- Government relies on agents' report of their ability to pay and can verify this information.
 - eligibility conditions on age, family, income, etc.
- An agent who makes a false statement can be punished.
 - ▶ fine or imprisonment
- Verification is costly for the government.

This paper: What is the best way to allocate resources in the presence of costly verification?

Introduction	Model	Optimal Mechanism	Extensions	Conclusion
Preview of	^f model			

I characterize the optimal mechanism when ...

- The principal has a limited supply of indivisible goods.
- There is a unit mass of continuum of agents.
- Each agent has two-dimensional private information:
 - ▶ value $v \in [\underline{v}, \overline{v}]$, and
 - budget $b \in \{b_1, b_2\}$ with $b_1 < b_2$
- Monetary transfer and costly verification of budget.
 - Principal can verify an agent's budget at a cost and impose an exogenous penalty.
- The principal is also subject to a budget balance constraint.

Characterization of the optimal (revelation) mechanism.

- Agents who report low budgets receive more cash and in-kind subsidies.
 - ► In-kind subsidies: provision of goods at discounted prices
- Only those who report low-budgets are randomly verified.
- Verification probability is increasing in reported value.

Comparative statics (via numerical experiments)

Introduction Model Optimal Mechanism Extensions Conclus	ion
---	-----

Implementation via a two-stage mechanism

1st • Agents *report* their budgets and *receive*

- budget-dependent cash subsidies; and
- the opportunity to participate in a lottery at budget-dependent prices.
- Randomly assign the goods among all lottery participants.
- Randomly inspect low-budget agents.
- 2nd Resale market opens and agents can trade with each other.
 - Sellers face budget-dependent sales taxes.
 - Randomly inspect low-budget agents who keep their goods.

Effects of verification

- w/o verification: equally subsidized, priced and taxed.
- w/: higher cash subsidies, lower prices and higher taxes for low-budget agents.

Intuition

- Higher cash subsidies and lower prices relax low-budget agents' budget constraints.
- Higher taxes discourage low-budget low-valuation agents from arbitrage.

This exhibits some of the features of HDB.

Types of flats	Minimum Occupation Periods		
	sell	sublet	
Resale flats w/ Grants	5-7 years	5-7 years	
Resale flats w/o Grants	0-5 years	3 years	

Feature

• More initial subsidies \rightarrow more restrictions on resale/sublease

Technical difficulties

- One cannot anticipate a priori the set of binding incentive compatibility constraints.
- IC constraints between distant types can bind.

Method

- Focus on a class of allocations rules (step functions) that
 - allow one to keep track of binding ICs; and
 - approximate a general allocation rule well.
- The optimal mechanism is obtained at the limit.

Introduction	Model	Optimal Mechanism	Extensions	Conclusion
Literature				

Mechanisms with financially constrained buyers

- Known budgets: Laffont and Robert (1996), Maskin (2000), Malakhov and Vohra (2008)
- *Private budgets:* Che and Gale (2000), Che, Gale and Kim (2013), Richter (2013), Pai and Vohra (2014)
- Difference: Costly verification

Costly verification

- *Single agent:* Townsend (1979), Gale and Hellwig (1985), Border and Sobel (1987), Mookherjee and Png (1989)
- *Multiple agents:* Ben-Porath, Dekel and Lipman (2014), Mylovanov and Zapechelnyuk (2015), Li (2016)
- Difference: Two-dimensional private information

- A unit mass of continuum of risk neutral agents
- A mass S < 1 of indivisible goods
- Each agent has
 - a private valuation of the good: $v \in V \equiv [\underline{v}, \overline{v}]$, and
 - a privately known budget: $b \in B \equiv \{b_1, b_2\}$.
- Agent's type: t = (v, b), and the type space: $T = V \times B$
- v and b are independent.
 - $\mathbb{P}(b_1) = 1 \pi$ and $\mathbb{P}(b_2) = \pi$, and $b_1 < b_2$.
 - ▶ v is distributed with CDF F and density f.

