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Abstract. This note is a proceeding of the workshop “On the Langlands Program: En-
doscopy and Beyond” held in National University of Singapore from 17 Dec. 2018 to 18
Jan. 2019. The purpose is to explain Mœglin’s explicit constructions of A-packets both when
the base field F is p-adic and when F is archimedean.

Introduction

To give a classification of discrete spectrum of automorphic forms, the notion of A-parameters
is introduced by Arthur in 1980’s. The local A-parameters are thus the “local factors” of the
global classification. In this article, we focus on the local situation.

Let F be a local field of characteristic zero, and WDF be the Weil–Deligne group of F , i.e.,

WDF =

{
WF × SL2(C) if F is non-archimedean,

WF if F is archimedean,

where WF is the Weil group of F . For a quasi-split connected reductive algebraic group G

over F , we denote by Ĝ the complex dual group of G. A homomorphism ψ : WDF×SL2(C) →
Ĝ⋊WF is an A-parameter for G if

(1) ψ commutes the two projections WDF × SL2(C)↠WF and Ĝ⋊WF ↠WF ;
(2) ψ(WF ) consists of semisimple elements;
(3) ψ|WF is continuous;

(4) ψ(WF ) projects onto a relatively compact subset in Ĝ;
(5) ψ|SL2(C) is algebraic for each SL2(C) ⊂ WDF × SL2(C).

Two A-parameters are said to be equivalent if they are conjugate by an element in Ĝ. We
define Ψ(G) to be the set of equivalence classes of A-parameters for G. We say that ψ ∈ Ψ(G)
is tempered if the restriction of ψ to the last SL2(C) is trivial, i.e., ψ factors through the
projection WDF × SL2(C) ↠ WDF . We denote by Φtemp(G) the subset of Ψ(G) consisting
of tempered A-parameters. Associated with ψ ∈ Ψ(G), we define the component group by

Sψ = π0(ZĜ(Im(ψ))/Z(Ĝ)WF ), which is a finite group. The set of equivalence classes of
irreducible representations of Sψ is denoted by Irr(Sψ).

Let Irr(G(F )) be the set of equivalence classes of irreducible admissible representations of
G(F ). We denote by Irrunit(G(F )) (resp. Irrtemp(G(F ))) the subset of Irr(G(F )) consisting
of equivalence classes of unitary (resp. tempered) representations of G(F ). In 2013, Arthur
[Ar13] has completed the magnificent work on the classification of automorphic representations
of symplectic and special orthogonal groups. The local main theorem in this work is as follows.

Theorem 0.1 ([Ar13, Theorem 2.2.1]). Let G be split SO2n+1 or Sp2n over F .
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(1) For each ψ ∈ Ψ(G), there is a finite multiset Πψ over Irrunit(G(F )) with a map

Πψ → Irr(Sψ), π 7→ ⟨·, π⟩ψ
enjoying certain (twisted and standard) endoscopic character identities. We call Πψ
the A-packet for G(F ) associated with ψ.

(2) When ψ = ϕ ∈ Φtemp(G), the A-packet Πϕ is in fact a subset of Irrtemp(G(F )).
Moreover the map Πϕ ∋ π 7→ ⟨·, π⟩ϕ ∈ Irr(Sϕ) is injective, which is bijective when F

is non-archimedean. In addition, Πϕ ∩Πϕ′ = ∅ for ϕ ̸= ϕ′, and

Irrtemp(G(F )) =
⊔

ϕ∈Φtemp(G)

Πϕ.

Theorem 0.1 (2) says that ϕ ∈ Φtemp(G) together with η ∈ Irr(Sϕ) classifies Irrtemp(G(F )).
Let Φ(G) be the set of equivalence classes of L-parameters ϕ for G, i.e., homomorphisms

ϕ : WDF → Ĝ⋊WF such that

(1) ψ commutes the two projections WDF ↠WF and Ĝ⋊WF ↠WF ;
(2) ψ(WF ) consists of semisimple elements;
(3) ψ|WF is continuous;
(4) ψ|SL2(C) is algebraic if F is non-archimedean.

Using the Langlands classification, Theorem 0.1 (2) can be extended to ϕ ∈ Φ(G), i.e., there
exists a finite subset Πϕ of Irr(G(F )) with an injective map Πϕ ∋ π 7→ ⟨·, π⟩ϕ ∈ Irr(Sϕ), which
is bijective when F is non-archimedean, such that

Irr(G(F )) =
⊔

ϕ∈Φ(G)

Πϕ.

We call Πϕ the L-packet for G(F ) associated with ϕ. Therefore, L-packets Πϕ classify
Irr(G(F )).

On the other hands, A-packets Πψ associated with ψ ∈ Ψ(G) are the “local components of
global A-packets”, and they do not classify Irrunit(G(F )). For example,

• the map Πψ ∋ π 7→ ⟨·, π⟩ψ ∈ Irr(Sψ) is not injective nor surjective in general;

• there are ψ,ψ′ ∈ Ψ(G) such that Πψ ∩Πψ′ ̸= ∅ but ψ ̸∼= ψ′;
• there exists π ∈ Irrunit(G(F )) such that π ̸∈ Πψ for any ψ ∈ Ψ(G).

Moreover, the A-packet Πψ is determined by endoscopic character identities, so that it is
difficult to describe Πψ explicitly. In particular, it is an important problem to determine
whether Πψ is multiplicity-free, i.e., a subset of Irrunit(G(F )), or not.

Before Arthur, there are several works for “constructions of A-packets”.

• Barbasch–Vogan (1985) [BV85] constructed a packet Πψ of unipotent representations
when F = C and ψ is “unipotent” (of good parity). This packet is multiplicity-free. It
was proven by Mœglin–Renard [MR17] that this packet coincides with Arthur’s one.

• Adams–Johnson (1987) [AJ87] constructed a packet Πψ of cohomological representa-
tions when F = R and ψ is so-called “Adams–Johnson”. It was proven by Arancibia–
Mœglin–Renard [AMR] that this packet coincides with Arthur’s one.

• Mœglin [Mœ17] and Mœglin–Renard [MRa, MRb] constructed Arthur’s packet Πψ
generally when F = R by using the Howe duality correspondence, cohomological



MŒGLIN’S EXPLICIT CONSTRUCTION OF LOCAL A-PACKETS 3

inductions, the translation principle, and irreducible parabolic inductions. However,
since the translation functor is difficult, they have not yet obtained the multiplicity-
free result.

• Using microlocal analysis of certain stratified complex varieties, Adams–Barbasch–
Vogan (1992) [ABV92] constructed a packet ΠABV

ψ for general ψ when F = R. This
packet is multiplicity-free, and coincides with Adams–Johnson packet Πψ when ψ is

“Adams–Johnson”. However, it is an open problem that whether ΠABV
ψ is equal to

Arthur’s packet Πψ.
• Using Jacquet modules, Mœglin constructed the A-packets Πψ when F is p-adic (up to
constructions of supercuspidal representations) in her consecutive works (e.g., [Mœ06,
Mœ09a], etc.). In particular, she showed in [Mœ11] that the A-packets are multiplicity-
free. For a detailed why the A-packets constructed by Mœglin agree with Arthur’s
ones, see also Xu’s paper [X17b] in addition to the original papers of Mœglin.

