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ABSTRACT. My objective for the mini-course is to get a working understanding of the terms
involved in the Arthur-Selberg trace formula using the example of SL(2). Starting with the co-
compact case I will analyze Arthur’s truncated kernel for SL(2). I will analyze the terms in the
coarse and fine geometric and spectral expansions that arise from this truncated kernel. I end
with the invariant trace formula and Kaletha will continue with the discussion of the stable trace
formula. I will closely follow the excellent notes by Prof. Arthur in the Clay volume.
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1. INTRODUCTION

The sole purpose of these notes is to motivate the reader to understand Arthur’s Clay notes
[Art05] which are an excellent introduction to the trace formula. We will abbreviate and say
trace formula when we refer to one of the versions of the Arthur-Selberg trace formula, the
non-invariant, invariant or stable depending on the context.

We start with the trace formula in the co-compact case whose spectral side involves only the
discrete spectrum. (change this line) In the general case, the kernel is not integrable so Arthur
modifies it to obtain the truncated kernel, an alternating sum indexed by standard parabolic

Date: December 18, 2018.
1

https://www.dropbox.com/s/155lg41rwiberbu/invariant_sl2.pdf?dl=0
https://www.dropbox.com/s/p8942kgaygr8tfv/invariant_sl2_print.pdf?dl=0


ABHISHEK PARAB

subgroups of the group. This truncated kernel has two important properties, namely that it
converges absolutely and that it agrees with the (usual) kernel of the right regular represen-
tation on a compact set. Arthur develops the coarse geometric and spectral expansions by
refining the expression for this truncated kernel. For certain special classes on the two sides
he gives more explicit forms. He then goes on to make the terms in these expansions more
explicit and refers to it as the fine expansion.

Soon after Jacquet and Langlands [JL70] used the trace formula to compare representations
of GL(2) and its twisted forms, it became clear that one of the crucial uses of the trace for-
mula would be to prove functoriality by comparing trace formulas on different groups. This
could well be the motivation for Arthur to develop and refine the trace formula as well as the
seminar of Clozel-Labesse-Langlands in developing the twisted trace formula (for connected
components of reductive algebraic groups). Having developed the fine expansions, Arthur de-
velops the invariant version by transferring the non-invariant terms on the spectral side to the
geometric side. For most groups (including SL(2)), the transfer of orbital integrals involves a
matching of not just invariant orbital integrals but stable ones. He refines the invariant trace
formula to get the stable version. Assuming the fundamental lemma (now proven), he then
goes ahead to prove functoriality for classical groups which can be considered as one of the
monumental achievements of this theory.

Although many endoscopic cases of functoriality are proven and we deduce more informa-
tion about the parameters involved, important non-endoscopic cases like symmetric powers
still remains open. It was Langlands’ paper in ‘Beyond Endoscopy’ [Lan04] that galvanized
work in this direction. Very naively the hope now is to be able to define (completed) auto-
morphic L-functions by imitating the method of Godement-Jacquet (theory of monoids de-
veloped by Braverman-Kazhdan, Ngo and Vinberg) and develop a trace formula with spectral
side weighted by the residues of these L-functions. To prove the ‘Beyond Endoscopy’ cases of
functoriality one hopes to be able to compare the geometric sides of two such trace formulas.

We begin these notes by reviewing the co-compact case and discussing Arthur’s modified
kernel and its properties. Although it is very instructive to go over the proofs in [Art05, S 8, 9]
we will restrict to discussing a few geometric and combinatorial ideas that go into the proof.
Always equipped with the example of SL(2) we will discuss the coarse geometric and spec-
tral expansions. We then sketch the fine expansion and the invariant trace formula and end
the notes with a brief mention of recent convergence results with conjectural applications to
Beyond Endoscopy.

The notes are evolving as the lectures progress and the latest version can be found here. I
would urge you to not print these notes but in case you do, a monochromatic version can be
found here.

2. THE CO-COMPACT CASE

In this section we will develop the trace formula when the quotient is compact. One reason
for going into the details of the co-compact case is to see that the simplest terms occurring in
the non-co-compact case are exactly the ones occurring here.
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Let H be a locally compact unimodular topological group and Γ be a discrete (not neces-
sarily compact) subgroup of H . An important question is to decompose the right regular rep-
resentation

R :H →GL(L 2(Γ \H )),

(R (y )φ)(x ) =φ(x y ), φ ∈ L 2(Γ \H )

into irreducible unitary representations.

Example 2.1. Take H =R and Γ = Z. The irreducible unitary representations of H are

(x 7→ exp(λx )) : λ ∈ i R.

The isomorphism

R ∼=
⊕

λ∈2πi Z

exp(λx )

can be realized via the Plancherel theorem for Fourier series:

L 2(Z \R)
∼−→ L 2(Z)

φ 7→ φ̂, where φ̂(n ) =

∫

Z\R
φ(x )exp(2πi n x )dx

Plancherel’s theorem : ‖φ‖= ‖φ̂‖.

Example 2.2. When we take Γ = {1} the decomposition of R is continuous and is given by the
Plancherel theorem for Fourier transforms, namely ‖ f ‖2 = ‖ f̂ ‖2 where f̂ is the Fourier transform
of f .

In general for arbitrary H and Γ , we have

R = discrete
⊕

continuous.

Langlands’ theory of Eisenstein series gives an explicit decomposition in terms of the cuspi-
dal spectrum and we will discuss this further when dealing with the spectral side of the trace
formula. In order to study the representation R , we look at the operator R ( f ) on L 2(Γ \H ) for
a compactly supported function f on H where

R ( f ) =

∫

H

f (y )R (y )dy .

We would like to understand the trace of this operator.
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(R ( f )φ)(x ) =

∫

H

f (y )(R (y )φ)(x )dx

=

∫

H

f (y )φ(x y )dy

=

∫

H

f (x−1 y )φ(y )dy sinceφ(γy ) =φ(y )

=

∫

Γ\H

∑

γ∈Γ
f (x−1γy )φ(y )dy

=

∫

Γ\H
φ(y )K (x , y )dy

where K (x , y ) =
∑

γ∈Γ f (x−1γy ). The sum over γ is finite since f is of compact support.
To continue further, we make the very special assumption: Γ \H is compact. Then the

following two things are true.

(1) K (x , y ) is compactly supported
Hence square-integrable
⇒R ( f ) is Hilbert-Schmidt class
⇒R ( f ) is compact (self-adjoint) operator.
Therefore by the spectral theory of self-adjoint compact operators,

R =
⊕

π

m (π, R )π

where 0≤m (π, R )<∞. Additionally if we assume

f (x ) = (g ∗ g ∗)(x ) =

∫

H

g (y )g (x−1 y )dy

for a function g on H of compact support then R is self-adjoint.
(2) If H is a Lie group and f is smooth of compact support then R ( f ) is of trace class so

trace R ( f ) =

∫

Γ\H
K (x , x )dx .
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Suppose {Γ } is a set of representatives of conjugacy classes in Γ . For any subset Ω of H , let
Ωγ denote the centralizer of γ in Ω. Then,

trace R ( f ) =

∫

Γ\H
K (x , x )dx

=

∫

Γ\H

∑

γ∈Γ
f (x−1γx )dx

=

∫

Γ\H

∑

γ∈{Γ }

∑

δ∈Γγ\Γ
f (x−1δ−1γδx )dx

=

∫

Γγ\H

∑

γ∈{Γ }
f (x−1γx )dx

=
∑

γ∈{Γ }

∫

Hγ\H

∫

Γγ\Hγ
f (x−1u−1γu x )dudx

=
∑

γ∈{Γ }
Vol(Γγ \Hγ)

∫

Hγ\H
f (x−1γx )dx since u ∈Hγ so u−1γu = γ.

This is the geometric expansion. On the other hand, the decomposition

R =
⊕

m (π, R )π

gives

trace R ( f ) =
∑

π

m (π, R ) traceπ( f ).

Thus we have an identity of linear forms,
∑

γ

a H
Γ (γ) fH (γ) =

∑

π

a H
Γ (π) fH (π),

where γ ∈ {Γ },

fH (γ) =

∫

Hγ\H
f (x−1γx )dx

a H
Γ (γ) =Vol(Γγ \Hγ)











Geometric side

Spectral side

¨

fH (π) = traceπ( f ) = trace
�∫

f (y )π(y )dy
�

a H
Γ (π) =m (π, R ).

This is the Selberg trace formula for compact quotient. As a quick exercise the reader should
use this formula to prove Frobenius reciprocity when H is a finite group. Also, when H = R
and Γ = Z it is easy to see the trace formula reduces to the Poisson summation formula,

∑

n∈Z

f (n ) =
∑

n∈Z

f̂ (n ).
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3. NOTATIONS

Before investigating the problems we run into when generalizing the compact case, we in-
troduce some notations.

Let G be a connected reductive group over Q and denote by A the adeles of Q. For concrete-
ness it is good to have an explicit group in mind, like GL(3) or Sp(4). We will explicitly carry
out calculations when G = SL(2). Let AG be the largest central subgroup of G over Q that is a
Q-split torus. (So AG

∼= GL(1)k ). In the case of SL(2), AG = {1}. Denote by X (G )Q = X (G ) the
free abelian group of rank k given by

X (G ) =HomQ(G , GL(1)).