- Principal can verify an agent's budget at cost k ≥ 0, and impose an exogenous non-monetary penalty c > 0.
- Verification perfectly reveals an agent's budget.
- The cost to an agent to have his report verified is zero.
- An agent is punished if and only if he is found to have lied.

Introduction	Model	Optimal Mechanism	Extensions	Conclusion
Mechanism				

- A direct mechanism (a, p, q) consists of \bullet Details
 - ▶ an allocation rule $a: T \rightarrow [0, 1]$,
 - a payment rule $p: T \to \mathbb{R}$,
 - a verification rule $q: T \rightarrow [0, 1]$.
- The utility of an agent who has type t = (v, b) and reports $\hat{t} = (\hat{v}, \hat{b})$:

$$u(\hat{t},t) = \begin{cases} a(\hat{t})v - p(\hat{t}) & \text{if } \hat{b} = b \text{ and } p(\hat{t}) \le b \\ a(\hat{t})v - p(\hat{t}) - q(\hat{t})c & \text{if } \hat{b} \ne b \text{ and } p(\hat{t}) \le b \\ -\infty & \text{if } p(\hat{t}) > b \end{cases}$$

Introduction	Model	Optimal Mechanism	Extensions	Conclusion
Principal's	problem			

$$\max_{a,p,q} \mathbb{E}_t \left[a(t)v - p(t) \right], \qquad (\mathcal{P})$$

subject to

- $u(t,t) \ge 0,$ $\forall t \in T,$ (IR)
- $p(t) \le b$, $\forall t \in T$, (BC)
- $u(t,t) \ge u(\hat{t},t), \qquad \forall t, \hat{t} \in T, p(\hat{t}) \le b,$ (IC)
- $\mathbb{E}_t[p(t) kq(t)] \ge 0, \tag{BB}$
- $\mathbb{E}_t\left[a(t)\right] \le S. \tag{S}$

Introduction Model Optimal Mechanism Extensions Conclusion
(IC) constraints

- Ignore constraints corresponding to over-reporting budget.
- Two categories

$$\begin{split} & a(v,b)v - p(v,b) \ge a(\hat{v},b)v - p(\hat{v},b), & (\text{IC-v}) \\ & a(v,b_2)v - p(v,b_2) \ge a(\hat{v},b_1)v - p(\hat{v},b_1) - q(\hat{v},b_1)c. & (\text{IC-b}) \end{split}$$

- By the standard argument, (IC-v) holds if and only if
 - (monotonicity) a(v, b) is non-decreasing in v, and
 - (envelope cond) $p(v,b) = a(v,b)v \int_{\underline{v}}^{v} a(v,b)dv u(\underline{v},b).$
- Difficulty arises from (IC-b).

(IC-b) constraint: (v, b_2) misreports as (\hat{v}, b_1)

• (IC-b) Constraint:

$$q(\hat{v}, b_1)c \geq \underbrace{a(\hat{v}, b_1)v - p(\hat{v}, b_1)}_{\text{misreport as } (\hat{v}, b_1)} - \underbrace{[a(v, b_2)v - p(v, b_2)]}_{\text{report truthfully}}.$$

- RHS = Incentive for (v, b_2) to misreport as (\hat{v}, b_1)
- Fix \hat{v} , RHS is concave in v and maximized at

$$v^{d}(\hat{v}) \equiv \inf \{ v | a(v, b_{2}) > a(\hat{v}, b_{1}) \}.$$

• If $a(\cdot, b)$ is continuous, the $a(v^d(\hat{v}), b_2) = a(v, b_1)$.

Introduction

Model

Optimal Mechanism

Extensions

Conclusion

Binding (IC-b) constraints

• Binding (IC-b) constraints: $a(v^d(\hat{v}), b_2) = a(\hat{v}, b_1)$.

Introduction

Model

Optimal Mechanism

Extensions

Conclusion

Binding (IC-b) constraints

• Binding (IC-b) constraints: $a(v^d(\hat{v}), b_2) = a(\hat{v}, b_1)$.