• In a recent work [CFMMX], using a vanishing cycles functor of perverse sheaves on
certain stratified complex varieties, Cunningham–Fiori–Mracek–Moussaoui–Xu con-
structed an “ABV packet” ΠABV

ψ when F is p-adic. This is a p-adic analogue of the

work of Adams–Barbasch–Vogan [ABV92]. This packet is multiplicity-free. The main
conjecture in [CFMMX] is that ΠABV

ψ would coincide with Arthur’s packet Πψ.

The purpose of this note is to explain Mœglin’s explicit constructions of A-packets both
when F is p-adic and when F is archimedean. We will explain only the construction of the
packet Πψ for G = SO2n+1 or G = Sp2n, but will not treat the proofs, the map π 7→ ⟨·, π⟩ψ,
or other groups. For these topics, we refer to relevant references.

In Part 1, we will explain the p-adic case along with a series of papers of Xu [X17a, X17b, X].
In §1, we fix notations for induced representations and Jacquet modules, and recall some basic
results. For Mœglin’s constructions of A-packets, we follow a filtration of A-parameters as
follows:

(elementary) ⊂ (having a DDR) ⊂ (of good parity) ⊂ (general).

These notions are defined in §2. In §3, we treat the case where the A-parameter ψ is elemen-
tary, together with a description of L-parameters for supercuspidal representations, which is
one of main results in [X17a]. The case where ψ has a discrete diagonal restriction (DDR)
is treated in §4. In particular, we determine the cardinality of the A-packet Πψ in this case.
In §5, we treat the case where ψ is of good parity and the general case. In the general case,
the A-packets are constructed by irreducible parabolic inductions. As a consequence, one can
check that Πψ is multiplicity-free, which is the main conclusion in [X17b]. Unlike the case
of DDR, in the case of good parity, we will construct representations which are irreducible
or zero. In §6, we give an algorithm for the non-vanishing criterion of these representations,
which was established in [X].

In Part 2, we will explain the archimedean case. Both in the cases where F = R and F = C,
the general packets Πψ are constructed by irreducible parabolic inductions from packets for
parameters of good parity as in the p-adic case. In §8, we explain the complex case along
with Mœglin–Renard [MR17]. For ψ of good parity, the packet Πψ = ΠBV

ψ is constructed by
assigning infinitesimal characters and wavefront sets. We also give a more explicit description
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of ΠBV
ψ by Barbasch [B89]. In §9, we explain the real case. According to Mœglin [Mœ17] and

Mœglin–Renard [MRa, MRb], one should follow a filtration of A-parameters as follows:

(unipotent) ⊂ (very regular) ⊂ (of good parity) ⊂ (general).

The packets are constructed by using the theta correspondence, cohomological inductions, the
translation principle, and irreducible parabolic inductions. However, since these techniques
seem not to be so explicit, we only explain the case where ψ is “Adams–Johnson”, which is a
spacial case of very regular parameters. In this case, the packet Πψ is constructed by derived
functor modules Aq(λ) with λ in the good range.

Acknowledgments. The author is grateful to Wee Teck Gan for inviting him to the work-
shop “On the Langlands Program: Endoscopy and Beyond”, and for giving him the opportu-
nity for learning this topic. He also thank IMS-NUS for the hospitality.
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Part 1. The non-archimedean case

In Part 1, we explain the theory of A-packets in the non-archimedean case. Let F be a
non-archimedean local field of characteristic zero. We denote by WF the Weil group of F .
The norm map | · | : WF → R× is normalized so that |Frob| = q−1, where Frob ∈WF is a fixed
(geometric) Frobenius element, and q = qF is the cardinality of the residual field of F .

Each irreducible representation ρ of WF of dimension d is identified with the irreducible
supercuspidal representation of GLd(F ) via the local Langlands correspondence for GLd. For
each integer d, the unique irreducible algebraic representation of SL2(C) of dimension d is
denoted by Sd. We denote by Sa ⊠ Sb the outer tensor product, which is an irreducible
representation of SL2(C) × SL2(C), and by Sa ⊗ Sb the inner tensor product, which is a
representation of SL2(C) such that

Sa ⊗ Sb ∼= Sa+b−1 ⊕ Sa+b−3 ⊕ · · · ⊕ S|a−b|+1.

For a representation Π of some group, we write s.s.(Π) for the semisimplification of Π.

1. Induced representations and Jacquet modules

In this section, we recall some results on induced representations and Jacquet modules.

1.1. The case of GLN . Let P = MN be a standard parabolic subgroup of GLN (F ), i.e.,
P contains the Borel subgroup consisting of upper half triangular matrices. Then the Levi
subgroup M is isomorphic to GLd1(F )× · · · ×GLdr(F ) with d1 + · · ·+ dr = N . For smooth
representations τ1, . . . , τr of GLd1(F ), . . . ,GLdr(F ), respectively, we denote the normalized
induced representation by

τ1 × · · · × τr := Ind
GLN (F )
P (τ1 ⊠ · · ·⊠ τr).

A segment is a symbol [x, y], where x, y ∈ R with x − y ∈ Z. We identify [x, y] with the
set {x, x− 1, . . . , y} if x ≥ y, and {x, x+ 1, . . . , y} if x ≤ y, so that #[x, y] = |x− y|+ 1. Let
ρ be an irreducible (unitary) supercuspidal representation of GLd(F ). Then the normalized
induced representation

ρ| · |x × · · · × ρ| · |y

of GLd(|x−y|+1)(F ) has a unique irreducible subrepresentation, which is denoted by

⟨ρ;x, . . . , y⟩ .
If x ≥ y, this is called a Steinberg representation and is denoted by

| · |
x+y
2 St(ρ, x− y + 1),

which is a discrete series representation of GLd(x−y+1)(F ). When ρ = 1GL1(F ), we write
Std = St(1GL1(F ), d) = ⟨(d− 1)/2, (d− 3)/2, . . . ,−(d− 1)/2⟩. If x < y, this is called a Speh
representation and is denoted by

| · |
x+y
2 Sp(ρ, y − x+ 1).

For example, if ρ = µ is a unitary character (i.e., d = 1) and x < y, then ⟨µ;x, . . . , y⟩ =

µ|dety−x+1|(x+y)/2 is a character of GLy−x+1(F ), where we denote by detk the determinant
character of GLk(F ).

Definition 1.1. Let [x, y] and [x′, y′] be two segments.
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(1) When (x − y)(x − y′) ≥ 0, we say that [x, y] and [x′, y′] are linked if [x, y] ̸⊂ [x′, y′],
[x′, y′] ̸⊂ [x, y] as sets, and [x, y] ∪ [x, y′] is also a segment.