Define the real vector spaces

aG :=HomZ(X (G ), R)

a∗G := X (G )⊗Q R.

and their respective complexification by aG ,C and a∗G ,C. Define the Harish-Chandra map by

HG : G (A)→ aG



HG (x ),χ
�

= log|χ(x )|, χ ∈ X (G )

and denote its kernel by G (A)1. If we denote AG (R)◦ byAG then G (A) is the direct product of
G (A)1 andAG . In the case of SL(2), the vector spaces aG ,a∗G and the map HG are all trivial and
G (A) =G (A)1.

We will assume the reader is familiar with the notion of parabolic subgroups. Fix a minimal
parabolic subgroup P0 with Levi decomposition P0 = M0N0. Call a parabolic subgroup P as
standard if P ⊇ P0. Such a parabolic subgroup has a unique Levi decomposition (MP ⊇ M0)
given by

1→NP → P →MP → 1.

In the case of SL(2), it is customary to choose
§�

∗ ∗
0 ∗

�ª

as the minimal parabolic subgroup P0.

The only standard parabolic subgroups are {P0,G }. Let AP ,AP ,aP ,a∗P denote AMP
, AMP

(R)◦,aMP

and a∗MP
respectively. If P = P0 we will further abbreviate to A0,A0,a0,a∗0 etc.

The trace formula we develop essentially depends on the choice of a maximal compact
subgroup of G (A) which we now choose. For G = SL(2) and p a rational prime, denote Kp =
SL(2, Zp ). At the Archimedean place, let K∞ = SO(2, R). Then K = K∞ ×

∏

p Kp is a maximal
compact subgroup of SL(2, A). In general for every rational prime p , we fix Kp to be a maximal
compact subgroup of G (Qp ) satisfying certain conditions (i.e., corresponds to a special point
in the Bruhat-Tits building; Arthur calls them as ‘good’). Having defined the maximal compact
subgroup K of G (A), we extend the map HP =HMP

initially defined on MP (A) to G (A) by

HP : G (A)→ aP

HP (g ) =HP (m ) =HMP
(m )

where we use the Iwasawa decomposition to write g = nmk with n ∈ NP (A), m ∈MP (A) and
k ∈ K .
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Arthur discusses two problems when we mimic the case of (H ,Γ ) in Section 2 when the
quotient Γ \H is not compact. The geometric side would look like

∑

γ∈G (Q)

Vol(G (Q)γ \G (A)1γ)

∫

G (A)1γ\G (A)1
f (x−1γx )dx .

Problem 1: Vol(G (Q)γ \G (A)1γ)may be infinite.

Problem 2: The integral over G (A)1γ \G (A)1 may diverge.

Arthur explains these divergence issues for G =G L (2) and attributes them to the existence
of nontrivial parabolic subgroups. Indeed we have

Theorem 3.1 (Borel-Harish–Chandra). The quotient G (Q) \G (A)1 is non-compact if and only
if G has proper parabolic subgroups defined over Q.

One of Arthur’s first contribution is to truncate the kernel by writing it as an alternating sum
over standard parabolic subgroups of G and prove it converges absolutely. We discuss this in
the next section.

4. THE KERNEL AND ITS TRUNCATION

To explain the terms in the truncated kernel we need to define some notations. Suppose we
have two standard parabolic subgroups P1 ⊆ P2. Thus there is a Q-rational embedding

AP2
⊆ AP1

⊆MP1
⊆MP2

.

The restriction homomorphism
X (MP2

)Q→ X (MP1
)Q

gives a linear injection
a∗P2
,→ a∗P1

and a dual linear surjection
aP1
� aP2

.

We denote the kernel of the latter map by a
P2
P1

. The homomorphism X (AP1
)Q → X (AP2

)Q is
surjective so gives a surjection

a∗P1
� a∗P2

and a dual linear injection
aP2
,→ aP1

.

Thus we have a split exact sequence of real vector spaces, namely

0→ a
P2
P1
→ aP1

� aP2
→ 0

and
0→ a∗P2

� a∗P1
→ a∗P1

/a∗P2
→ 0.

Set (aP2
P1
)∗ := a∗P1

/a∗P2
.

For any parabolic subgroup P , letΦP denote the set of roots of (P, AP ). IdentifyΦP as a subset
of a∗P by

ΦP ⊆ X (AP )Q ⊆ X (AP )Q⊗R= a∗P .
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Set Φ0 := ΦP0
. This is a valid root system. Let ∆0 ⊆ Φ0 denote the set of simple roots. Then ∆0

is a basis of (aG
0 )
∗ as a real vector space. Analogously the set ∆∨0 = {α

∨ : α ∈∆0} of coroots is a
basis of aG

0 := aG
P0

. Denote the dual bases of∆0 (resp. ∆∨0 ) by ∆̂∨0 (resp. ∆̂0).

By the theory of algebraic groups there is a bijection between subsets∆P
0 of∆0 and standard

parabolic subgroups P of G over Q such that

aP = {H ∈ a0 :α(H ) = 0 ∀α ∈∆P
0 }.

Denote by ∆P the set of linear forms on aP obtained by restricting elements of ∆0 \∆P
0 . It is

a basis of (aG
P )
∗ := a∗P /a

∗
G . Another basis is ∆̂P = {$α : α ∈ ∆0 \∆P

0 }. The corresponding dual
bases are

∆̂∨P = {$
∨
α :α ∈∆P }

and

∆∨P = {α
∨ :α ∈∆P }.

More generally when P1 ⊆ P2 we define the subsets

∆
P2
P1

,∆̂P2
P1
⊂ aP2

P1

and

(∆P2
P1
)∨, (∆̂P2

P1
)∨ ⊂ (aP2

P1
)∗

analogously, with ‘everything happening inside MP2
’. Note that the notion of roots and co-

roots of a root system is true when P1 = P0 but not in general.
We now calculate these objects for SL(2). As remarked earlier, the set P G (M0) of standard

parabolic subgroups of G with Levi contained in M0 is {G , P0} for G = SL(2). Since SL(2) has no
nontrivial characters so X (SL(2)) is trivial. So are the real vector spaces aG and a∗G . However

X (M0) is spanned by the root β1 = e1− e2 where ei

�

t1

t2

�

= ti and t1t2 = 1. Thus, we have

Roots: ∆0 = {β1 = e1− e2},
Co-roots: ∆∨0 = {β

∨
1 = e ∨1 − e ∨2 },

Weights: ∆̂0 = {$1 =
1

2
(e1− e2)}, and

Co-weights: ∆̂∨0 = {$
∨
1 =

1

2
(e ∨1 − e ∨2 )},

where the usual relations (ei , e j ) = δi , j and (βi ,β∨i ) = 2 hold. Recall that K was chosen to be

SO(2, R)×
∏

p

SL(2, Zp ). Then we can identify elements in the adelic quotient

SL(2, Q) \SL(2, A)/K

as points in the fundamental domain for SL(2, Z) via

(1) SL(2, Q) \SL(2, A)/K ' SL(2, Z) \SL(2, R)/SO(2, R) ' SL(2, Z) \H,
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where H is the upper half complex plane {x + i y : x , y ∈ R, y > 0}. We have the Iwasawa
decomposition g = nmk as

x + i y =
�

1 x
0 1

�

�

y 1/2

y −1/2

�

�

cosθ sinθ
−sinθ cosθ

�

.i

The map H0 : G (A)→ a0 satisfies




H0(g ),β1

�

= log |β1(g ) |= log |β1

�

y 1/2

y −1/2

�

|= log|y |.

For a standard parabolic subgroup P , let τP be the characteristic function of the cone

a+P = {t ∈ aP :α(t )> 0 ∀α ∈∆P .}

Analogously let τ̂P be the characteristic function of the subset

{t ∈ aP :$(t )> 0 ∀$ ∈ ∆̂P }.

We say the point T is ‘sufficiently’ regular if for every α ∈ ∆0,α(T ) � 0. This means that the
point T is in the positive Weyl chamber sufficiently away from the walls in a0.

In the case of SL(2) when P = P0, these cones are just rays on the line a0. The point T ∈ a0

is regular if it is sufficiently away from the origin. Although case of SL(2) simplifies the combi-
natorics, the example of SL(3) that Arthur carries out is quite instructive.

Just as we had the right regular representation R =RG of G (A) on L 2(G (Q)\G (A)) so also for
every parabolic subgroup P =MP NP , the regular representation RP of G (A)on L 2(NP (A)MP (Q)\
G (A)) is defined by

(RP (y )φ)(x ) =φ(x y ).

Indeed,

RP = IndG (A)
NP (A)MP (Q)

1NP (A)⊗RMP
.

This gives an operator RP ( f ) for f ∈C∞c (G (A))whose kernel is given by

KP (x , y ) =

∫

NP (A)

∑

γ∈MP (Q)

f (x−1γn y )dn , x , y ∈NP (A)MP (Q) \G (A).

Arthur defines the modified kernel for T ∈ a0 sufficiently regular (depending on f ) as

(2) k T (x ) = k T (x , f ) =
∑

P⊇P0

(−1)aP−aG

∑

δ∈P (Q)\G (Q)
KP (δx ,δx )τ̂P (HP (δx )−T ).