Introduction Model **Optimal Mechanism** Extensions Conclusion

Sketch of the problem-solving strategy

1. Consider the principal's problem (\mathcal{P}') with two modifications:

$$V(M,d) = \max_{a,p,q} \mathbb{E}_t[a(t)v - p(t)], \qquad (\mathcal{P}'(M,d))$$

subject to (IR), (IC-v), (IC-b), (BC), (S),

 $a ext{ is a } M' ext{-step allocation rule for some } M' \leq M,$ $\mathbb{E}[p(t) - q(t)k] \geq -d.$ (BB-d)

2. Take $M \to \infty$ and $d \to 0$.

Assumption 1.
$$\frac{1-r}{f}$$
 is non-increasing

Assumption 2. f is non-increasing.

Examples (Banciu and Mirchandani, 2013) uniform, exponential and the left truncation of a normal distribution.

Theorem

Under the regularity conditions, there exists $v_1^* \leq v_2^* \leq v_2^{**}$, $u_1^* \geq u_2^*$ and $0 \leq a^* \leq 1$ such that in the optimal mechanism of \mathcal{P}

Optimal mechanism

Theorem

Under the regularity conditions, there exists $v_1^* \leq v_2^* \leq v_2^{**}$, $u_1^* \geq u_2^*$ and $0 \leq a^* \leq 1$ such that in the optimal mechanism of \mathcal{P}

2. The payment rule is

$$p(v,b_1) = \begin{cases} -u_1^* & \text{if } v < v_1^* \\ -u_1^* + a^* v_1^* & \text{if } v > v_1^* \end{cases},$$

$$p(v,b_2) = \begin{cases} -u_2^* & \text{if } v < v_2^* \\ -u_2^* + a^* v_2^* & \text{if } v_2^* < v < v_2^{**} \\ -u_2^* + a^* v_2^* + (1 - a^*) v_2^{**} & \text{if } v > v_2^{**} \end{cases}$$

3. The verification rule is

$$\begin{split} q(v,b_1) &= \begin{cases} \begin{array}{ll} \frac{1}{c} \left(u_1^* - u_2^* \right) & \text{if } v < v_1^* \\ \frac{1}{c} \left[\left(u_1^* - u_2^* \right) + a^* \left(v_2^* - v_1^* \right) \right] & \text{if } v > v_1^* \end{array}, \\ q(v,b_2) &= 0. \end{split}$$

Introduction	Model	Optimal Mechanism	Extensions	Conclusion

Subsidies in cash and in kind

- Subsidies in cash:
 - High-budget: u_2^* .
 - Low-budget: u_1^* .
- Subsidies in kind: provision of goods at discounted prices.
- Use the additional payment made by a high-budget high-value agent as a measure of "price": $p^{\text{market}} = a^* v_2^* + (1 a^*) v_2^{**}$.
- The amount of in-kind subsidies:

Introduction

Model

Conclusion

Subsidies in cash and in kind (cont'd)

• Verification probability revisited

- Effects of verification cost
 - If k = 0, then high-budget agents receive no subsidies: u₂^{*} = 0 and p^{market} = v₂^{*}.
 - If k = ∞, then high-budget agents receive the same subsidies as low-budget agents: u^{*}₂ = u^{*}₁ and v^{*}₂ = v^{*}₁.

Implementation via a two-stage mechanism

- 1st Agents *report* their budgets and *receive*
 - budget-dependent cash subsidies; and
 - the opportunity to participate in a lottery at budget-dependent prices.
 - Randomly assign the goods among all lottery participants.
 - Randomly inspect low-budget agents.
- 2nd Resale market opens and agents can trade with each other.
 - Sellers face budget-dependent sales taxes.
 - Randomly inspect low-budget agents who keep their goods.

 $v_1^* v_2^*$

→ v

 v_2^{**}

• price
$$= v_2^{**}$$
,

• high-budget tax = $a^*(v_2^{**} - v_2^*)$, low-budget tax = $a^*(v_2^{**} - v_1^*)$

• price
$$= v_2^{**}$$
,

• high-budget tax = $a^*(v_2^{**} - v_2^*)$, low-budget tax = $a^*(v_2^{**} - v_1^*)$

Effects of verification

- w/o verification: equally subsidized, priced and taxed.
- w/: higher subsidies, lower price and higher sales taxes for low-budget agents.