(2) When (x− y)(x′ − y′) < 0, we say that [x, y] and [x′, y′] are linked if [y, x] and [x′, y′]
are linked, and x, y ̸∈ [x′, y′] and x′, y′ ̸∈ [x, y].

The linked-ness gives an irreducibility criterion for induced representations.

Theorem 1.2 (Zelevinsky [Z80, Theorems 4.2, 9.7], Mœglin–Waldspurger [MW89]). Let [x, y]
and [x′, y′] be segments, and let ρ and ρ′ be irreducible unitary supercuspidal representations
of GLd(F ) and GLd′(F ), respectively. Then the induced representation

⟨ρ;x, . . . , y⟩ ×
⟨
ρ′;x′, . . . , y′

⟩
is irreducible unless [x, y] are [x′, y′] are linked, and ρ ∼= ρ′.

For a partition (k1, . . . , kr) of k, we denote by Jac(k1,...,kr) the normalized Jacquet functor of
representations of GLk(F ) with respect to the standard maximal parabolic subgroup P =MN
with M ∼= GLk1(F ) × · · · × GLkr(F ). The Jacquet module of ⟨ρ;x, . . . , y⟩ with respect to a
maximal parabolic subgroup is computed by Zelevinsky.

Proposition 1.3 ([Z80, Propositions 3.4, 9.5]). Let ρ be an irreducible (unitary) supercus-
pidal representation of GLd(F ). Suppose that x ̸= y and set k = d(|x − y| + 1). Then
Jac(k1,k2)(⟨ρ;x, . . . , y⟩) = 0 unless k1 ≡ 0 mod d. If k1 = dm with 1 ≤ m ≤ |x− y|, we have

Jac(k1,k2)(⟨ρ;x, . . . , y⟩) = ⟨ρ;x, . . . , x− ϵ(m− 1)⟩⊠ ⟨ρ;x− ϵm, . . . , y⟩ ,

where ϵ ∈ {±1} is given so that ϵ(x− y) > 0.

Let RN be the Grothendieck group of the category of smooth representations of GLN (F ) of
finite length. By the semisimplification, we identify the objects in this category with elements
in RN . Equivalence classes of irreducible smooth representations of GLN (F ) form a Z-basis
of RN . Set R = ⊕N≥0RN . The induction functor gives a product

m : R⊗R → R, τ1 ⊗ τ2 7→ s.s.(τ1 × τ2).

This product makes R an associative commutative ring. On the other hand, the Jacquet
functor gives a coproduct

m∗ : R → R⊗R
which is defined by the Z-linear extension of

Irr(GLN (F )) ∋ τ 7→
N∑
k=0

s.s.Jac(k,N−k)(τ).

Thenm andm∗ make R a graded Hopf algebra, i.e., m∗ : R → R⊗R is a ring homomorphism.

1.2. The cases of SO2n+1 and Sp2n. Next, we set Gn to be split SO2n+1 or Sp2n, i.e.,
Gn is the split algebraic group of type Bn or Cn. Fix a Borel subgroup of Gn(F ). Let
P = MN be a standard parabolic subgroup of Gn(F ). Then the Levi part M is of the form
GLd1(F )× · · · ×GLdr(F )×Gn0(F ) with d1 + · · ·+ dr + n0 = n. For a smooth representation
τ1 ⊠ · · ·⊠ τr ⊠ π0 of M , we denote the normalized induced representation by

τ1 × · · · × τr ⋊ π0 = Ind
Gn(F )
P (τ1 ⊠ · · ·⊠ τr ⊠ π0).
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On the other hand, for a smooth representation π of Gn(F ), we denote the normalized Jacquet
module with respect to P by

JacP (π),

and its semisimplification by s.s.JacP (π). When r = 1, i.e., M ∼= GLd(F )×Gn−d(F ) and

s.s.JacP (π) =
⊕
i∈I

τi ⊠ πi,

for a fixed irreducible supercuspidal unitary representation ρ of GLd(F ) and for a real number
x, we set

Jacρ|·|x(π) =
⊕
i∈I

τi∼=ρ|·|x

πi.

This is a representation of Gn−d(F ). Also, for ρ1, . . . , ρr and for x1, . . . , xr ∈ R, we set

Jacρ1|·|x1 ,...,ρr|·|xr (π) = Jacρr|·|xr ◦ · · · ◦ Jacρ1|·|x1 (π).

Now suppose that an irreducible representation π of Gn(F ) is a subrepresentation (resp. a
quotient) of an induced representation τ ⋊ π0 with irreducible representation τ ⊠ π0 of M ∼=
GLd(F )×Gn−d(F ). Then (using the contragredient and the MVW functors if necessary), the
Frobenius reciprocity implies that s.s.JacP (π) contains τ ⊠ π0 (resp. τ̃ ⊠ π0). In particular:

Lemma 1.4. Let τ ⊗ π0 be an irreducible representation of M ∼= GLd(F ) × Gn−d(F ). If
s.s.JacP (τ⋊π0) contains τ⊠π0 (resp. τ̃⊠π0) with multiplicity one, then the induced represen-
tation τ ⋊ π0 has a unique irreducible subrepresentation (resp. a unique irreducible quotient).

We will use this technique (or its variant) to construct A-packets.
Let

R(G) =
⊕
n≥0

R(Gn)

be the direct sum of the Grothendieck groups R(Gn) of the categories of smooth representa-
tions of Gn(F ) of finite length. The parabolic induction defines a module structure

⋊ : R⊗R(G) → R(G),

and the Jacquet functor defines a comodule structure

µ∗ : R(G) → R⊗R(G)

by

Irr(Gn(F )) ∋ π 7→
n∑
d=0

s.s.JacPd(π),

where Pd = MdNd is the standard parabolic subgroup of Gn(F ) with the Levi factor Md
∼=

GLd(F )×Gn−d(F ).
The contragredient functor τ 7→ τ̃ defines an automorphism ∼ : R → R in a natural way.

Let s : R⊗R → R⊗R be the homomorphism defined by
∑

i τi ⊗ τ ′i 7→
∑

i τ
′
i ⊗ τi.

One can compute the Jacquet modules of induced representations by the following formula.
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Theorem 1.5 (Tadić [T95]). Consider the composition

M∗ = (m⊗ id) ◦ (∼ ⊗m∗) ◦ s ◦m∗ : R → R⊗R.
Then for a standard parabolic subgroup P = MN of Gn(F ) with M ∼= GLd(F ) × Gn−d(F ),
and for an admissible representation τ ⊠ π of M , we have

µ∗(τ ⋊ π) =M∗(π)⋊ µ∗(π).

1.3. Aubert involution. For π ∈ R(Gn), we define DGn(π) ∈ R(Gn) by

DGn(π) =
∑

P=MN

(−1)dimAM Ind
Gn(F )
P (JacP (π)) ∈ R(Gn),

where P =MN runs over all standard parabolic subgroups of Gn(F ), and AM is the maximal
split central torus of M .

