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Introduction

Motivation

e Governments distribute valuable resources to financially

constrained agents.

» Housing and development board (HDB) in Singapore
» Medicaid in the U.S.

e One justification for this role is that competitive market fails
to maximize social surplus.

» Some high valuation agents will not obtain the resources while

low valuations agents with access to cash will.
e Governments face a mechanism design problem.

» Agents have private information about their preferences and

financial constraints.
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Costly verification

Previous work focuses on mechanisms with only monetary transfers
and ignores the role of costly verification.
e Government relies on agents’ report of their ability to pay and
can verify this information.
» eligibility conditions on age, family, income, etc.
e An agent who makes a false statement can be punished.

» fine or imprisonment

e Verification is costly for the government.

This paper: What is the best way to allocate resources in the

presence of costly verification?
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Preview of model

| characterize the optimal mechanism when ...

e The principal has a limited supply of indivisible goods.

e There is a unit mass of continuum of agents.
e Each agent has two-dimensional private information:

» value v € [v,7], and
> budget be {Z’J1,b2} with by < by

Monetary transfer and costly verification of budget.

» Principal can verify an agent’s budget at a cost and impose an

exogenous penalty.

The principal is also subject to a budget balance constraint.
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Main results

Characterization of the optimal (revelation) mechanism.

e Agents who report low budgets receive more cash and in-kind

subsidies.

» In-kind subsidies: provision of goods at discounted prices
e Only those who report low-budgets are randomly verified.

e Verification probability is increasing in reported value.

Comparative statics (via numerical experiments)
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Implementation via a two-stage mechanism

1st Agents report their budgets and receive

» budget-dependent cash subsidies; and
» the opportunity to participate in a lottery at
budget-dependent prices.

Randomly assign the goods among all lottery participants.

Randomly inspect low-budget agents.

2nd e Resale market opens and agents can trade with each other.

Sellers face budget-dependent sales taxes.

Randomly inspect low-budget agents who keep their goods.
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Main results (Cont'd)

Effects of verification

* w/o verification: equally subsidized, priced and taxed.
e w/: higher cash subsidies, lower prices and higher taxes for
low-budget agents.
Intuition

e Higher cash subsidies and lower prices relax low-budget agents’

budget constraints.

e Higher taxes discourage low-budget low-valuation agents from

arbitrage.
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Housing and development board (HDB) in Singapore

This exhibits some of the features of HDB.

Types of flats

Minimum Occupation Periods

sell sublet
Resale flats w/ Grants | 5-7 years 5-7 years
Resale flats w/o Grants | 0-5 years 3 years

Feature

* More initial subsidies — more restrictions on resale/sublease
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Technical contribution

Technical difficulties
¢ One cannot anticipate a priori the set of binding incentive
compatibility constraints.
e |C constraints between distant types can bind.
Method

e Focus on a class of allocations rules (step functions) that

» allow one to keep track of binding ICs; and

» approximate a general allocation rule well.

e The optimal mechanism is obtained at the limit.
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Literature

Mechanisms with financially constrained buyers

e Known budgets: Laffont and Robert (1996), Maskin (2000),
Malakhov and Vohra (2008)

e Private budgets: Che and Gale (2000), Che, Gale and Kim (2013),
Richter (2013), Pai and Vohra (2014)

e Difference: Costly verification
Costly verification

e Single agent: Townsend (1979), Gale and Hellwig (1985), Border
and Sobel (1987), Mookherjee and Png (1989)

e Multiple agents: Ben-Porath, Dekel and Lipman (2014), Mylovanov
and Zapechelnyuk (2015), Li (2016)

e Difference: Two-dimensional private information
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Model

A unit mass of continuum of risk neutral agents

A mass S < 1 of indivisible goods
Each agent has
» a private valuation of the good: v € V = [9,7], and
» a privately known budget: b € B = {b1,b,}.
Agent’s type: t = (v,b), and the type space: T=V x B
v and b are independent.
» P(by) =1—mand P(by) = 7, and by < by.
» v is distributed with CDF F and density f.
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Costly verification

Principal can verify an agent’s budget at cost k > 0, and

impose an exogenous non-monetary penalty ¢ > 0.