For SL(2) there are two terms, namely

(3) k T (x , f ) = KG (x , x )−
∑

δ∈P0(Q)\G (Q)
K0(δx ,δx ) τ̂0(H0(δx )−T ).

In [Art05, Theorem 6.1] Arthur
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Y -axis

y=exp(t )
T=tβ∨1

P =G

P = P0

FIGURE 1. Partitions of the fundamental domain

• proves the integral over the kernel, namely

J T ( f ) =

∫

G (Q)\G (A)1
k T (x , f )dx

converges absolutely for T sufficiently regular,
• shows that the map T 7→ J T ( f ) is a polynomial in T ∈ a0, and
• gets the spectral and geometric expansions out of k T (x ).

Because it covers many important aspects of the trace formula, we will go into details dis-
cussing the proof of Theorem 6.1. For instance, the coarse geometric expansion follows closely
on the steps of the proof of this theorem. The combinatorics discussed here play an important
role in the fine geometric expansion.

5. DISCUSSION ON THE PROOF OF THEOREM 6.1

In the case of SL(2), consider the characteristic function τ̂0(H0(δx )−T ) appearing in Equa-
tion (4). For what values of δx does it equal 1?

Fix x ∈ SL(2, A) and recall the identification of SL(2, Q) \ SL(2, A)/K in Equation (1) with the
fundamental domain of SL(2, Z). Clearly the image of x and δx in this fundamental domain
agree when δ ∈ P0(Q)\G (Q). Also recall that ∆̂0 = {$1 =

1
2 (e1− e2)} and τ̂0 is the characteristic

function of the subset

{t ∈ a0 :$1(t )> 0}.

We can write T ∈ a0 as T = tβ∨1 with t ∈ R and∆0 = {β1}. The condition that T is sufficiently
regular just means that t � 0. Now the condition that τ̂0(H0(δx )−T ) = 1 is equivalent to

$1(H0(δx )) =$1(H0(x ))>$1(T ),

which implies

log|$1(x )|>$1(tβ
∨
1 ) = t .
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Y -axis

P =G

P = P0

T1 : y = exp(t1)ω

T : y = exp(2t )

FIGURE 2. Partitions of the Siegel set

Identifying x ∈ SL(2, Q)\SL(2, A)/K with the point x + i y in the fundamental domain (do note
the unfortunate abuse of notation) we have

H0(x ) =H0(
�

1 x
0 1

�

�

y 1/2

y −1/2

�

�

cosθ sinθ
−sinθ cosθ

�

)

=H0(

�

y 1/2

y −1/2

�

).

∴ log|$1(

�

y 1/2

y −1/2

�

)|> t

∴ y > exp(2t ).

Fundamental domain picture showing two areas, namely y > exp(2t ) and y ≤ exp(2t ).
As noted earlier in Equation (4), the truncated kernel for SL(2) is

(4) k T (x , f ) = KG (x , x )−
∑

δ∈P0(Q)\G (Q)
K0(δx ,δx ) τ̂0(H0(δx )−T ).

Observe that if x belongs to the lower half in above picture then

k T (x ) = KG (x , x ) = K (x , x ) =
∑

γ∈SL(2,Q)

f (x−1γx ).

This is true in general, there is a compact set such that k T (x ) equals KG (x , x ) for x in this
compact set.

5.1. Siegel sets. Suppose T1 ∈ a0 andω is a compact subset of NP0
(A)MP0

(A)1. The subset

S G (T1) =S G (T1,ω) = {x = p a k ∈G (A) : p ∈ω, a ∈ A0, k ∈ K such that τ0(H0(a )−T1) = 1}

is called the Siegel set associated to T1 andω.
We would like to know what the condition τ0(H0(a ) − T1) = 1 means for G = SL(2). The

decomposition M0(A) =M0(A)1 ×A0 is given by the norm map on the ideles and is quivalent
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to IQ = I1 × (R∗)0. As before, we can write a =

�

y 1/2

y −1/2

�

and ∆0 = {β1 = e1 − e2}. Write

T1 = t1$1. Then

τ0(H0(a )−T1) = 1⇔β1(H0(a ))>β1(T1)⇔ log|y |> t1, i .e ., y > exp(t1).

Theorem 5.1 (Borel–Harish-Chandra). One can choose T1 andω so that

G (A) =G (Q)S G (T1,ω).

For this to hold in the case of SL(2), we ought to cover the fundamental domain. So the
compact subsetω⊆N0(A)M0(A)1 must be chosen of width greater than that of the fundamen-
tal domain, i.e., width > 1 and T1 = t1ω1 should satisfy exp(t1)< 1/2.

Now onward fix T1 andω satisfying this theorem. Define the truncated Siegel set for T ∈ a0

by
S G (T , T1,ω) = {x ∈S G (T1,ω) :$(H0(x )−T )≤ 0 ∀$ ∈ ∆̂0.}

Write F G (x , T ) to be the characteristic function in x of the projection of S G (T1, T ,ω) onto
G (Q) \G (A). More generally for a standard parabolic subgroup P define

S P (T1) =S P (T1,ω), S P (T1, T ) =S P (T1, T ,ω) and F P (x , T )

by replacing∆0,∆̂0 and G (Q)\G (A)with∆P
0 ,∆̂P

0 and P (Q)\G (A) in the respective definitions.
We have the partition lemma of Arthur:

Lemma 5.2. For any x ∈G (A),
∑

P⊇P0

∑

δ∈P0(Q)\G (Q)
F P (δx , T )τP (HP (δx )−T ) = 1

For a geometric interpretation of this lemma, see [Art05, p. 39]. In the case of SL(2) the
content of this lemma is that the fundamental domain for SL(2) is partitioned according to
standard parabolic subgroups as in above figure.

We will apply this lemma in a more general setting. Let P1 ⊆ P . Then

P1 \P ' (P1 ∩MP )NP \MP NP ' P1 ∩MP \MP .

Set
τP

P1
:=τP1∩MP

; τ̂P
P1

:= τ̂P1∩MP
.

We can consider these functions as defined on a0 but depending only on the projection of a0

onto aP
P1

:

a0 = a
P1
0 ⊕a

P
P1
⊕aP .

The more general version of the above lemma states that

Lemma 5.3. For fixed P , the sum
∑

P1:
P0⊆P1⊆P

∑

δ1∈P1(Q)\P (Q)
F P1 (δ1 x , T )τP

P1
(HP1
(δx )−T )

equals 1.
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Proof. Apply the previous lemma to MP instead of G . If y = nmk where n ∈NP (A), m ∈MP (A)
and k ∈ K then

HP1
(y ) =HMP1

(m ).

The sum P0 ⊆ P ′ ⊆MP is equivalent (taking P ′ := P1 ∩MP ) to P1 : P0 ⊆ P1 ⊆ P . Make this more
clear. Thus,

F P ′ (δx , T ) = F MP∩P1 (−−) = F P1 (−−).
♣

We now begin the proof of [Art05, Theorem 6.1]. When writing these notes, I was quite am-
bitious with what I could achieve in five lectures. I will not go over the proof in the lectures but
highly recomend working out the details for G = SL(2) for which there are many combinatorial
simplifications. Substituting the above lemma in the definition of k T (x ) gives

k T (x ) =
∑

P⊇P0

(−1)aP−aG

∑

δ∈P (Q)\G (Q)
KP (δx ,δx )τ̂P (HP (δx )−T )

=
∑

P⊇P0

(−1)aP−aG

∑

δ∈P (Q)\G (Q)





∑

P1⊆P

∑

δ1∈P1(Q)\P (Q)
F P1 (δ1δx , T )τP

P1
(HP1
(δ1δx )−T )





τ̂P (HP (δx )−T )KP (δx ,δx ),

where

KP (x , y ) =

∫

NP (A)

∑

γ∈MP (Q)

f (x−1γn y )dn .

If δ1 ∈ P (Q) then

KP (δ1 x ,δ1 y ) =

∫

NP (A)

∑

γ∈MP (Q)

f (x−1δ−1
1 γnδ1 y )dn

=

∫

NP (Q)\NP (A)

∑

γ∈P (Q)

f (x−1δ−1
1 γnδ1 y )dn

= KP (x , y ).

Similarly HG is G (Q)-invariant and HP is P (Q)-invariant. So HP (δx ) =HP (x ) for δ1 ∈ P (Q). So
the sums over δ ∈ P (Q) \G (Q) and δ1 ∈ P1(Q) \P (Q) can be combined together giving

k T (x ) =
∑

P1,P :
P0⊆P1⊆P

(−1)aP−aG

∑

δ∈P1(Q)\G (Q)
F P1 (δx , T )τP

P1
(HP1
(δx )−T )τ̂P (HP (δx )−T )KP (δx ,δx ).

Denote τP
P1
(HP1
(δx )− T )τ̂P (HP (δx )− T ) = τP

P1
(H1)τ̂P (H1), where H1 = HP1

(δx )− T ∈ a0. We
claim that

τP
P1
(H1)τ̂P (H1) =

∑

P2,Q :
P⊆P2⊆Q

(−1)aP2−aQτ
Q
P1
(H1)τ̂Q (H1).
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To see this we use the binomial theorem

(5)
∑

F ⊆S

(−1)|F | =

¨

0 if S 6= ;
1 if S = ;

and write the right hand side as

∑

Q







∑

P2:
P⊆P2⊆Q

(−1)aP2−aQ






τ

Q
P1
(H1)τ̂Q (H1).