Intuition

- Higher subsidies and discounted price relax low-budget agents' budget constraints.
- Higher taxes discourage low-budget low-valuation agents from arbitrage.

Introduction

Model

Optimal Mechanism

Extension

Conclusion

Properties of optimal mechanism

- 1. Who benefits if the supply of goods increases?
- 2. How does verification cost affect the optimal mechanism's reliance on cash and in-kind subsidies?

An increase in S improves the total welfare; but its impact on each budget type is not monotonic.

Figure: In this example, $v \sim U[0,1]$, ho = 0.08, $b_1 = 0.2$ and $\pi = 0.5$.

Low-budget low-valuation agents can get worse off as the amount of cash subsidies to low-budget agents begins to decline for sufficiently large *S*.

Figure: In this example, $v \sim U[0,1]$, ho = 0.08, $b_1 = 0.2$ and $\pi = 0.5$.

High-budget high-valuation agents can get worse off as their payments increase because disproportionately more goods are allocated to low-budget agents.

Figure: In this example, $v \sim U[0,1]$, ho = 0.08, $b_1 = 0.2$ and $\pi = 0.5$.

Verification cost ($\rho = k/c$)

If verification becomes more costly, then agents are inspected less frequently in the optimal mechanism.

Figure: In this example, $v \sim U[0,1]$, $b_1 = 0.2$, S = 0.4 and $\pi = 0.5$.

Effective verification cost ($\rho = k/c$)

If verification becomes more costly, then the opt. mechanism relies more on in-kind than cash subsidies to help low-budget agents.

Figure: In this example, $v \sim U[0,1]$, $b_1 = 0.2$, S = 0.4 and $\pi = 0.5$.

Effective verification cost ($\rho = k/c$)

If verification becomes more costly, then the opt. mechanism relies more on in-kind than cash subsidies to help low-budget agents.

- Cash subsidy is more efficient because it introduces less distortion into allocation.
- Cash subsidy is more costly because it is attractive to agents with all valuations while in-kind subsidy is attractive to only have-valuation agents.

Introduction	Model	Optimal Mechanism	Extensions	Conclusion
Extensions				

- Ex-post individual rationality
- Costly disclosure

Ex-post individual rationality

- Optimal mechanism may not be ex-post individually rational.
 - Lotteries with positive payments.
- Budget constraint vs. per unit price constraint

$$p(t) \le b$$
, $\forall t = (v, b)$, (BC)

$$p(t) \le a(t)b,$$
 $\forall t = (v, b).$ (PC)

- Why study (BC)?
 - Optimal mechanisms in these two settings share qualitatively similar features.
 - For some parameter values, there is no rationing $(a^* = 1)$.
 - Rationing is realistic if b_1 is close to zero.

Introduction

Model

Optimal Mechanism

Extensions

Conclusion

Ex-post individual rationality (cont'd)

$k = \infty$	All results extend.		
$\kappa = \infty$	The latter extends Che, Gale and Kim (2013).		
	Multiple levels of in-kind subsidies.		
$k<\infty$	Incremental change in diff. in		
	in-kind subsidies is increasing.		
$k < \infty$, f is regular	?		

- Agents also bear a cost of being verified.
- An agent incurs cost c^T from being verified if he reported his budget truthfully and $c^F \ge c^T$ if he lied.
- The utility of an agent who has type t=(v,b) and reports \hat{t} is

$$u(\hat{t},t) = \begin{cases} a(\hat{t})v - p(\hat{t}) - q(\hat{t})c^T & \text{if } \hat{b} = b \text{ and } p(\hat{t}) \le b, \\ a(\hat{t})v - p(\hat{t}) - q(\hat{t}) \left(c^F + c\right) & \text{if } \hat{b} \ne b \text{ and } p(\hat{t}) \le b, \\ -\infty & \text{if } p(\hat{t}) > b. \end{cases}$$