Verification perfectly reveals an agent’s budget.

The cost to an agent to have his report verified is zero.

An agent is punished if and only if he is found to have lied.
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Mechanism

e A direct mechanism (a,p,q) consists of

» an allocation rule a : T — [0, 1],
» a paymentrulep: T — R,

» a verification rule g : T — [0, 1].

e The utility of an agent who has type t = (v,b) and reports
t=(9,b):

Yo —p(f) if b = b and p(
u(t,t) =< a()v—p#) —qt)c ifb#band p(
—00 if p() > b

) <
) <
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Principal’s problem

max E [a(t)o —p(t)], (P)

subject to
u(t,t) >0, VteT, (IR)
p(t) <b, VteT, (BC)
u(t,t) > u(tt), vt,t € T,p(t) <b, (10)
Et[p(t) — kq(t)] = 0, (BB)
Et[a(t)] < S (S)
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(1C) constraints

e Ignore constraints corresponding to over-reporting budget.

Two categories

a(v,b)v —p(v,b) > a(d,b)v —p(d,b), (IC-v)
a(v,by)v —p(v,ba) > a(d,b1)v—p(0,b1) —q(9,b1)c. (IC-b)

¢ By the standard argument, (IC-v) holds if and only if

» (monotonicity) a(v,b) is non-decreasing in v, and
» (envelope cond) p(v,b) = a(v,b)o — [} a(v,b)dv — u(z,b).

Difficulty arises from (I1C-b).
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(IC-b) constraint: (v, by) misreports as (9, by)
e (IC-b) Constraint:

q(9,b1)c > a(d,b1)v —p(9,b1) — [a(v,ba)v — p(v, by)].

misreport as (0,by) report truthfully

e LHS = Expected punishment
® RHS = Incentive for (v,b,) to misreport as (9, by)

e Fix 9, RHS is concave in v and maximized at
v (0) = inf {v|a(v,by) > a(b,b1)}.

» If a(-,b) is continuous, the a(v?(2),by) = a(v,by).
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Binding (IC-b) constraints

a

! !
| |
|
| |
| |
o o)

o Binding (IC-b) constraints: a(v”(?),by) = a(?,by).
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Binding (IC-b) constraints

a
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Optimal Mechanism

Sketch of the problem-solving strategy

1. Consider the principal’s problem (P’) with two modifications:

V(M,d) = maxEfa(t)o —p(t)], (P'(M, d))

subject to (IR), (IC-v), (IC-b), (BC), (S),

ais a M'-step allocation rule for some M’ < M,

E[p(t) — q(t)k] = —d. (BB-d)

2. Take M — o0 and d — 0.



Optimal Mechanism

Regularity conditions

Assumption 1. 1f;F is non-increasing.
Assumption 2. f is non-increasing.

Examples (Banciu and Mirchandani, 2013) uniform, exponential

and the left truncation of a normal distribution.

Cauchy Normal Normal
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Optimal mechanism

Theorem
Under the regularity conditions, there exists v] < o3 < 3%, u] > uj and
0 < a* <1 such that in the optimal mechanism of P

1. The allocation rule is a
0 ifo<uo] 1f------------ —a(-, by)
H(U,bl) = i , I
a*  ifv>0] !
|
0 ifo<uoy afp------- ——La(-,by)
a(v,by) = ¢ a*  ifvy <v<oi* , i i }
1 if v > U;* % 4‘<* v
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Optimal mechanism

Theorem
Under the regularity conditions, there exists v} < v3 < v3*, uj > uj and

0 < a* <1 such that in the optimal mechanism of P

2. The payment rule is

* H *
p(o,by) = —uy if v < o]
—uj +a*vy  ifo>0f
—u3 if v <
p(v,b2) = § —ub +a*v} if v} <o <os*

—uy +a‘vy + (1 —a*)oy*  if o> 03"

3. The verification rule is
a(0,by) = L (uy —u3) if v <o}
' ) —ug) +a* (03 —27)]  fo>of

1
g(v,by) = 0.