The term in the parentheses is 1 precisely when P =Q which gives the left hand side. Thus we
have

τP
P1
(H1)τ̂P (H1) =

∑

P2:P⊆P2

σP2
P1
(H1),

where

σP2
P1
(H1) =

∑

Q :P2⊆Q

(−1)aP2−aQτ
Q
P1
(H1)τ̂Q (H1).

The lemma below characterizes the function σP2
P1

. It is closely related to the combinatorial
identities of Langlands and Arthur. Although it doesn’t have much content for the group SL(2),
seeing the cancellations even in the case of SL(3) is quite illuminating and strongly recom-
mended.

Lemma 5.4. Suppose P1 ⊆ P2 and H1 = H 2
1 +H2 under the isomorphism aG

P1
= a

P2
P1
⊕ aG

P2
. The

functionσP2
P1

has the following properties.

(1) σP2
P1
(H1) ∈ {0, 1}.

(2) IfσP2
P1
(H1) = 1 then τP2

P1
(H1) = 1 and ‖H2‖ ≤ c .‖H 2

1 ‖ for c = c (P1, P2)> 0.

The statement follows after proving that σP2
P1
(H1) is the characteristic function of H1 ∈ a1

such that

i α(H )> 0∀α ∈∆P2
P1
(⇒ τP2

P1
(H1) = 1),

ii α(H )≤ 0∀α ∈∆P1
\∆P2

P1
, and

iii $(H )> 0∀$ ∈ ∆̂P2
.

We can substitute this in the expression for k T (x ) to get

k T (x ) =
∑

P1⊆P

(−1)aP−aG

∑

δ∈P1(Q)\G (Q)
F P1 (δx , T )







∑

P2:
P⊆P2

σP2
P1
(HP1
(δx )−T )






KP (δx ,δx )

=
∑

P1⊆P2

P1
∑

δ∈P1(Q)\G (Q)
(δx , T )σP2

P1
(HP1
(δx )−T )kP1,P2

(δx ),
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where

kP1,P2
(x ) =

∑

P :
P1⊆P⊆P2

(−1)aP−aG KP (x , x ).

We know that the function

χT (x ) := F P1 (x , T )σP2
P1
(HP1
(x )−T )

takes values in {0, 1}. Thus,

|k T (x )| ≤
∑

P1⊆P2

∑

δ∈P1(Q)\G (Q)
χT (δx )|kP1,P2

(δx )|.

Using the Iwasawa decomposition we write x ∈ P1(Q) \G (A)1 as x = p1a1k with p1 ∈ P1(Q) \
NP1
(A)MP1

(A)1, a ∈ AP1
∩G (A)1 and k ∈ K . Assuming χT (x ) = 1 means p1 takes values in the

compact setω. The integrals over p1 and k are thus compactly supported thus can be ignored
when we integrate the kernel over G (Q) \G (A)1.

Also, HP1
(p1a1k ) =HP1

(a ) =: H2+H 2
1 ∈ aP2

⊕aP2
P1

.

Remark 5.5. Arthur says the integrand is compactly supported in H2 ∈ aP2
which doesn’t seem

to be the case. However following the proof of this theorem in [Art78, p. 947], we only need the
bound ‖H2‖ ≤ c ‖H 2

1 ‖.

By above remark it suffices to study the behavior in H 2
1 for points H 2

1 satisfyingτP2
P1
(H 2

1 −T ) =
1. It is here that we exploit the cancellation implicit in the alternating sum over P .

Now we start an analysis of kP1,P2
(x ). First we claim that given P1 ⊆ P ⊆ P2, T ∈ a0 sufficiently

regular and x ∈ P1(Q) \G (A)1 with χT (x ) = 1, the integral
∫

NP (A)
f (x−1γn x )dn = 0

whenever γ ∈ MP (Q) \ (P1(Q) ∩MP (Q)). We illustrate this for SL(2). The only possibility for
P1 ⊆ P ⊆ P2 is that P1 = P0 and P = P2 =G . If the element

γ=
�

a b
c d

�

∈MP (Q) \P1(Q)

then c = 0. Assume χT (x ) = 1, i.e., FP0
(x , T )τG

P0
(H0(x )−T ) = 1. In particular, F P0 (x , T ) = 1 so

writing x = p1a1k with p1 ∈ω and a1 ∈AP0
∩G (A)1, we must have

a1 =
�

exp(r )
exp(−r )

�

for r � 0.

Finally, NP (A) = {1} so
∫

NP (A)
f (x−1γn x )dx = f (x−1γx ) = f (k−1a−1

1 p−1
1 γp1a1k ).
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a−1
1 p−1

1 γp1a1 =
�

exp(r )
exp(−r )

��

u1 ∗
0 u−1

1

��

a b
c d

��

u−1
1 ∗
0 u1

��

exp(−r )
exp(r )

�

=
�

∗ ∗
u 2

1 exp(2r )c ∗

�

.

If f is compactly supported then the set K . supp( f ).K is compact. However |u 2
1 exp(2r )c | =

exp(2r ), since c ∈ Q∗, |u1| = 1as HP0
(p1) = 0. Thus for γ =

�

a b
c d

�

: c 6= 0, if T ∈ a0 is chosen

sufficiently regular then this integral vanishes. This is proven in general in the Duke paper
[Art78]. Hence the sum over γ in the expression

KP (x , x ) =

∫

NP (A)

∑

γ∈MP (Q)

f (x−1γn x )dn ,

can be taken over the smaller set P1(Q)∩M (Q) =MP1
(Q)N P

P1
(Q). Thus,

kP1,P2
(x ) =

∑

P :
P1⊆P⊆P2

(−1)aP−aG

∑

µ∈MP1 (Q)

∑

ν∈N P
P1
(A)

∫

NP (A)
f (x−1µνn x )dn .

We have an isomorphism of algebraic varieties over Q:

exp : nP1
= nP

P1
⊕nP →N P

P1
NP =NP1

which maps the Haar measure on nP1
(A) to that on NP1

(A). Thus kP1,P2
(x ) equals

∑

µ∈MP1 (Q)





∑

P

(−1)aP−aG

∑

ζ∈nP
P1
(Q)

∫

NP (A)
f (x−1µexp(ζ+X )x )dX



 .

We are now in a position to apply Poisson summation formula to the discrete co-compact
lattice nP

P1
(Q) of nP

P1
(A), which states that if Γ is a discrete co-compact subgroup of an abelian

group H then
∑

ζ∈Γ
f (ζ) =

∑

ξ∈Γ̂

f̂ (ξ)

=
∑

ξ∈Γ̂

∫

X̃ ∈H

f (X̃ )ψ(



X̃ ,ξ
�

)dX̃ ,

whereψ is a fixed nontrivial additive character of H . Thus,

kP1,P2
(x ) =

∑

µ∈MP1 (Q)

∑

P

(−1)aP−aG

∑

ξ∈nP
P1
(Q)

∫

X̃ ∈nP
P1
(A)

∫

X ∈nP (A)
f (x−1µexp(X̃ )exp(X )x )ψ(




ξ, X̃
�

)d X̃ d X .
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Here we identify the lattice dual to nP
P1
(Q) ⊆ nP

P1
(A) with itself via usual Euclidean product on

An
Q where n = dimQ(nP

P1
(Q)). Combining the integrals over nP

P1
and nP we get

kP1,P2
(x ) =

∑

µ∈MP1 (Q)

∑

P

(−1)aP−aG

∑

ξ∈nP
P1
(Q)

∫

X1∈nP1 (A)
f (x−1µexp(X1)x )ψ(〈ξ, X1〉)d X1,

since 〈ξ, X1〉 =



ξ, X̃
�

as ξ ∈ nP
P1
(Q) and X̃ ∈ nP

P1
(A). Observe that nP

P1
(Q) ⊆ n

P2
P1
(Q). Fixing P1 ⊆ P2

as P varies, certain summands over ξ ∈ nP
P1
(Q)will occur repeatedly. We cancel them using the

identity in Equation (5):
∑

Γ⊆∆
(−1)|∆|−|Γ | =

¨

0 ∆ 6= ;,
1 ∆= ;.

Set

n
P2
P1
(Q)′ = {ξ ∈ nP2

P1
(Q) : ξ 6∈ nP

P1
(Q) for any P1 ⊆ P ( P2}.

Thus,

kP1,P2
(x ) = (−1)aP2−aG

∑

µ∈MP1 (Q)

∑

ξ∈nP2
P1
(Q)

∫

NP1 (A)
f (x−1µexp(X1)x )ψ(〈ξ, X1〉)dX1.