Theorem 1.6 ([Au95]). The operator DGn on R(Gn) has the following properties:

(1) DGn◦ ∼=∼ ◦DGn;
(2) D2

Gn
= id.

(3) When τi = ⟨ρi;xi, . . . , yi⟩ for i = 1, . . . , r,

DGn(τ1 × · · · × τr ⋊ π0) = τ̂1 × · · · × τ̂r ⋊DGn0
(π0),

where τ̂i = ⟨ρi; yi, . . . , xi⟩.
(4) If P =MN with M ∼= GLd(F )×Gn−d(F ), and if π ∈ R(Gn) satisfies

s.s.JacP (π) ∼=
∑
i

τi ⊠ π0,

then

s.s.JacP (DGn(π))
∼=
∑
i

τ̃i ⊠DGn0
(π0).

In particular,

DGn0

(
Jacρ|·|x(π)

) ∼= Jacρ̃|·|−x (DGn(π)) .

(5) If π is an irreducible representation of Gn(F ), then there exists a sign ϵ ∈ {±1} such
that π̂ = ϵ ·DGn(π) is also an irreducible representation of Gn(F ).

(6) If π is an irreducible supercuspidal representation, then π̂ ∼= π.

For an irreducible representation π of Gn(F ), we call the irreducible representation π̂ the
Aubert involution of π.

2. A-parameters

In this section, we review Arthur’s theory for A-packets.

2.1. The case of GLN . Fix a (geometric) Frobenius element Frob ∈WF . A homomorphism

ψ : WF × SL2(C)× SL2(C) → GLN (C)

is called a representation of WF × SL2(C)× SL2(C) if
• ψ(Frob) ∈ GLN (C) is semisimple;
• ψ|WF is smooth, i.e., has an open kernel;
• ψ|SL2(C)× SL2(C) is algebraic.
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An A-parameter for GLN (F ) is a representation ψ : WF ×SL2(C)×SL2(C) → GLN (C) such
that ψ(WF ) is bounded. Two A-parameters are said to be equivalent if they are equivalent
as representations.

For an A-parameter ψ for GLN (F ), one can associate an irreducible unitary representation
τψ of GLN (F ) as follows: When ψ is irreducible, it is decomposed into a tensor product

ψ = ρ⊠ Sa ⊠ Sb,
where ρ is an irreducible bounded representation of WF . Then we set τψ to be the unique
irreducible subrepresentation Sp(St(ρ, a), b) of⟨

ρ;
a− 1

2
, . . . ,−a− 1

2

⟩
| · |−

b−1
2 × · · · ×

⟨
ρ;
a− 1

2
, . . . ,−a− 1

2

⟩
| · |

b−1
2 .

If b = 1, it is the Steinberg representation St(ρ, a) = ⟨ρ; (a− 1)/2, . . . ,−(a− 1)/2⟩, and if
a = 1, it is the Speh representation Sp(ρ, b) = ⟨ρ;−(b− 1)/2, . . . , (b− 1)/2⟩. It is easy to
check that τψ is also the unique irreducible subrepresentation of⟨

ρ;−b− 1

2
, . . . ,

b− 1

2

⟩
| · |

a−1
2 × · · · ×

⟨
ρ;−b− 1

2
, . . . ,

b− 1

2

⟩
| · |−

a−1
2 .

In general, ψ can be decomposed into a direct sum

ψ = ψ1 ⊕ · · · ⊕ ψr,

where ψ1, . . . , ψr are irreducible representations of WF × SL2(C)× SL2(C). We set

τψ = τψ1 × · · · × τψr ,

which is irreducible by Theorem 1.2.

2.2. The case of SO2n+1 and Sp2n. An A-parameter for SO2n+1 is a symplectic represen-
tation

ψ : WF × SL2(C)× SL2(C) → Sp2n(C)
of WF ×SL2(C)×SL2(C) such that ψ(WF ) is bounded. Similarly, an A-parameter for Sp2n
is an orthogonal representation

ψ : WF × SL2(C)× SL2(C) → SO2n+1(C)

of WF × SL2(C)× SL2(C) such that ψ(WF ) is bounded. For Gn = SO2n+1 or Gn = Sp2n, we
set Ψ(Gn) to be the set of equivalence classes of A-parameters for Gn. We say that ψ ∈ Ψ(Gn)
is tempered if ψ|{1}×{12}×SL2(C) is trivial. We denote by Φtemp(Gn) the subset of Ψ(Gn)
consisting of tempered A-parameters.

For ψ ∈ Ψ(SO2n+1) (resp. ψ ∈ Ψ(Sp2n)), we can decompose

ψ = m1ψ1 + · · ·+mrψr + ψ′ + ψ′∨,

where ψ1, . . . , ψr are distinct irreducible symplectic (resp. orthogonal) representations ofWF×
SL2(C) × SL2(C), and ψ′ is a sum of irreducible representations which are not symplectic
(resp. not orthogonal). We define the component group Aψ of ψ by

Aψ =
r⊕
i=1

(Z/2Z)αi ∼= (Z/2Z)r.
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Namely, Aψ is a free Z/2Z-module of rank r and {α1, . . . , αr} is a basis of Aψ with αi associated
to ψi. We set

zψ =

r∑
i=1

miαi ∈ Aψ

and call zψ the central element in Aψ. Then Sψ = π0(ZĜ(Im(ψ))/Z(Ĝ)WF ) is canonically
isomorphic to Aψ/ ⟨zψ⟩.

As explained in Theorem 0.1, for ψ ∈ Ψ(Gn), there is an A-packet Πψ, which is a finite
multiset over Irrunit(Gn(F )), together with a map

Πψ → Âψ, π 7→ ⟨·, π⟩ψ
such that ⟨zψ, π⟩ψ = 1 for any π ∈ Πψ. These are characterized by certain (twisted and stan-

dard) endoscopic character identities. Mœglin constructed A-packets explicitly, and showed
that they are multiplicity-free (see, e.g., [Mœ06, Mœ09a, Mœ11], etc.). Since Mœglin’s
A-packets satisfy the endoscopic character identities (see also [X17b]), they coincide with
Arthur’s ones. Consequently, we obtain the following deep result.

Theorem 2.1 ([Mœ11], [X17b, Theorem 8.12]). The A-packet Πψ is multiplicity-free, i.e.,
Πψ is a subset of Irrunit(Gn(F )).

The purpose of Part 1 is to review Mœglin’s construction of A-packets. It is carried out
through several stages.

Let

∆: WF × SL2(C) →WF × SL2(C)× SL2(C), (w,α) 7→ (w,α, α)

be the diagonal map. For ψ ∈ Ψ(Gn), we set ψd = ψ ◦∆ to be the diagonal restriction of ψ.

Definition 2.2. Let Gn = SO2n+1 or Gn = Sp2n. We define a chain

Ψ(Gn) ⊃ Ψgp(Gn) ⊃ ΨDDR(Gn) ⊃ Ψel(Gn)

as follows:

(1) ψ ∈ Ψgp(Gn) if ψ is a sum of irreducible symplectic (resp. orthogonal) representations
when Gn = SO2n+1 (resp. Gn = Sp2n). In this case, we say that ψ is of good parity.