’

Conclusion



Optimal Mechanism

Subsidies in cash and in kind

Subsidies in cash:

» High-budget: u3.

» Low-budget: uj.

Subsidies in kind: provision of goods at discounted prices.

Use the additional payment made by a high-budget high-value

agent as a measure of “price”: p™ket = g*v3 + (1 —a*)v3*.

The amount of in-kind subsidies:
» High-budget: a* (p"‘a"“Et - 05)
» Low-budget: a* (pmarket — vi‘)
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Subsidies in cash and in kind (cont'd)

o Verification probability revisited

q
q(-,b)
Lo (o — o ﬁ
i —u3) { | (. b2)

e Effects of verification cost

» If k =0, then high-budget agents receive no subsidies: u5 = 0
and pmarket — U;.
» If k = oo, then high-budget agents receive the same subsidies

as low-budget agents: u; = uj and v; = 0.
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Implementation via a two-stage mechanism

1st

Agents report their budgets and receive
» budget-dependent cash subsidies; and
» the opportunity to participate in a lottery at

budget-dependent prices.

Randomly assign the goods among all lottery participants.

Randomly inspect low-budget agents.

2nd

Resale market opens and agents can trade with each other.

Sellers face budget-dependent sales taxes.

Randomly inspect low-budget agents who keep their goods.
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Implementation (cont'd)

1st stage

a

Model

Optimal Mechanism

Extensions

a(-,ba)
”””””” = ; a(-,b1)
I 1 l 1 v
(o vy

Conclusion
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Implementation (cont'd)

2nd stage
a
for —al(,by)
|
' buyers
:
I
|
at*b----------- s a(-,by)
| | | !
|
I' seliers i |
|' | | !
L ’ U
(o vy

® price = v3",

e high-budget tax = a*(v3* — v3), low-budget tax = a*(v}* — v])
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Implementation (cont'd)

2nd stage

a

1 |mmmemmmmm e —a(by)
| buyers

At b oo ' a(-,by)

ers i
1 v
(o vy

® price = v3",

e high-budget tax = a*(v3* — v3), low-budget tax = a*(v;* — v])
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Implementation (cont'd)

Effects of verification

* w/o verification: equally subsidized, priced and taxed.
e w/: higher subsidies, lower price and higher sales taxes for
low-budget agents.
Intuition

e Higher subsidies and discounted price relax low-budget agents’

budget constraints.

e Higher taxes discourage low-budget low-valuation agents from

arbitrage.
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Properties of optimal mechanism

1. Who benefits if the supply of goods increases?

2. How does verification cost affect the optimal mechanism’s

reliance on cash and in-kind subsidies?

Conclusion



Optimal Mechanism

Supply (S)
An increase in S improves the total welfare; but its impact on each

budget type is not monotonic.

04 H—— W1
(%)
—w

0 0.2 0.4 0.6

Figure: In this example, v ~ U][0,1], p = 0.08, b; = 0.2 and 7= = 0.5.
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Supply (S)

Low-budget low-valuation agents can get worse off as the amount of cash

subsidies to low-budget agents begins to decline for sufficiently large S.

1 \
c — N
.2 — P21
B 0.8
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[y]
<
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>
T
Q 02
\ \ |
0 0.2 0.4 0.6
S S

Figure: In this example, v ~ U[0,1], p = 0.08, by = 0.2 and = = 0.5.