This expression is rapidly decreasing in the coordinate H 2
1 of x where x = p1a1k and HP1

(a1) =
H2+H 2

1 . This is because the function

hx ,µ(Y1) :=

∫

nP (A)
f (x−1µexp(X1)x )ψ(〈Y1, X1〉)dX1,

being the Fourier transform of a compactly supported function in X1, is a Schwartz-Bruhat
function of Y1 ∈ nP1

(A). Thus

J T ( f ) =

∫

G (Q)\G (A)1
|k T (x )|dx

is bounded by a constant multiple of

∑

P1⊆P2

∑

µ∈MP1 (Q)

∑

ξ∈nP2
P1
(Q)′

sup
y

∫

|hy ,µ(Ad(a1)ξ)|da1,

the integration being over the set

a1 ∈AP1
∩G (A)1 :σP2

P1
(HP1
(a2)−T ) = 1

and the supremum is over the compact subset

{y = a−1
1 p1a1k : p1 ∈ P1(Q)\MP1

(A)NP1
(A), k ∈ K , a ∈AP1

∩G (A)1, F P1 (a1, T )σP2
P1
(HP1
(a1)−T ) = 1}.

Since Ad(a1) acts by dilation on ξ, this implies the above integral is finite. ♣
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6. THE GEOMETRIC EXPANSION

Before delving into the geometric expansion, we will review two important properties of the
distribution J T ( f ).

(1) For any f ∈C∞c (G (A)), the function

T 7→ J T ( f )

defined for T ∈ a0 sufficiently regular, is a polynomial in T with degree≤ a G
0 := dimaG

0 .
Using this result we define J ( f ) as J T0 ( f ) where T0 ∈ a0 is a unique point such that

the distribution J T0 ( f ) is independent of the choice of P0 ∈P (M0), the set of minimal
parabolic subgroups with Levi M0. For SL(2), T0 ∈ a0 is the origin.

(2) A distribution I on G (A) is called invariant if I ( f y ) = I ( f ) for every y ∈ G (A) where
f y (x ) = f (y x y −1). Arthur defines a map

C∞c (G (A))→C
∞
c (M (A))

given by

f 7→ fQ ,y

for any parabolic subgroup Q containing M . We will not define the function fQ ,y here
(see [Art05, Theorem 9.4]) but remark that this is a natural way to restrict a function
on G to M =MQ by integrating over K and NQ (A). Although J T ( f ) is not invariant, it
satisfies

J G ( f y ) =
∑

Q⊇P0

J MQ ( fQ ,y ).

We now define the coarse conjugacy classes of Arthur. Recall that any element γ ∈G (Q) has
a Jordan decomposition

γ= γsγu .

Define two elements γ,γ′ ∈G (Q) to be O -equivalent if γs and γ′s are conjugate over G (Q). Let

O = O G denote the set of such equivalence classes which we will denote as coarse-conjugacy
or Arthur-conjugacy classes.

Clearly there is a bijection between coarse conjugacy classes and semisimple conjugacy
classes in G (Q), namely

O ∈O 7→ [γs : γ ∈ O ].
Observe that if 1 ∈ O then O consists of all unipotent elements in G (Q) and is known as the
unipotent orbit (or unipotent variety) and denoted asU . A class O ∈ O is called anisotropic if
it does not intersect P (Q) for any proper parabolic subgroup in G (not necessarily standard).

Lemma 6.1. An element γ ∈ G (Q) represents an anisotropic class if and only if the maximal
Q-split torus in the connected component of the centralizer H of γ in G is AG .

Let us investigate the Arthur-conjugacy classes in SL(2). In the case of GL(n ) they are in
bijection with characteristic polynomials so for GL(2), every O ∈ O GL(2) is one of the following
types. Let p be the characteristic polynomial of any semisimple element in O .
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(1) p has a unique root in Q∗, say γ=
�

a
a

�

: a ∈GL(1),

(2) p factors into distinct roots over Q, say γ=
�

a
b

�

: a , b ∈GL(1),

(3) p is irreducible over Q and splits into distinct roots in a quadratic extension L of Q.

When we look at SL(2) if two classes O ,O ′ ∈O SL(2) have different characteristic polynomials then
O 6= O ′. On the other hand could it be possible that O 6= O ′ but they have the same characteristic
polynomial? Fix a class O ∈ O SL(2) and let p be the associated characteristic polynomial. We
have the three possibilities.

(1) Suppose p is irreducible over Q and factors in a quadratic extension L of Q. Suppose γ1

and γ2 are semisimple elements with characteristic polynomial p . They are conjugate
over GL(2, Q) say γ2 = g γ1g −1. Are they conjugate over SL(2, Q)? The following are
equivalent.
• There is an h ∈ SL(2, Q) such that γ2 = hγ1h−1,
• There is a c ∈CentGL(2)(γ1) such that det c = det g .

The relation c = g h−1 proves this equivalence. Since det(GL(2, Q)) =Q∗, we would like
to know the image of the map

det : CentGL(2)(γ1)(Q)→Q∗.

Since γ1 represents an anisotropic class, this map coincides with the norm map

NL/Q : L∗→Q∗.

This is not surjective. In fact the index of the image in Q∗ is infinite (see [Ste90]). Thus
every such O ∈ O GL(2) is a disjoint union of infinitely many classes O ∈ O SL(2). Take one

such class O ∈ O SL(2) and γ ∈ O , say γ =
�

5 3
3 2

�

. The (connected) centralizer of γ is an

anisotropic torus so consists only of semisimple elements. In our example,

Hγ =
§�

a b
b a − b

�

: a , b ∈Q∗, a 2−a b − b 2 = 1
ª

.

There is no Q-split torus inside Hγ so this equals AG and Arthur defines such classes
as anisotropic. They are the easiest to deal with, as we will see.

(2) Suppose p has distinct roots t ±1 then γ =
�

t 0
0 t −1

�

∈ O . The connected centralizer Hγ

is M0(Q).

(3) If p has a unique root, it must be 1 or −1 so
�

1 0
0 1

�

∈ O or
�

−1 0
0 −1

�

∈ O but not both.

Since these are central elements, the connected centralizer in each of these cases is the
full group SL(2, Q). These elements are the most difficult to define the weighted orbital
integrals.

An anisotropic rational datum is an equivalence class of pairs (P,α)where P ⊇ P0 andα is an
anisotropic conjugacy class in MP (Q), the Levi subgroup of P containing M0. The equivalence
relation is just conjugacy, i.e., (P,α)∼ (P ′,α′) if α=wsα

′w−1
s for some s ∈W (aP ,aP ′ ).
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There is a bijection between

anisotropic rational data ↔ semisimple conjugacy classes in G (Q)

(P,α) 7→ [γs ] : γ ∈α.

To see the surjection, take P to be a parabolic subgroup containing αminimally. In the three
cases above, the anisotropic rational data are respectively [(G ,α)] where α is the anisotropic

conjugacy class in G (Q), [(M0,
�

t 0
0 t −1

�

)] and [(M0,
�

±1 0
0 ±1

�

)].

For general G we can split the sum in the definition of the kernel

K (x , y ) =
∑

γ∈G (Q)

f (x−1γy )

according to Arthur-conjugacy classes and write

K (x , y ) =
∑

O∈O
KO (x , y ),

where
KO (x , y ) =

∑

γ∈O
f (x−1γy ).

More generally we can similarly decompose the kernel KP of the operator RP acting on L 2(NP (A)MP (Q)\
G (A)). Recall that

KP (x , y ) =
∑

γ∈MP (Q)

∫

NP (A)
f (x−1γn y )dn .

We write KP (x , y ) =
∑

O∈O KP,O (x , y )where

KP,O (x , y ) =
∑

γ∈MP (Q)∩O

∫

NP (A)
f (x−1γn y )dn .

Thus, k T (x ) =
∑

O∈O k T
O (x ), where

k T
O (x ) =

∑

P⊇P0

(−1)aP−aG

∑

δ∈P (Q)\G (Q)
KP,O (δx ,δx )τ̂P (HP (δx )−T ).

An important consequence of Theorem 6.1 is that the sum

(6)
∑

O∈O

∫

G (Q)\G (A)1
k T
O (x )dx

converges absolutely. Having defined J T
O ( f ) as

J T
O ( f ) =

∫

G (Q)\G (A)1
k T
O (x )dx ,

one sees that its behavior as a function of T is the same as that of J T ( f ). As before we choose
the unique point T0 which frees us from the choice of the minimal parabolic subgroup P0 (but
not M0) and define

JO ( f ) := J T0
O ( f ).
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The coarse geometric expansion is given by

(7) J ( f ) =
∑

O∈O
JO ( f ).

The proof that the sum in Equation (6) is absolutely convergent is similar to that of Theorem 6.1
except at the point when we applied the Poisson summation to the lattice nP

P1
(Q). We required

to sum over elements ν ∈N P
P1
(Q)which arose from

P1(Q)∩MP (Q) =MP1
(Q).N P

P1
(Q).

It suffices to show

(8) P1(Q)∩MP (Q)∩ O = (MP1
(Q)∩ O )N P

P1
(Q),

because we have the sum over γ ∈MP (Q)∩O wherein only terms intersecting P1(Q) contribute.
We would write this sum over γ ∈MP (Q)∩ O ∩P1(Q) as µ ∈MP1

(Q)∩ O and ν ∈N P
P1
(Q). The claim

in Equation (8) follows by applying the lemma below to the pair (MP , P1∩MP ) instead of (G , P ).