(2) ψ ∈ ΨDDR(Gn) if ψ is of good parity and the diagonal restriction ψd = ψ ◦ ∆ is
multiplicity-free. In this case, we say that ψ has a discrete diagonal restriction
(DDR).

(3) ψ ∈ Ψel(Gn) if ψ has a DDR and

ψ =
⊕
i∈I

ρi ⊠ Sai ⊠ Sbi

with min{ai, bi} = 1 for any i ∈ I. In this case, we say that ψ is elementary.

3. The case of elementary parameters

In this section, we construct A-packets Πψ for elementary A-parameters ψ ∈ Ψel(Gn). See
[X17a] and [X17b, §6] for more precision. Before the construction, we review the case of
general linear groups GLN .
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3.1. The case of GLN . Let ψ be an A-parameter for GLN (F ). Assume in this subsection
that ψ is elementary, i.e., ψ ∼= ⊕i∈Iρi ⊠ Sai ⊠ Sbi with min{ai, bi} = 1 for any i ∈ I and
ρi ⊠ Sai ⊠ Sbi ̸∼= ρj ⊠ Saj ⊠ Sbj for i ̸= j. Recall that one can associate an irreducible unitary
representation τψ of GLN (F ). We construct τψ once more.

If ai = bi = 1 for any i ∈ I, then τψ = ×i∈Iρi. Now fix an irreducible representation ρ of
WF such that ρ ⊂ ψ|WF . For ρ⊠ Sa ⊂ ψd, we set

δρ,a,ψ =

{
1 if ρ⊠ Sa ⊠ 1 ⊂ ψ,

− 1 otherwise.

Let a0 be the smallest integer such that ρ ⊠ Sa0 ⊂ ψd. If a0 > 1, then τψ is the unique
irreducible subrepresentation of

ρ| · |δ0
a0−1

2 × τψ′ × ρ| · |−δ0
a0−1

2 ,

where ψ′ is an elementary A-parameter such that

ψ′
d = ψd − ρ⊠ Sa0 + ρ⊠ Sa0−2

and
δ0 := δρ,a0,ψ = δρ,a0−2,ψ′ .

If a0 = 1 and there exists the next smallest integer a1 such that ρ⊠ Sa1 ⊂ ψd, then τψ is the
unique irreducible subrepresentation of⟨

ρ; δ1
a1 − 1

2
, . . . , 0

⟩
× τψ′ ×

⟨
ρ; 0, . . . ,−δ1

a1 − 1

2

⟩
,

where ψ′ is an elementary A-parameter such that

ψ′
d = ψd − ρ⊠ (1⊕ Sa1)

and δ1 := δρ,a1,ψ.

3.2. L-parameters for supercuspidal representations. Let Gn be split SO2n+1 or Sp2n.

Fix an elementary A-parameter ψ ∈ Ψel(Gn) and a character ε ∈ Âψ such that ε(zψ) = 1.
When ρ⊠Sa ⊂ ψd, we set ε(ρ, a) = ε(αρ,a) ∈ {±1}, where αρ,a ∈ Aψ is the element associated
to ρ⊠ Sa ⊠ S1 or ρ⊠ S1 ⊠ Sa.
Definition 3.1. (1) If ρ⊠ Sa ⊂ ψd with a > 1, set

δρ,a,ψ =

{
1 if ρ⊠ Sa ⊠ 1 ⊂ ψ,

− 1 if ρ⊠ 1⊠ Sa ⊂ ψ.

When a = 1, we set δρ,a,ψ = 1.
(2) Define Tρ,ψ,ε to be the set containing 0 and all integers a > 0 satisfying the following

conditions:
(chain condition): ρ⊠ Sk ⊂ ψd for any k ≤ a with k ≡ a mod 2;
(alternating condition): ε(ρ, k) = −ε(ρ, k + 2) for 0 < k < a with k ≡ a mod 2;
(initial condition): if a ≡ 0 mod 2 so that ρ⊠ S2 ⊂ ψd, then ε(ρ, 2) = −1.

(3) Set

bρ,ψ,ε = max Tρ,ψ,ε,
aρ,ψ,ε = min{a > bρ,ψ,ε |ρ⊠ Sa ⊂ ψd},
δρ,ψ,ε = δρ,aρ,ψ,ε,ψ.
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Remark that if a, a′ ∈ Tρ,ψ,ε with a, a′ ̸= 0, then a ≡ a′ mod 2. When {a > bρ,ψ,ε |ρ⊠ Sa ⊂
ψd} = ∅, we understand aρ,ψ,ε = ∞.

Now we set Φ2(Gn) = Ψel(Gn) ∩ Φtemp(Gn). For ϕ ∈ Φ2(Gn) and ε ∈ Âϕ with ε(zϕ) = 1,
we denote by π(ϕ, ε) the unique element in Πϕ corresponding to ε via the bijection Πϕ →
(Aϕ/ ⟨zϕ⟩)̂ . It is known that π(ϕ, ε) is a discrete series representation of Gn(F ). The following
theorem is a criterion when π(ϕ, ε) is supercuspidal.

Theorem 3.2 (Mœglin, Xu [X17a]). Let ϕ ∈ Φ2(Gn) and ε ∈ Âϕ with ε(zϕ) = 1. Then
π(ϕ, ε) ∈ Πϕ is supercuspidal if and only if aρ,ϕ,ε = ∞ for any ρ ⊂ ϕ|WF .

This is one of main results in [X17a]. In the rest of this subsection, we give a sketch of the
proof of this theorem.

First, we explain the following proposition.

Proposition 3.3 ([X17a, Proposition 3.1]). Suppose that π(ϕ, ε) ∈ Πϕ is supercuspidal. Fix
an irreducible bounded representation ρ of WF . If ϕ ⊃ ρ⊠ Sk with k > 2, then ϕ ⊃ ρ⊠ Sk−2.

Proof. Recall that ρ is identified with the corresponding irreducible supercuspidal unitary
representation of GLd(F ). For s ∈ C, we consider the usual unnormalized intertwining oper-
ators

JP |P (s) : Ind
Gn+d(F )
P (ρ| · |s ⊠ π) → Ind

Gn+d(F )

P
(ρ| · |s ⊠ π),

JP |P (s) : Ind
Gn+d(F )

P
(ρ| · |s ⊠ π) → Ind

Gn+d(F )
P (ρ| · |s ⊠ π),

where P =MN is the standard parabolic subgroup of Gn+d(F ) with Levi partM ∼= GLd(F )×
Gn(F ), and P = MN is the opposite parabolic subgroup to P . These operators are defined
by the meromorphic continuations of Jacquet integrals which converge when s belongs to a
certain open set in C. Since ρ⊠π is supercuspidal, it is known as a theorem of Harish-Chandra
that both JP |P (s) and JP |P (s) are holomorphic for Re(s) ̸= 0.