Introduction Model Optimal Mechanism Extensions Conclusion

Supply (S)

High-budget high-valuation agents can get worse off as their payments increase

because disproportionately more goods are allocated to low-budget agents.
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Figure: In this example, v ~ U[0,1], p = 0.08, by = 0.2 and = = 0.5.
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Verification cost (o = k/¢)

If verification becomes more costly, then agents are inspected less

frequently in the optimal mechanism.

03 LT == - - - probability
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Figure: In this example, v ~ U[0,1], b; = 0.2, S = 0.4 and = = 0.5.
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Effective verification cost (p = k/c)

If verification becomes more costly, then the opt. mechanism relies

more on in-kind than cash subsidies to help low-budget agents.

cash
@ 0.3 -
= --—--in-kind
'@
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3 02
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£
[0
201
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v
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! ! ! J
0 0.05 0.1 0.15 0.2

Figure: In this example, v ~ U[0,1], by = 0.2, S = 0.4 and 7 = 0.5.
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Effective verification cost (p = k/c)

If verification becomes more costly, then the opt. mechanism relies

more on in-kind than cash subsidies to help low-budget agents.

e Cash subsidy is more efficient because it introduces less

distortion into allocation.

e Cash subsidy is more costly because it is attractive to agents
with all valuations while in-kind subsidy is attractive to only

have-valuation agents.



Extensions

Extensions

e Ex-post individual rationality

e Costly disclosure
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Ex-post individual rationality

e Optimal mechanism may not be ex-post individually rational.

» Lotteries with positive payments.

e Budget constraint vs. per unit price constraint

p() <b, vi=(ub),  (BO)
p(t) <a(t)b, Vit = (ov,b). (PQ)

e Why study (BC)?
» Optimal mechanisms in these two settings share qualitatively
similar features.
» For some parameter values, there is no rationing (a* = 1).

» Rationing is realistic if by is close to zero.
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Ex-post individual rationality (cont'd)

All results extend.

k= o0
The latter extends Che, Gale and Kim (2013).
Multiple levels of in-kind subsidies.
k < oo Incremental change in diff. in

in-kind subsidies is increasing.

k < oo, f is regular ?
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Costly disclosure

e Agents also bear a cost of being verified.

e An agent incurs cost c from being verified if he reported his

budget truthfully and cf > ¢T if he lied.

o The utility of an agent who has type t = (v,b) and reports t is

el if b="band p(t) <
u(tt) =3 a(byo—pld) —q0) (+) b2 band p(h) <
—0o0 if p(t) > b.

b,
b,



Extensions

Effects of costly disclosure

e Relax an agent’s budget constraint:

u(v,b) = a(v,b)v — {p(v,b) +q(v,b)cT} :

effective payment, p°(v,b)
e Increase punishment:

a(v,by)v—p°(v,by) > a(@,bl)v—q(ﬁ,h)(c—i—CF—cT) —p°(0,b7).

e Verification is more costly:

E; [p(5) = (k+ cDa(n)] > 0.
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Welfare

Proposition

T . .
If £ > _¢ _ then the presence of disclosure costs improves welfare.
c cF—cT



Conclusion

Recap

e Solved a multidimensional mechanism design problem

motivated by transfer programs.

e Mechanisms with transfers and costly verification of budget.

e Characterized the surplus-maximizing/optimal mechanism.

Future work

e Interactions between transfers and costly verification.

e Repeated interactions between the principal and agents.

Conclusion



Revelation principle

A general direct mechanism (a,p, g,60) consists of

e an allocation rule a : T — [0, 1],
e apaymentrulep: T — R,
e an inspection rule g : T — [0, 1],
e a punishment rule 6 : T x {by,bp, n} — [0,1].
» 0(t,n): prob. for an agent who reports ? and is not inspected.

» 0(t,b): prob. for an agent who reports ? and whose budget is

revealed to be b.