Lemma 6.2. Suppose P ⊇ P0,γ ∈MP (Q) andφ ∈Cc (NP (A)). Then,
∑

δ∈NP (Q)γs \NP (Q)

∑

η∈NP (Q)γs

φ(γ−1δ−1
1 γnδ) =

∑

ν∈NP (Q)

φ(ν),

and
∫

NP (A)γs \NP (A)

∫

NP (A)γs

φ(γ−1n−1
1 γn2n1)dn2dn1 =

∫

NP (A)
φ(n )dn .

Assuming this lemma whose proof is “a typical change of variable argument for unipotent
groups" and the resulting partition in Equation (8), the convergence follows from Fubini’s the-
orem. ♣

Remark 6.3. The invariance formula for J ( f ) holds for JO ( f ) namely,

JO ( f
y ) =

∑

Q⊇P0

J
MQ
O ( fQ ,y ).

Consider the mapOMQ →O G ; a class O ∈O does not lie in the image of this map for everyQ ⊇ P0

if and only if O is anisotropic. If so, JO ( f y ) = JO ( f ) and so JO ( f ) is an invariant distribution.

For ‘generic’ classes O ∈O , Arthur gives an explicit description of JO ( f ) in terms of weighted
orbital integrals which we now briefly describe. There are two assumptions on O .

• The class O consists entirely of semisimple elements.
• It is unramified, i.e., the centralizer G (Q)γ is contained in MP (Q) where (P,α) is the

anisotropic rational datum attached to O .

The first condition is equivalent to having no nontrivial unipotent elements in the centralizer
of γ for any γ ∈ O . This implies that the connected component H (Q) of the centralizer G (Q)γ
is contained in MP (Q). The second condition is clearly stronger. In the case of SL(2), the class
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O corresponding to the irreducible characteristic polynomial satisfies these conditions. To see
an example where the first condition holds but not the second, consider the example of

γ=
�

1
−1

�

∈G = PGL(2).

In this case, G (Q)γ is the product of the minimal torus with a group of order two so H (Q) ⊆
MP (Q) but G (Q)γ 6⊆MP (Q). The result of these two assumptions is that if (P,α) and (P ′,α′) are
two representatives of the unramified class O , then there is a “unique" element in W (aP ,aP ′ )
mapping α to α′. Arthur analyzes this case and proves for such classes that

(9) JO ( f ) =Vol(MP (Q)γ \MP (A)
1)

∫

G (A)γ\G (A)
f (x−1γx )vP (x )dx ,

where γ is any element in the MP (Q)-conjugacy class α and vP (x ) is the volume of the pro-
jection onto aG

P of the convex hull of certain points. Let us investigate this invariant orbital
integral for SL(2).

Since O is anisotropic, it corresponds to the anisotropic rational datum [(G ,α)] where α is
an anisotropic conjugacy class and suppose γ ∈α. As we have seen, the centralizer Hγ (which
is connected) is an anisotropic torus over Q so by the theorem of Borel and Harish-Chandra,
the space

MP (Q)γ \MP (A)γ =G (Q)γ \G (A)γ =Hγ(Q) \Hγ(A)

is compact. Its volume is the first term above. The map vP (x ), which Arthur later denotes by
vM (x ) is the smooth function corresponding to the (G , M )-family which we now discuss.

LetP (M ) denote the set of standard parabolic subgroups of G containing M . (This is dif-
ferent from the classP of associated parabolic subgroups of Langlands.) A family

{cP (λ) :λ ∈ ia∗M , P ∈P (M )}

is called a (G , M )-family if the functions cP (λ) and cP ′ (λ) agree for λ in the common wall be-
tween P and P ′ whenever they share such a wall. Given such a (G , M )-family, we can naturally
assign to it a smooth function as

cM (λ) =
∑

P∈P (M )
cP (λ)θP (λ)

−1

where θP (λ) = Vol(aG
M /Z∆∨P )

−1.
∏

α∈∆P

λ(α∨). The function vM (x ) is the value as λ → 0 of the

smooth function
∑

P∈P (M )
vP (λ, x )θP (λ)

−1

corresponding to the (G , M )-family

{vP (λ, x ) = exp(−〈λ, HP (x )〉)}.

Let us see the pole cancellation by evaluating it for SL(2).
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In the case of SL(2), we take M =M0 which gives P (M0) = {P0, P 0 = w0P0w−1
0 }. The space

a0 is spanned by β∨1 and by$∨1 =β1/2. Write λ ∈ a∗0 as λ=λ1$1.

θ0(λ) =Vol(a0/Zβ∨1 ).



λ,β∨1
�

=λ1.

Also, θP 0
(λ) =−λ1 as∆∨

P 0
= {−β∨1 }. Write x ∈G (A) as x = nmk with n ∈N0(A), m ∈M0(A) given

by m =
�

t
t −1

�

and k ∈ K .

v0(λ, x ) = exp(−〈λ, H0(x )〉) = exp(〈−λ1$1, H0(m )〉) = exp(−λ1 log|$1(m )|) = |t |−λ1 .

Similarly we compute vP 0
(λ, x ) = |t |λ1 . The wall in a0 in this case corresponds toλ= 0 in which

case these two functions agree. So this is a (G , M0)-family and

vM (x ) = lim
λ→0

v0(λ, x )
θ0(λ)

+
vP 0
(λ, x )

θP 0
(λ)

= lim
λ→0

|t |−λ1 − |t |λ1

λ1
=−2 ln|t |.

In order to express all O ∈ O , Arthur defines weighted orbital integrals first for umramified
coarse conjugacy classes, and then extends that definition to every O ∈O . Given f ∈C∞c (G (A))
there is a finite set S of places containing the Archimedean place such that f is a finite sum
of functions whose component in v 6∈ S is the characteristic function of the maximal compact
subgroup Kv of G (Qv ). Thus there is no loss in generality in assuming that f ∈C∞c (G (QS )). For
unramified coarse conjugacy classes (and more generally whenever Gγ =Mγ), Arthur defines
the weighted orbital integral as

(10) JM (γ, f ) = |D (γ)|
1
2

∫

Gγ(QS )\G (QS )
f (x−1γx )vM (x )dx

where D (γ) is the generalized Weyl discriminant. Using combinatorial identities associated
with products of (G , M )-families, Arthur proves an expression for JM (γ, f ) in terms of finite
sums of products of local orbital integrals JM (γv , fv ). Thus JM (γ, f ) is to be regarded as a local
object.

The expression for JM (γ, f ) is not well-defined when O is not anisotropic. The extreme case
of this is when O is the unipotent variety containingγ= 1 in SL(2). Here vP (x ) is not defined and
the integral in Equation (10) does not converge. Arthur explains the solution he implements

here as an example with the group GL(2) but the same works for SL(2). Take a =
�

t
t −1

�

with

t 6= ±1 and calculate JM0
(aγ, f ) where γ = 1. Arthur observes that adding a factor r G

M0
(a ) =

log|t 2− t −2| to JM0
( f ) gives a locally integrable function around a = 1. He defines

JM0
( f ) = lim

a→1
JM0
(a , f ) + r G

M0
(a )JG (a , f ).
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In general he shows there exist functions r L
M (γ, a ) for Levi subgroups L containing M , de-

noted asL (M ) such that the limit

JM (γ, f ) := lim
a→1

∑

L∈L (M )
r L

M (a )JL (aγ, f )

exists and equals the integral of f with respect to a Borel measure on the set γG (see [Art05, p.
103]). Having defined the weighted orbital integrals, Arthur proves the fine geometric expan-
sion as

Theorem 6.4. [Art05, Theorem 19.2] For any O ∈O , there exists a set SO ⊇ S∞ such that if S ⊇ SO
and f ∈C∞c (G (FS )1) then

JO ( f ) =
∑

M∈L

|W M
0 |

|W G
0 |

∑

γ∈(M (Q)∩O )M ,S

a M (S ,γ)JM (γ, f ).

We will explain these terms for SL(2). The sum over (M ,S )-equivalence classes above is fi-
nite. The general definition of (G ,S )-equivalence is somewhat involved but two elements γ1

and γ2 in the unipotent varietyU are (G ,S )-equivalent if they are G (FS )-conjugate. Typically
there are infinitely many G (Q)-conjugacy classes inU but only finitely many (G ,S )-equivalent
classes. Two elements

γ1 =
�

1 c1

0 1

�

and γ2 =
�

1 c2

0 1

�

with c1, c2 ∈Q∗ are G (Q)-conjugate if and only if c1c −1
2 ∈Q∗2. Note that [Q∗ : Q∗2] is infinite but

for any place v finite or infinite, [Q∗v : Q∗2v ] is finite.
We will end this section by observing that when O is unramified, we recover the invari-

ant orbital integral in Equation (9). For in this case there is only one element in the (M ,S )-
equivalence class (M (Q)∩ O )M ,S = (G (Q)∩ O )G ,S = OG ,S (see [Art05, p. 113] for the general def-
inition of (G ,S )-equivalence.) It is easy to see that the expression for the global coefficient
a G (S ,γ) reduces to Vol(G (Q) \G (A)1).