Introduction Model Optimal Mechanism Extensions Conclusion
Effects of costly disclosure

• Relax an agent's budget constraint:

$$u(v,b) = a(v,b)v - \underbrace{\left[p(v,b) + q(v,b)c^{T}\right]}_{\text{effective payment, } p^{e}(v,b)}$$

• Increase punishment:

$$a(v,b_2)v - p^e(v,b_2) \ge a(\hat{v},b_1)v - q(\hat{v},b_1)(c + c^F - c^T) - p^e(\hat{v},b_1).$$

• Verification is more costly:

$$\mathbb{E}_t\left[p^e(t)-(\mathbf{k}+\mathbf{c}^T)q(t)\right]\geq 0.$$

In troduction	Model	Optimal Mechanism	Extensions	Conclusion
Welfare				

Proposition

If $\frac{k}{c} \geq \frac{c^T}{c^F - c^T}$, then the presence of disclosure costs improves welfare.

Recap

- Solved a multidimensional mechanism design problem motivated by transfer programs.
- Mechanisms with transfers and costly verification of budget.
- Characterized the surplus-maximizing/optimal mechanism.

Future work

- Interactions between transfers and costly verification.
- Repeated interactions between the principal and agents.

Revelation principle

A general direct mechanism (a, p, q, θ) consists of

- an allocation rule $a: T \rightarrow [0, 1]$,
- a payment rule $p:T
 ightarrow \mathbb{R}$,
- an inspection rule $q:T \rightarrow [0,1]$,
- a punishment rule $\theta: T \times \{b_1, b_2, n\} \rightarrow [0, 1].$
 - $\theta(\hat{t}, n)$: prob. for an agent who reports \hat{t} and is not inspected.
 - θ(t̂, b): prob. for an agent who reports t̂ and whose budget is revealed to be b.

Optimal punishment rule

Lemma

In an optimal mechanism, heta((v,b),b)=0 and $heta((v,\hat{b}),b)=1$.

Punishment without verification

• Relax an agent's budget constraint:

$$u(t) = a(t)v - \underbrace{[p(t) + (1 - q(t))\theta(t, n)c]}_{\text{effective payment, } p^e(t)}.$$

• But this is costly:

$$\mathbb{E}_t\left[p^e(t)-kq(t)-(1-q(t))\theta(t,n)c\right]\geq 0.$$

Benchmark: no verification $(k = \infty)$

• Two categories

$$a(v,b)v - p(v,b) \ge a(\hat{v},b)v - p(\hat{v},b), \tag{IC-v}$$

$$a(v, b_2)v - p(v, b_2) \ge a(\hat{v}, b_1)v - p(\hat{v}, b_1) - q(\hat{v}, b_1)c.$$
 (IC-b)

Benchmark: no verification $(k = \infty)$

• Two categories

$$a(v,b)v - p(v,b) \ge a(\hat{v},b)v - p(\hat{v},b), \qquad (\mathsf{IC-v})$$

$$a(v,b_2)v - p(v,b_2) \ge a(\hat{v},b_1)v - p(\hat{v},b_1). \tag{IC-b}$$

• It is sufficient to consider two one-dimensional deviations:

$$a(v,b)v - p(v,b) \ge a(\hat{v},b)v - p(\hat{v},b),$$

 $a(v,b_2)v - p(v,b_2) \ge a(v,b_1)v - p(v,b_1).$

• To see this, note that

$$a(v, b_2)v - p(v, b_2) \ge a(v, b_1)v - p(v, b_1)$$

 $\ge a(\hat{v}, b_1)v - p(\hat{v}, b_1).$

• (IC-b) Constraint:

$$q(\hat{v}, b_1)c \geq \underbrace{a(\hat{v}, b_1)v - p(\hat{v}, b_1)}_{\text{misreport as } (\hat{v}, b_1)} - \underbrace{[a(v, b_2)v - p(v, b_2)]}_{\text{report truthfully}}.$$

• Fix \hat{v} , $\partial RHS/\partial v = a(\hat{v}, b_1) - a(v, b_2)$, which is non-increasing in v.