Optimal punishment rule
Lemma
In an optimal mechanism, 6((v,b),b) = 0 and 6((v,b),b) = 1.
Punishment without verification

e Relax an agent’s budget constraint:

u(t) = a(t)o — [p(t) + (1 —q(1))0(t, n)c].

effective payment, p(t)

e But this is costly:

E; [pF(t) — kq(t) — (1 q(£))8(t, n)c] > 0.



Benchmark: no verification (k = o0)

e Two categories

(IC-v)

a(v,b)v —p(v,b) > a(d,b)o —p(9,b),
p(0,b1) —q(0,b1)c.  (IC-b)

a(v,by)v —p(v,by) > a(d,by)v —



Benchmark: no verification (k = o0)
e Two categories

(IC-v)

a(v,b)v —p(v,b) > a(d,b)o —p(9,b),
p(o,b1).  (ICb)

a(v,bp)v —p(v,by) > a(d,by)v —
e |t is sufficient to consider two one-dimensional deviations:
a(v,b)v —p(v,b) > a(d,b)v —p(9,b),
a(v,bp)v —p(v,by) > a(v,by)v —p(v,by).

e To see this, note that

a(v,by)v —p(v,ba) > a(v,by)v —p(v,by)



(IC-b) constraint: (v, by) misreports as (9, by)

e (IC-b) Constraint:

q(9,b1)c > a(d,b1)v —p(9,b1) — [a(v,ba)v — p(v, by)].

misreport as (9,b1) report truthfully




(IC-b) constraint: (v, by) misreports as (9, by)
e Using the envelope condition, (IC-b) becomes:

Y

q(9,b1)c >u(v,by) +a(0,b1)(v—20)+ [ a(v,by)dv

.

misreport as (9,b7)

- [u(g,bz) + /vva(v,bz)dv]

report truthfully



(IC-b) constraint: (v, by) misreports as (9, by)
e Using the envelope condition, (IC-b) becomes:

Y

q(9,b1)c >u(v,by) +a(0,b1)(v—20)+ [ a(v,by)dv

.

misreport as (9,b7)

- [u(g,bz) + /vva(v,bz)dv]

report truthfully

e Fix 9, dRHS/dv = a(?,by) — a(v,by), which is non-increasing in v.
e Hence, RHS is concave in v and maximized at

v (0) = inf {v|a(v,by) > a(d,b1)}.



(IC-b) constraint: (v,by) misreports as (9, by)

a




(IC-b) constraint: (v, by) misreports as (9, by)

a

!
|
|
| |
| |
1 |
1 |
| |
L
o) (A

e gain = gray area, loss = blue area



(IC-b) constraint: (v,by) misreports as (9, by)

as
a(-,bl)
ﬂ(-,bz)

o ()
e gain = gray area, loss = blue area



(IC-b) constraint: (v,by) misreports as (9, by)
a




(IC-b) constraint: (v,by) misreports as (9, by)

a
a(-,br)
a(-,b)
: : .
0 b v



Approximate allocation rules using step functions

a

1

e Assume that a(-,by) takes M distinct values. — a(+, by) takes at
most M + 2 distinct values.



Approximate allocation rules using step functions

a

L R EETETEEEEEEEEE (- b)

e Assume that a(-,by) takes M distinct values. — a(+, by) takes at
most M + 2 distinct values.



Approximate allocation rules using step functions

a

L R EETETEEEEEEEEE (- b)

e Assume that a(-,by) takes M distinct values. — a(+, by) takes at
most M + 2 distinct values.

e M-step allocation rule



Sketch

of the problem-solving strategy

Consider the principal’s problem (P’) with two modifications:

V(M,d) = maxEfa(t)o - p(t)], (P'(M,d))

subject to (IR), (IC-v), (IC-b), (BC), (S),

ais a M'-step allocation rule for some M’ < M,

E[p(t) — q(t)k] = —d. (BB-d)

Take M — o0 and d — 0.