7. THE SPECTRAL EXPANSION

In this section we discuss the spectral equivalent of Equation (7). Unlike the co-compact
case of the action of H on L 2(Γ \H ) of Section 2, the representation RG of G (A) on L 2(G (Q) \
G (A)) does not decompose discretely. It is a direct sum of the discrete spectrum which con-
sists of the cuspidal spectrum, and the continuous spectrum which is described by Langlands’
theory of Eisenstein series. An excellent reference is the book of Mœglin and Waldspurger
[MW95], who refer to their book as Une Paraphrase de l’Écriture, a Paraphrase of the Scrip-
tures.

Since G (A) is the direct product of G (A)1 and AG = AG (R)◦, given λ ∈ a∗G ,C we can get a
representation of G (A) on L 2(G (Q) \G (A)) by

RG ,disc,λ(x ) =RG ,disc(x )exp(〈λ, HG (x )〉), x ∈G (A).
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Here, RG ,disc is the representation of G (A)1 to the subspace of L 2
disc(G (Q)\G (A)

1)which decom-
poses discretely. It is unitary if and only ifλ ∈ ia∗G . Suppose P is a standard parabolic subgroup
of G and λ ∈ a∗P,C. We write

y 7→ IP (λ, y )
for the induced representation

IndG (A)
P (A) (RMP ,disc,λ⊗1N (A)).

The space for this representation is the spaceHP of measurable functions

φ : NP (A)MP (Q)AP \G (A)→C

such that

‖φ‖2 =

∫

K

∫

MP (Q)\MP (A)
|φ(mk )|2dmdk <∞

and such that the function

φx : m 7→φ(m x ) m ∈MP (Q) \MP (A)
1

belongs to L 2
disc(MP (Q) \MP (A)1). For any y ∈G (A),IP (λ, y )maps the function φ ∈HP to the

function

(IP (λ, y )φ)(x ) =φ(x y )exp(



λ+ρP , HP (x y )
�

)exp(



−(λ+ρP ), HP (x )
�

).

Indeed, IP (λ, y ) is the representation induced from the (twisted) right regular representation
on M and the exponential factors are to ensure we land up in the right space after twisting. The
operatorIP (λ, f ) is defined in the usual manner. Let us investigate the spaceHP for P ∈P in
SL(2).

• If ϕ ∈HG then ϕ ∈ L 2
disc(G (Q) \G (A)).

• If P = P0 then

M0(Q) \M0(A)
1 =

§�

t
t −1

�

: t ∈Q∗ \ I, |t |= 1
ª

=Q∗ \ I1.

Since this group is compact its spectrum is discrete. Moreover using the Iwasawa de-
composition G (A) = P0(A)K , we have

N0(A)M0(Q)A0 \G (A)'M0(Q) \M0(A)
1×K 'Q∗ \ I1×SO(2).

So if ϕ ∈ HP0
=H0 then ϕ can be considered as a square-integrable function on the

compact set Q∗ \ I∗×SO(2).
Denote by H ◦

P the subspace of K -finite vectors in HP . For two standard parabolic sub-
groups P, P ′, define the Weyl set W (aP ,aP ′ ) of Langlands as the set of R-linear isomorphisms

from aP to aP ′ obtained by restricting the elements of the Weyl group W =W G of G to aP ⊆ a0.
We say that P and P ′ are associated if this set is non-empty and denote an equivalence class
with respect to this relation as P . In the case of SL(2) where there are two standard para-
bolic subgroups, namely P0,G , it is easy to see that W (a0,aG ), W (aG ,aG ) and W (a0,a0) have
respectively 0, 1 and 2 elements. Thus there are two associated classes of parabolic subgroups,
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namely P = [P0], [G ]. We strongly recommend working out the explicit associated classes in
the case of GL(n )where standard parabolic subgroups are given by partitions of n .

The spectral decomposition of Langlands gives an orthogonal direct sum decomposition

L 2(G (Q) \G (A))'
⊕

P
L 2
P (G (Q) \G (A)).

The term corresponding toP = [G ] is the discrete spectrum. In the case of SL(2), the spec-
tral decomposition is

L 2(SL(2, Q) \SL(2, A)) = L 2
[G ](SL(2, Q) \SL(2, A))⊕ L 2

[P0]
(SL(2, Q) \SL(2, A))

and the term corresponding toP = [P0] is the continuous spectrum. We remark here that the
multiplicity of any cusp form of SL(2) in the discrete spectrum is one by the result of Ramakr-
ishnan [Ram00].

For x ∈G (A),φ ∈HP and λ ∈ a∗M ,C the Eisenstein series is defined as

E (x ,φ,λ) =
∑

δ∈P (Q)\G (Q)
φ(δx )exp(




λ+ρP , HP (δx )
�

).

Arthur describes the statement of the spectral decomposition in greater details in [Art05,
Theorem 7.2] from which it follows that the kernel

K (x , y ) =
∑

γ∈G (Q)

f (x−1γy ), f ∈C∞c (G (Q) \G (A)),

of the operator R ( f ) has a formal expansion
∑

P

n−1
P

∫

ia∗P

∑

φ∈BP

E (x ,IP (λ, f )φ,λ)E (y ,φ,λ)dy

in terms of Eisenstein series. Here,

nP =
∑

P ′∈P =[P ]
|W (aP ,aP ′ )|

and BP is a basis of HP which is assumed to lie inside the dense subspace H ◦
P of K -finite

vectors.
In addition, for every standard parabolic subgroup Q we have an analogous expansion for

the kernel

KQ (x , y ) =

∫

NQ (A)

∑

γ∈MQ (Q)

f (x−1γn y )dn

of the operator RQ ( f ). Namely, we replace nP with nQ
P = nMQ∩P and E (x ,φ,λ)with

E G
P (x ,φ,λ) =

∑

δ∈P (Q)\Q (Q)
φ(δx )exp(




λ+ρP , HP (δx )
�

).

We have,

KQ (x , y ) =
∑

P⊆Q

(nQ
P )
−1

∫

ia∗P

∑

φ∈BP

E Q
P (x ,IP (λ, f )φ,λ)E Q

P (y ,φ,λ)dy .
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The expression we obtain by substituting KQ (x , y ) above in the truncated kernel, Equation (2)
is the starting point of the coarse spectral expansion.

A functionφ ∈ L 2(G (Q) \G (A)1) is called cuspidal if
∫

NP (A)
φ(n x )dn = 0

for every proper parabolic subgroup in G and almost every x ∈G (A)1. The space of cuspidal
functions is a closed RG -invariant subspace of L 2(G (Q) \G (A)1). Moreover we have

Theorem 7.1 (Gelfand–Piatetski-Shapiro).

L 2
cusp(G (Q) \G (A)1)⊆ L 2

disc(G (Q) \G (A)1),

and moreover the multiplicity of each irreducible representation is finite.

Thus we get an orthogonal decomposition

L 2
cusp(G (Q) \G (A)1) =

⊕

σ

L 2
cusp,σ(G (Q) \G (A)1)

where σ ranges over irreducible unitary representations of G (Q) \G (A)1 and L 2
cusp,σ(G (Q) \

G (A)1) is theσ-isotypic component, i.e., a direct sum of finitely many isomorphic copies ofσ.
We define a cuspidal automorphic datum to be an equivalence class of pairs (P,σ)where P

is a standard parabolic subgroup of G andσ is an irreducible unitary representation of MP (A)1

such that the space L 2
cusp,σ(G (Q)\G (A)1) is nonzero. We say (P,σ) and (P ′,σ′) are equivalent if

there is an s ∈W (aP ,aP ′ ) (with representative ws ) such that the representation

s−1σ′ : m 7→σ′(ws m w−1
s ), m ∈MP (A)

1

is equivalent to σ. We writeX =X G for the set of cuspidal automorphic data χ = [(P,σ)]. As
we have seen earlier, there are two standard parabolic subgroups of SL(2) namely P0 and SL(2).
When P = P0, the representationσ is a cuspidal automorphic representation of

M0(A)
1 ' {

�

t
t −1

�

: t ∈ I1
Q}

so σ corresponds to a character of M0(A)1 ' I1 trivial on Q∗. By the Peter-Weyl theorem, any
Hecke character occurs exactly once in L 2(M0(Q) \M0(A)). Suppose (P0,σ) ∼ (P1,σ1) where P1

is either P0 or P 0. Since M0 is commutative so σ =σ1. On the other hand if P =G then σ is a
cuspidal automorphic representation of SL(2, A).

If s ∈W (aP ,aP ′ )we define the intertwining operator

M (s ,λ) :HP →HP ′

by

(M (s ,λ)φ)(x ) =

∫

φ(w−1
x n x )exp(




λ+ρP , HP (w
−1
s n x )

�

)exp(



−sλ+ρP ′ , HP ′ (x )
�

)dn .
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As the name suggests, it intertwines IP (λ)with IP ′ (sλ) as

HP
IP (λ) //

M (s ,λ)
��

HP

M (s ,λ)
��

HP ′
IP ′ (sλ)// HP ′ .

Moreover,
E (x ,IP (λ, y )φ,λ) = E (x y ,φ,λ).

These are the most important properties of Eisenstein series and intertwining operators. For-
mally they are easy to prove but to prove they converge and define meromorphic functions is
very difficult.