On the other hand, there is a rational function µ(s) such that

JP |P (s) ◦ JP |P (s) = µ(s)−1.

The function µ(s) is called the Plancherel measure. By results of Arthur [Ar13] and Shahidi
[S90], it is known that the Prancherel measure µ(s) is given by the product of gamma factors:

µ(s) = γ(s, ρ⊗ ϕ̃, ψF )γ(−s, ρ̃⊗ ϕ, ψ−1
F )γ(2s,R ◦ ρ, ψF )γ(−2s,R ◦ ρ̃, ψ−1

F )

up to a positive constant. Here, ψF is a fixed non-trivial additive character of F , and

R =

{
Sym2 if Gn = SO2n+1,

∧2 if Gn = Sp2n.

The ambiguity comes from the choices of Haar measures on N and N to define Jacquet
integrals. In fact, one can choose these Haar measures using ψF so that the above equation
actually holds.

Suppose now that ϕ ⊃ ρ⊠ Sk with k > 2. Then in s ∈ R with s > 1/2,

• γ(2s,R ◦ ρ, ψF ) and γ(−2s,R ◦ ρ̃, ψ−1
F ) are holomorphic and nonzero;

• γ(s, ρ⊗ ϕ̃, ψF ) is nonzero;
• γ(−s, ρ̃⊗ ϕ, ψ−1

F ) is holomorphic and has a zero at s = (k − 1)/2.
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Since µ(s) is nonzero at s = (k − 1)/2, the gamma factor γ(s, ρ⊗ ϕ̃, ψF ) must have a pole at
s = (k − 1)/2. This occurs only when ϕ ⊃ ρ⊠ Sk−2. □

Now fix an irreducible bounded representation ρ of WF , and a real number x. If ϕ ⊃
ρ⊠ S2x+1 and x > 0, define ϕ− ∈ Φ2(Gn−d) with d = dim(ρ) by

ϕ− = ϕ− ρ⊠ S2x+1 ⊕ ρ⊠ S2x−1.

The following lemma follows from a compatibility of twisted endoscopic character identities
and Jacquet modules.

Lemma 3.4 ([X17a, Lemma 7.2]). We have

Jacρ|·|x

⊕
π∈Πϕ

π

 =


⊕

π−∈Πϕ−

π− if ϕ ⊃ ρ⊠ S2x+1 and x > 0,

0 otherwise.

In addition, a compatibility of standard endoscopic character identities and Jacquet mod-
ules gives the following more precise result:

Lemma 3.5 ([X17a, Lemma 7.3]). Suppose that ϕ ∈ Φ2(Gn) satisfies that ϕ ⊃ ρ⊠S2x+1. Set
ϕ− = ϕ− ρ⊠ S2x+1 ⊕ ρ⊠ S2x−1.

(1) If x > 1/2 and ρ⊠ S2x−1 ̸⊂ ϕ, then π(ϕ−, ε) = Jacρ|·|xπ(ϕ, ε) for any ε ∈ Âϕ−
∼= Âϕ.

(2) If x > 1/2 and ρ ⊠ S2x−1 ⊂ ϕ, then Aϕ = Aϕ− ⊕ (Z/2Z)αρ,2x+1, where αρ,a is
the element in Aϕ corresponding to ρ ⊠ Sa. Define a surjection Aϕ ↠ Aϕ− by

αρ,2x+1 7→ αρ,2x−1 and by identity on Aϕ−. This gives an injection Âϕ− ↪→ Âϕ.

Then Jacρ|·|xπ(ϕ, ε) = 0 unless ε ∈ Âϕ−, i.e.,

ε(ρ, 2x+ 1)ε(ρ, 2x− 1) = 1.

In this case, π(ϕ−, ε) = Jacρ|·|xπ(ϕ, ε).
(3) If x = 1/2, then Aϕ = Aϕ− ⊕ (Z/2Z)αρ,2. Let Aϕ ↠ Aϕ− be the projection, and

Âϕ− ↪→ Âϕ be the induced injection. Then Jacρ|·|xπ(ϕ, ε) = 0 unless ε ∈ Âϕ−, i.e.,

ε(ρ, 2) = 1.

In this case, π(ϕ−, ε) = Jacρ|·|xπ(ϕ, ε).

Let ϕ ∈ Φ2(Gn) and ε ∈ Âϕ such that ε(zϕ) = 1. By Lemmas 3.4 and 3.5, aρ,ϕ,ε = ∞
for any ρ ⊂ ϕ|WF if and only if Jacρ|·|xπ(ϕ, ε) = 0 for any ρ and x ∈ R. This condition is
equivalent that π(ϕ, ε) is supercuspidal. Hence we obtain Theorem 3.2.

3.3. The case of SO2n+1 and Sp2n. Now let ψ ∈ Ψel(Gn). We construct the elements in the
A-packet Πψ by induction on n. The following is the main theorem in the elementary case.

Theorem 3.6 (Mœglin). For ψ ∈ Ψel(Gn) and ε ∈ Âψ with ε(zψ) = 1, we can construct
a representation π(ψ, ε) of Gn(F ) as the following manner. Then π(ψ, ε) is irreducible,
π(ψ, ε) ̸∼= π(ψ, ε′) if ε ̸= ε′, and π(ψ, ε) satisfies the following basic properties:

(Jacquet module): If Jacρ|·|x(π) ̸= 0 for some x ∈ R, then there exists a > bρ,ψ,ε with
ρ⊠ Sa ⊂ ψd such that

x = δρ,a,ψ
a− 1

2
.
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(Non-unitary irreducibility): For x ∈ (1/2)Z with x ≥ 1/2, if x ̸= 1/2 and ρ ⊠
S2x−1 ̸⊂ ψd, or if 0 ≤ 2x− 1 < bρ,ψ,ε, then ρ| · |x ⋊ π(ψ, ε) is irreducible.

(Unitary reducibility): Suppose that there exists an odd integer a such that ρ⊠ Sa ̸⊂
ψd. Then ρ ⋊ π(ψ, ε) is irreducible if ρ ⊂ ψd, and is semisimple of length 2 without
multiplicities otherwise. Moreover, if σ is an irreducible subrepresentation of ρ ⋊
π(ψ, ε) in the both cases, then ρ× · · · × ρ⋊ σ is irreducible.

Construction: Let ψ ∈ Ψel(Gn) and ε ∈ Âψ with ε(zψ) = 1.

(1) If aρ,ψ,ε = ∞ for all ρ, then we define π(ψ, ε) = π(ψd, ε), which is supercuspidal by
Theorem 3.2.

(2) If aρ,ψ,ε > bρ,ψ,ε + 2 or bρ,ψ,ε = 0, we define π(ψ, ε) to be the unique irreducible
subrepresentation of

ρ| · |δ
a−1
2 ⋊ π(ψ′, ε′),

where a = aρ,ψ,ε, δ = δρ,ψ,ε, and (ψ′, ε′) is given so that

ψ′
d = ψd − ρ⊠ Sa + ρ⊠ Sa−2, δρ,a−2,ψ′ = δρ,a,ψ,

and ε′(ρ, a− 2) = ε(ρ, a).
(3) If aρ,ψ,ε = bρ,ψ,ε + 2, we divide into three cases.