• Hence, RHS is concave in v and maximized at

 $v^d(\hat{v}) \equiv \inf \left\{ v | a(v, b_2) > a(\hat{v}, b_1) \right\}.$

• Using the envelope condition, (IC-b) becomes:

$$q(\hat{v}, b_1)c \ge u(\underline{v}, b_1) + a(\hat{v}, b_1)(v - \hat{v}) + \int_{\underline{v}}^{\hat{v}} a(v, b_1)dv$$

misreport as (\hat{v}, b_1)
 $-\underbrace{\left[u(\underline{v}, b_2) + \int_{\underline{v}}^{v} a(v, b_2)dv\right]}_{\text{report truthfully}}$

• Fix \hat{v} , $\partial RHS / \partial v = a(\hat{v}, b_1) - a(v, b_2)$, which is non-increasing in v.

• Hence, RHS is concave in v and maximized at

 $v^d(\hat{v}) \equiv \inf \left\{ v | a(v, b_2) > a(\hat{v}, b_1) \right\}.$

• Using the envelope condition, (IC-b) becomes:

$$q(\hat{v}, b_1)c \ge u(\underline{v}, b_1) + a(\hat{v}, b_1)(v - \hat{v}) + \int_{\underline{v}}^{\hat{v}} a(v, b_1) dv$$

misreport as (\hat{v}, b_1)
$$- \underbrace{\left[u(\underline{v}, b_2) + \int_{\underline{v}}^{v} a(v, b_2) dv\right]}_{\text{report truthfully}}$$

• Fix \hat{v} , $\partial RHS / \partial v = a(\hat{v}, b_1) - a(v, b_2)$, which is non-increasing in v.

• Hence, RHS is concave in v and maximized at

$$v^{d}(\hat{v}) \equiv \inf \{ v | a(v, b_{2}) > a(\hat{v}, b_{1}) \}.$$

• gain = gray area, loss = blue area

• gain = gray area, loss = blue area

Approximate allocation rules using step functions

- Assume that a(·, b₁) takes M distinct values. → a(·, b₂) takes at most M + 2 distinct values.
- *M*-step allocation rule

Approximate allocation rules using step functions

- Assume that a(·, b₁) takes M distinct values. → a(·, b₂) takes at most M + 2 distinct values.
- *M*-step allocation rule

Approximate allocation rules using step functions

- Assume that a(·, b₁) takes M distinct values. → a(·, b₂) takes at most M + 2 distinct values.
- *M*-step allocation rule

Sketch of the problem-solving strategy

1. Consider the principal's problem (\mathcal{P}') with two modifications:

$$V(M,d) = \max_{a,p,q} \mathbb{E}_t[a(t)v - p(t)], \qquad (\mathcal{P}'(M,d))$$

subject to (IR), (IC-v), (IC-b), (BC), (S),

 $a ext{ is a } M' ext{-step allocation rule for some } M' \leq M,$ $\mathbb{E}[p(t) - q(t)k] \geq -d.$ (BB-d)

2. Take $M \to \infty$ and $d \to 0$.

Sketch of the problem-solving strategy (cont'd)

Under the regularity conditions,

1. Consider the principal's modified problem $\mathcal{P}'(M,d)$

2. Take $M \to \infty$ and $d \to 0$.

Sketch of the problem-solving strategy (cont'd)

Under the regularity conditions,

- 1. Consider the principal's modified problem $\mathcal{P}'(M,d)$ Lemma 1: V(M,d) = V(2,d) for all $M \ge 2$ and $d \ge 0$.
- 2. Take $M \to \infty$ and $d \to 0$.

Sketch of the problem-solving strategy (cont'd)

Under the regularity conditions,

- 1. Consider the principal's modified problem $\mathcal{P}'(M,d)$ Lemma 1: V(M,d) = V(2,d) for all $M \ge 2$ and $d \ge 0$.
- 2. Take $M \to \infty$ and $d \to 0$.