Sketch of the problem-solving strategy (cont’d)

Under the regularity conditions,

1. Consider the principal’'s modified problem P’(M, d)

2. Take M — o0 and d — 0.



Sketch of the problem-solving strategy (cont’d)

Under the regularity conditions,

1. Consider the principal’'s modified problem P’(M, d)

Lemma 1: V(M,d) = V(2,d) for all M > 2 and d > 0.

2. Take M — o0 and d — 0.



Sketch of the problem-solving strategy (cont’d)

Under the regularity conditions,

1. Consider the principal’'s modified problem P’(M, d)

Lemma 1: V(M,d) = V(2,d) for all M > 2 and d > 0.

2. Take M — o0 and d — 0.

Lemma 2: V = V(2,0), where V is the value of P.



Optimal mechanism of P’(M, d)

Consider the principal’s problem (P’) with two modifications:

rg};;dEt[a(t)v —p(b)], (P'(M,d))

subject to (IR), (IC-v), (IC-b), (BC), (S),

ais a M'-step allocation rule for some M’ < M,

Elp(t) — q()k] > —d. (BB-d)



Lemma 1
Let V(M,d) denote the value of P’(M,d). Then V(M,d) = V(2,d) for
al M >2and d > 0.

Proof Sketch.

|
,—#—( |
I I ! ! !
1 .,1 ‘2 ‘2 ‘3 v
Ul UZ Ul Uz Uz

e Foreachm=1,...,M—1, v]" and 7' satisfy a set of FOCs.

e If f is “regular”, then this set of FOCs has a unique solution.



Intuition of Lemma 1

e Every linear program has an extreme point that is an optimal soln.
e o' — " is non-negative and increasing.
» Incremental change in diff. in in-kind subsidies is increasing.

» The number of active constraints is finite.
a

) ——a(,by)

I
— !
L I o
1 .1 ‘2 ‘2 ‘3 v
'U—l '02 'U»l '02 '02

o V(M,d) =V(5,d) for all M > 5 and d > 0.



Intuition of Lemma 1

e Every linear program has an extreme point that is an optimal soln.
e o' — " is non-negative and increasing.
» Incremental change in diff. in in-kind subsidies is increasing.

» The number of active constraints is finite.
a

) ——a(,by)

I
— !
L I o
1 .1 ‘2 ‘2 ‘3 v
'U—l '02 'U»l '02 '02

o If fis “regular’, V(M,d) = V(2,d) for all M > 2 and d > 0.



Optimal mechanism of P (M — oo, d — 0)

Lemma 2
Let V denote the value of P. Then V = V(2,0).

Proof sketch.

e Vd >0, 3 M(d) > 0 such that YM > M(d)

V-V(Md) < (1- n)ua]\[/lv]_



Optimal mechanism of P (M — oo, d — 0)

Lemma 2
Let V denote the value of P. Then V = V(2,0).

Proof sketch.

e Vd >0, 3 M(d) > 0 such that VM > M(d)

V-V(2,d) <(1-n) <1+Iz) 1}3}\[;].



Optimal mechanism of P (M — oo, d — 0)
Lemma 2

Let V denote the value of P. Then V = V(2,0).

Proof sketch.

e Vd >0, 3 M(d) > 0 such that VM > M(d)

V-V(2,d) <(1-n) <1+Iz> 1}3}\[;].

e Fixd>0andlet M = oc0: V(2,0) <V <V(2,d) Vd > 0.



Optimal mechanism of P (M — oo, d — 0)
Lemma 2

Let V denote the value of P. Then V = V(2,0).

Proof sketch.

e Vd >0, 3 M(d) > 0 such that VM > M(d)

V-V(2,d) <(1-n) <1+Iz> 1}3]\[;].

e Fixd>0andlet M = oc0: V(2,0) <V <V(2,d) Vd > 0.
e V' =1V(2,0) by the continuity of V(2,d).
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Figure: In this example, v ~ U[0,1], p = 0.08, by = 0.2 and = = 0.5.
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