(a) If bρ,ψ,ε is even and nonzero, then we define π(ψ, ε) to be the unique irreducible
subrepresentation of⟨

ρ; δ
a− 1

2
, . . . , δ

1

2

⟩
⋊ π(ψ−, ε−),

where a = aρ,ψ,ε, δ = δρ,ψ,ε, and (ψ−, ε−) is given so that

(ψ−)d = ψd − ρ⊠ Sa, δρ,α,ψ− =

{− δ if α ≤ bρ,ψ,ε,

δρ,α,ψ otherwise,

and

ε−(ρ, α) =

{
− ε(ρ, α) if α ≤ bρ,ψ,ε,

ε(ρ, α) otherwise.

(b) If bρ,ψ,ε is odd and bρ,ψ,ε ̸= 1, then we define π(ψ, ε) to be the unique common
irreducible subrepresentation of⟨

ρ; δ
a− 1

2
, . . . , 0

⟩
⋊ π(ψ−, ε−)

and ⟨
ρ; δ

a− 1

2
, . . . ,−δ b− 1

2

⟩
⋊ π(ψ′, ε′),

where a = aρ,ψ,ε, b = bρ,ψ,ε, δ = δρ,ψ,ε, and (ψ−, ε−), (ψ
′, ε′) are given so that

(ψ′)d = ψd − ρ⊠ Sa − ρ⊠ Sb, δρ,α,ψ′ = δρ,α,ψ,

(ψ−)d = ψd − ρ⊠ Sa − ρ, δρ,α,ψ− =

{− δ if α ≤ bρ,ψ,ε,

δρ,α,ψ otherwise,
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and ε′ = ε|Aψ, and

ε−(ρ, α) =

{
− ε(ρ, α) if α ≤ bρ,ψ,ε,

ε(ρ, α) otherwise.

(c) If aρ,ψ,ε = 3 and bρ,ψ,ε = 1, we have (ψ−, ε−) = (ψ′, ε′) in the notation (b). By
(Unitary reducibility), σ = ρ ⋊ π(ψ′, ε′) is semisimple of length 2, and hence we
can write σ = π+ ⊕ π− according to the following two cases.

(i) When ψd ̸⊃ ρ ⊠ Sα for any α > 3, we fix arbitrary parametrization in σ,
and we define π(ψ, ε) to be the unique irreducible subrepresentation of

ρ| · |δρ,3,ψ ⋊ πζ

with ζ = ε(ρ, 3)δρ,3,ψ.
(ii) When ψd ⊃ ρ ⊠ Sα for some α > 3, we can specify the parametrization in

σ as follows. Set (ψ′′, ε′′) so that

(ψ′′)d = (ψ′)− ρ⊠ Sa′ + ρ, δρ,1,ψ′′ = δ′ = δρ,a′,ψ′

with a′ = aρ,ψ′,ε′ , and ε
′′(ρ, 1) = ε′(ρ, a′). Put

Π = ρ×
⟨
ρ; δ′

a′ − 1

2
, . . . , δ′

⟩
⋊ π(ψ′′, ε′′),

σq =

⟨
ρ; δ′

a′ − 1

2
, . . . , 0

⟩
⋊ π(ψ′′, ε′′),

σs =

⟨
ρ×

⟨
ρ; δ′

a′ − 1

2
, . . . , δ′

⟩⟩
⋊ π(ψ′′, ε′′),

where ⟨ρ× ⟨ρ; δ′(a′ − 1)/2, . . . , δ′⟩⟩ is the unique irreducible subrepresenta-
tion of ρ× ⟨ρ; δ′(a′ − 1)/2, . . . , δ′⟩. Hence there is an exact sequence

0 // σs // Π // σq // 0.

σ
?�

OO

We set π+ = σ ∩ (s.s.σq) and π− = σ ∩ (s.s.σs). Then we define π(ψ, ε) to
be the unique irreducible subrepresentation of

ρ| · |δρ,3,ψ ⋊ πζ

with ζ = ε(ρ, aρ,ψ′,ε′)δρ,ψ′,ε′δρ,3,ψ.

Remark 3.7. (1) The representation π(ψ, ε) can be constructed by using the generalized
Aubert involution. This is defined by a combination of induction functors and
Jacquet functors (see [X17b, §6.2]). By proving a compatibility of the generalized
Aubert involution and twisted endoscopic character identities, Xu [X17b, §6] showed
that

Πψ =
{
π(ψ, ε)

∣∣∣ ε ∈ Âψ, ε(zψ) = 1
}
.
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(2) For ψ = ⊕i∈Iρi ⊠ Sai ⊠ Sbi ∈ Ψel(Gn), define its dual ψ̂ ∈ Ψel(Gn) by ψ̂ = ⊕i∈Iρi ⊠
Sbi⊠Sai. Then the component group Aψ̂ is canonically isomorphic to Aψ. By [Mœ06,

Theorem 5] and [X17b, Theorem 6.10], the (usual) Aubert involution of π(ψ, ε) ∈ Πψ
is given by

π̂(ψ, ε) = π(ψ̂, ε) ∈ Πψ̂.

(3) When ψ = ϕ ∈ Φ2(Gn), the map Πϕ ∋ π → ⟨·, π⟩ϕ ∈ Âϕ is given by π(ϕ, ε) 7→ ε.

However, for general ψ ∈ Ψel(Gn), the character ⟨·, π(ψ, ε)⟩ψ does not coincide with

ε. According to [X17b, Theorem 6.21], one can define a character ε
M/MW
ψ ∈ Âψ

explicitly such that ⟨·, π(ψ, ε)⟩ψ = εε
M/MW
ψ .

We give an example. When ρ = 1GL1(F ), we write ⟨ρ;x, . . . , y⟩ = ⟨x, . . . , y⟩.

Example 3.8. Suppose that ψ ∈ Ψel(SO7) such that ψd = S4⊕S2. Fix ε ∈ Âψ with ε(zψ) = 1.
For ρ = 1GL1(F ), set δa = δρ,a,ψ and εa = ε(ρ, a). Then π(ψ, ε) is given as follows.

(1) If (δ4, δ2) = (+,+) and (ε4, ε2) = (+,+), then π1 = π(ψ, ε) is discrete series but not
supercuspidal. It is a subrepresentation of

| · |
1
2 ⋊ π(S4) ↪→ | · |

1
2 × | · |

3
2 × | · |

1
2 ⋊ 1SO1(F ),

where π(S4) ∈ ΠS4 is a discrete series representation of SO5(F ).
(2) If (δ4, δ2) = (+,+) and (ε4, ε2) = (−,−), then π2 = π(ψ, ε) is discrete series but not

supercuspidal. It is a subrepresentation of⟨
3

2
,
1

2

⟩
⋊ 1SO3(F ) ↪→

⟨
3

2
,
1

2

⟩
× | · |−

1
2 ⋊ 1SO1(F ).