Lemma 2: V = V(2,0), where V is the value of \mathcal{P} .

Optimal mechanism of $\mathcal{P}'(M,d)$

Consider the principal's problem (\mathcal{P}') with two modifications:

$$\max_{a,p,q} \mathbb{E}_t[a(t)v - p(t)], \qquad (\mathcal{P}'(M,d))$$

subject to (IR), (IC-v), (IC-b), (BC), (S),

 $a ext{ is a } M' ext{-step allocation rule for some } M' \leq M,$ $\mathbb{E}[p(t) - q(t)k] \geq -d.$ (BB-d)

Lemma 1

Let V(M,d) denote the value of $\mathcal{P}'(M,d)$. Then V(M,d) = V(2,d) for all $M \ge 2$ and $d \ge 0$.

Proof Sketch.

• For each m = 1, ..., M - 1, v_1^m and v_2^m satisfy a set of FOCs.

• If f is "regular", then this set of FOCs has a unique solution.

Intuition of Lemma 1

- Every linear program has an extreme point that is an optimal soln.
- $v_2^m v_1^m$ is non-negative and increasing.
 - Incremental change in diff. in in-kind subsidies is increasing.
 - The number of active constraints is finite.

• If f is "regular", V(M,d) = V(5,d) for all $M \ge 5$ and $d \ge 0$.

Intuition of Lemma 1

- Every linear program has an extreme point that is an optimal soln.
- $v_2^m v_1^m$ is non-negative and increasing.
 - Incremental change in diff. in in-kind subsidies is increasing.
 - The number of active constraints is finite.

• If f is "regular", V(M, d) = V(2, d) for all $M \ge 2$ and $d \ge 0$.

Lemma 2

Let V denote the value of \mathcal{P} . Then V = V(2, 0).

Proof sketch.

• $\forall d > 0, \ \exists \ \overline{M}(d) > 0$ such that $\forall M > \overline{M}(d)$

$$V - V(M, d) \leq (1 - \pi) \frac{\mathbb{E}[v]}{M}.$$

- Fix d > 0 and let $M \to \infty$: $V(2,0) \le V \le V(2,d) \ \forall d > 0$.
- V = V(2,0) by the continuity of V(2,d).

Lemma 2

Let V denote the value of \mathcal{P} . Then V = V(2, 0).

Proof sketch.

• $\forall d > 0, \exists \overline{M}(d) > 0$ such that $\forall M > \overline{M}(d)$

$$V - V(2, d) \leq (1 - \pi) \left(1 + \frac{k}{c}\right) \frac{\mathbb{E}[v]}{M}$$

- Fix d > 0 and let $M \to \infty$: $V(2,0) \le V \le V(2,d) \ \forall d > 0$.
- V = V(2,0) by the continuity of V(2,d).

Lemma 2

Let V denote the value of \mathcal{P} . Then V = V(2, 0).

Proof sketch.

• $\forall d > 0, \ \exists \ \overline{M}(d) > 0$ such that $\forall M > \overline{M}(d)$

$$V - V(2, d) \leq (1 - \pi) \left(1 + \frac{k}{c}\right) \frac{\mathbb{E}[v]}{M}.$$

- Fix d > 0 and let $M \to \infty$: $V(2,0) \le V \le V(2,d) \ \forall d > 0$.
- V = V(2,0) by the continuity of V(2,d).

Lemma 2

Let V denote the value of \mathcal{P} . Then V = V(2, 0).

Proof sketch.

• $\forall d > 0, \ \exists \ \overline{M}(d) > 0$ such that $\forall M > \overline{M}(d)$

$$V - V(2, d) \le (1 - \pi) \left(1 + \frac{k}{c}\right) \frac{\mathbb{E}[v]}{M}$$

- Fix d > 0 and let $M \to \infty$: $V(2,0) \le V \le V(2,d) \ \forall d > 0$.
- V = V(2,0) by the continuity of V(2,d).

Supply (S)

Figure: In this example, $v \sim U[0,1]$, ho = 0.08, $b_1 = 0.2$ and $\pi = 0.5$.