Now we will define the decomposition

L 2(G (Q) \G (A))
⊕

P
L 2
P −cusp(G (Q) \G (A))

which will lead us to the coarse spectral decomposition. LetHP,cusp be the subspace of vectors
φ ∈HP such that for almost every x ∈G (A), the function

φx : m 7→φ(m x ), m ∈M (A)

is in L 2
cusp(M (Q) \M (A)1). Then clearly,

HP,cusp =
⊕

σ

HP,cusp,σ

whereHP,cusp,σ consists of functions inHP,cusp which transform according toσ. SupposeΨ(λ)
is an entire function of λ ∈ a∗P,C of Paley-Wiener type, with values in a finite dimensional sub-
space of functions

{x 7→Ψ(λ, x )} ⊆H ◦
P,cusp,σ.

(Here,H ◦
P,cusp,σ is the intersection ofHP,cusp,σ withH ◦

P .) Then,Ψ(λ, x ) is the Fourier transform
in λ of a smooth compactly supported function on aP , i.e., the function

ψ(x ) =

∫

Λ+ia∗P

Ψ(λ, x )exp(



λ+ρP , HP (x )
�

)dλ

of x is compactly supported in HP (x ) ∈ aP .

Lemma 7.2 (Langlands). The function

(Eψ)(x ) :=
∑

δ∈P (Q)\G (Q)
ψ(δx )

is in L 2(G (Q) \G (A)). Moreover if Ψ′(λ′, x ) is another such function attached to a pair (P ′,σ′)
then the inner product formula

(Eψ, Eψ′) =

∫

Λ+ia∗P

∑

s∈W (aP ,aP ′ )

(M (s ,λ)Ψ(λ),Ψ′(−sλ))dλ

holds for any point Λ ∈ a∗P such that Λ−ρP is in the positive Weyl chamber in a∗P .
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Langlands also proves an explicit formula for the inner product of Eisenstein series. This
gives an orthogonal decomposition (see [Art05, p. 65])

(11) L 2(G (Q) \G (A)) =
⊕

χ∈X
L 2
χ (G (Q) \G (A))

from which Arthur develops the coarse spectral expansion. Here L 2
χ (G (Q)\G (A)) is the closed

G (A)-invariant subspace of L 2(G (Q) \G (A)) generated by the functions Eψ attached to (P,σ).
To develop the fine expansion, he extends this inner product to truncated Eisenstein series.
This is quite technical and is discussed in Sections 20, 21.

For a standard parabolic subgroup P , the correspondence

(P1 ∩MP ,σ1) 7→ (P1,σ1) P1 ⊆ P, [(P1 ∩MP ,σ1)] ∈XMP

yields a mapping fromXMP toX =X G which gives an orthogonal decomposition

HP =
⊕

χ∈X
HP,χ .

Arthur claims the basisBP ofHP assumed to lie in the dense subspaceH 0
P respects the above

decomposition in Equation (11), i.e.,BP =
∐

χ∈X BP,χ . For any χ ∈X we set

Kχ (x , y ) =
∑

P

n−1
P

∫

ia∗P

∑

φ∈BP,χ

E (x ,IP,χ (λ, f )φ,λ)E (y ,φ,λ)dλ.

Then,
K (x , y ) =

∑

χ∈X
Kχ (x , y ).

We repeat the procedure replacing G with any standard parabolic subgroup and get the de-
composition

KP (x , y ) =
∑

χ∈X
KP,χ (x , y ).

This gives the decomposition

k T (x ) =
∑

χ∈X
k T
χ (x )

=
∑

P

(−1)aP−aG

∑

δ∈P (Q)\G (Q)
KP,χ (δx ,δx )τ̂P (HP (δx )−T ).

To prove the convergence of
∫

G (Q)\G (A)1

∑

χ∈X
|k T
χ |(x )dx

is quite nontrivial and Arthur uses the truncation operator here. We won’t go into the details
but refer to Section 13 in the Clay notes.

Similar to the geometric side, Arthur gives a more explicit formula for ‘generic’ classes. He
defines a class χ ∈X to be unramified if for any pair (P,σ) ∈χ , the stabilizer ofσ in W (aP ,aP )
is {1}. In the case of SL(2), the classes [(G ,σ)] are unramified whenever σ is a non-selfdual
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cuspidal automorphic representation of SL(2). As we have remarked earlier, if (P0,σ)∼ (P1,σ1)
where P1 is either P0 or P 0 thenσ=σ1. Thus the classes [(P0,σ)] are not unramified. For Jχ ( f )
where χ = [(P,π)] is an unramified classes, Arthur gives an explicit expression

Jχ ( f ) =mcusp(π)

∫

ia∗P

trace
�

MP (πλ)IP (πλ, f )
�

dλ.

Here mcusp(π) is the multiplicity of π in the representation RMP ,cusp. The operator MP (πλ),
which is a smooth function in λ ∈ ia∗P corresponding to a (G , M )-family of intertwining oper-
ators. It is given as a limit

MP (πλ) = lim
ζ→0

∑

Q∈P (M )

∑

s∈W (aP ,aQ )

θQ (sλ)
−1M (w̃s ,πλ)

−1M (w̃s ,πλ+ζ)

where w̃s is a representative of s in the maximal compact subgroup K .
The fine spectral expansion is quite technical. It makes use, among other things, of trun-

cated Eisenstein series, a combinatorial analysis of various (G , M )-families and the existence
of normalizing factors which normalize the intertwining operators. The expression for the fine
spectral expansion is given as a sum over Levi subgroups M ⊆ L , t ≥ 0, s ∈W L (M )reg of

|W M
0 |

|W G
0 |
|det(s −1|aG

M
)|−1

∫

ia∗L /ia
∗
G

trace
�

ML (P,λ)MP (s , 0)IP,t (λ, f )
�

dλ.

Let us understand the terms involved. The set W L (M )reg consists of elements s ∈W L (M ) =
W L (aM ,aM ) which satisfy det(s − 1|aG

M
) 6= 0. The operator ML (P,λ) is the smooth function in

λ ∈ ia∗L corresponding to the (G , L )-family

{MQ (Λ,λ, P ) :=MQ |P (λ)
−1MQ |P (λ+Λ) : Q ∈P (L ),Λ ∈ ia∗L}

of intertwining operators. If λ ∈ ia∗L and s ∈W L (M ) then MP (s ,λ) =MP |P (s ,λ) is independent
of λ, since ia∗L is fixed by s . Arthur denotes this by MP (s , 0). Finally IP,t (λ, f ) is the restriction
of the operator IP (λ, f ) onHP to the invariant subspace

HP,t =
⊕

‖ Imνπ‖=t

HP,χ ,π.

We have a decomposition ofHP,χ as

HP,χ =
⊕

π

HP,χ ,π

where π ranges over the set Πunit(MP (A)1) andHP,χ ,π =HP,χ ∩HP,π. When Arthur developed
the fine geometric expansion, it was not known whether the spectral side is absolutely con-
vergent so Arthur had to consider the sum over those π such that the norm of the imaginary
part of its infinitesimal character νπ equals a fixed t > 0. However due to the work of [FLM11],
we now know the expression for J ( f ) converges absolutely but to be consistent with Arthur’s
notation we still include the sum over t ≥ 0.

Consider the above double sum M ⊆ L of Levi subgroups for G = SL(2). When L =M0 we
have that M =M0 and W L (M ) = {1} as the identity map on a0. However this element is not
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regular so there is no sum over L =M0. When L =G the integral vanishes and Arthur defines
this to be the discrete part of the trace formula. For SL(2) this is given by

It ,disc( f ) =
∑

M∈L

|W M
0 |

|W G
0 |

∑

s∈W (M )reg

|det(s −1|aG
M
)|−1 trace

�

MP (s , 0)IP,t (0, f )
�

.

When M =G this is a sum over traceπ( f ) as π varies over cuspidal automorphic representa-
tions with ‖ Imνπ‖= t .

8. THE INVARIANT TRACE FORMULA

To be updated shortly.

9. ABSOLUTE CONVERGENCE AND RELATION WITH ‘BEYOND ENDOSCOPY’

Suppose G = SL(2) and
r : SL(2, C)→GL(V )

is a representation of L G . Then for every finite prime p there exists a unique function ϕp ,r,s

defined on SL(2, Qp )which is bi-invariant under SL(2, Zp ) and which satisfies

traceπp (ϕp ,r,s ) = Lp (s ,πp , r )

for Re(s ) � 0 and for every irreducible admissible representation πp of GL(2, Qp ). This is an
application of the Satake isomorphism (see [Ngô14]). At the archimedean place let ϕ∞ be a
smooth function on SL(2, R)which belongs, along with its derivatives in L 1(SL(2, R)). We form
the test function

ϕr,s (g ) =ϕ∞(g∞)
∏

p

ϕp ,r,s (gp )

for the Arthur-Selberg trace formula. This function is not of compact support. The contri-
bution of any discrete automorphic representation of any π=⊗vπv to the spectral side of the
trace formula would be nonzero if and only ifπ is unramified outside∞ and in this case equal
to L∞(s ,π∞, r ).

Although this function ϕr,s is not compactly supported, the trace formula has been ex-
tended to this wider class of test functions in the work of [FL16, FLM11]. A corresponding
extension to the twisted trace formula is the work of the author [Par17].
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