(3) If (δ4, δ2) = (+,−) and (ε4, ε2) = (+,+), then π3 = π(ψ, ε) is non-tempered and is
the unique subrepresentation of

| · |−
1
2 ⋊ π(S4) ↪→ | · |−

1
2 × | · |

3
2 × | · |

1
2 ⋊ 1SO1(F ),

where π(S4) ∈ ΠS4 is a discrete series representation of SO5(F ). Hence π3 ∈ Πϕψ
with ϕψ = | · |

1
2 ⊕ S4 ⊕ | · |−

1
2 .

(4) If (δ4, δ2) = (+,−) and (ε4, ε2) = (−,−), then by definition, π4 ∼= π2 so that π4 ∈ Πψd
is discrete series.

(5) If (δ4, δ2) = (−,+) and (ε4, ε2) = (+,+), then we claim that π5 = π(ψ, ε) is non-
tempered and is the unique subrepresentation of

| · |−
3
2 ⋊ σ,

where σ is tempered and is the direct summand of St2⋊1SO1(F ) such that Jac
|·|

1
2
(σ) does

not contain π(S2), where π(S2) ∈ ΠS2 is a discrete series representation of SO3(F ).
Hence the L-parameter of π5 is

| · |
3
2 + S2 + S2 + | · |−

3
2 .

Indeed, by the construction,

π5 ↪→ | · |
1
2 × | · |−

3
2 ⋊ 1SO3(F )

∼= | · |−
3
2 × | · |

1
2 ⋊ 1SO3(F ).
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Consider the following diagram of two exact sequences

0OO

1GL2(F ) ⋊ 1SO1(F )
OO

0 // | · |
1
2 ⋊ 1SO3(F )

// | · |
1
2 × | · |−

1
2 ⋊ 1SO1(F )

// | · |
1
2 ⋊ π(S2) // 0.

St2 ⋊ 1SO1(F )

OO

0

OO

Since π5 ↪→ | · |
1
2 × | · |−

3
2 ⋊ 1SO3(F ), we have Jac

|·|
1
2
(π5) ̸= 0. This implies that there

is no nonzero homomorphism π5 → | · |−
3
2 × 1GL2(F ) ⋊ 1SO1(F ) since Jac

|·|
1
2
(1GL2(F ) ⋊

1SO1(F )) = 0. Hence there is a representation σ of SO5(F ) which is a common subrep-

resentation of | · |
1
2 ⋊1SO3(F ) and St2⋊1SO1(F ) such that π5 ↪→ | · |−

3
2 ⋊σ. Computing

Jacquet modules, we see that

s.s.(| · |
1
2 ⋊ 1SO3(F )) ∩ (St2 ⋊ 1SO1(F )) ̸= 0,

s.s.(| · |
1
2 ⋊ π(S2)) ∩ (St2 ⋊ 1SO1(F )) ̸= 0.

Since St2 ⋊ 1SO1(F ) is a direct sum of two irreducible tempered representations, s.s.(| ·
|
1
2 ⋊ 1SO3(F ))∩ (St2 ⋊ 1SO1(F )) is irreducible. Hence σ must be irreducible. Moreover,

since σ ↪→ | · |
1
2 ⋊ 1SO3(F ), we see that Jac

|·|
1
2
(σ) does not contain π(S2).

(6) If (δ4, δ2) = (−,+) and (ε4, ε2) = (−,−), then π6 = π(ψ, ε) is non-tempered and is
the unique subrepresentation of

| · |−
3
2 × | · |−

1
2 ⋊ π(S2) ↪→ | · |−

3
2 × | · |−

1
2 × | · |

1
2 ⋊ 1SO1(F ),

where π(S2) ∈ ΠS2 is a discrete series representation of SO3(F ). Hence π6 ∈ Πϕψ
with ϕψ = | · |

3
2 ⊕ | · |

1
2 ⊕ S2 ⊕ | · |−

1
2 ⊕ | · |−

3
2 .

(7) If (δ4, δ2) = (−,−) and (ε4, ε2) = (+,+), then π7 = π(ψ, ε) is non-tempered and is
the unique subrepresentation of

| · |−
1
2 ⋊ 1SO5(F ) ↪→

⟨
−3

2
,−1

2

⟩
× | · |−

1
2 ⋊ 1SO1(F ).

Hence π7 ∈ Πϕψ with ϕψ = | · |
3
2 ⊕ | · |

1
2 ⊕ | · |

1
2 ⊕ | · |−

1
2 ⊕ | · |−

1
2 ⊕ | · |−

3
2 .

(8) If (δ4, δ2) = (−,−) and (ε4, ε2) = (−,−), then by definition, π8 ∼= π6 so that π8 is

non-tempered but π8 ̸∈ Πϕψ with ϕψ = | · |
3
2 ⊕ | · |

1
2 ⊕ | · |

1
2 ⊕ | · |−

1
2 ⊕ | · |−

1
2 ⊕ | · |−

3
2 .
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4. The case of discrete diagonal restriction

In this section, we construct A-packets Πψ for A-parameters ψ ∈ ΨDDR(Gn) with discrete
diagonal restrictions. See [X17b, §7] for more precision. Before the construction, we review
the case of general linear groups GLN .

4.1. The case of GLN . Let ψ be an A-parameter for GLN (F ). Assume in this subsection
that the diagonal restriction ψd = ψ ◦∆ is multiplicity-free. Recall that one can associate an
irreducible unitary representation τψ of GLN (F ). When ψ ⊃ ρ⊠ Sa ⊠ Sb with min{a, b} > 1,
we see that τψ is the unique irreducible subrepresentation of⟨

ρ;
a− b

2
, . . . ,−ζ a+ b− 2

2

⟩
× τψ′ ×

⟨
ρ; ζ

a+ b− 2

2
, . . . ,−a− b

2

⟩
,

where ζ ∈ {±1} such that ζ(a− b) ≥ 0, and

ψ′ =

{
ψ − ρ⊠ Sa ⊠ Sb ⊕ ρ⊠ Sa ⊠ Sb−2 if ζ = +1,

ψ − ρ⊠ Sa ⊠ Sb ⊕ ρ⊠ Sa−2 ⊠ Sb if ζ = −1.

4.2. The case of SO2n+1 and Sp2n. Let Gn be split SO2n+1 or Sp2n. Recall that ψ ∈ Ψ(Gn)
has a discrete diagonal restriction if ψ is of good parity and ψd = ψ ◦∆ is multiplicity-free.
Note that

Sa ⊗ Sb = Sa+b−1 ⊕ Sa+b−3 ⊕ · · · ⊕ S|a−b|+1.

Write

ψ =

r⊕
i=1

ρi ⊠ Sai ⊠ Sbi .

For i = 1, . . . , r, we set

di = min{ai, bi}, ζi =

{
1 if ai > bi,

− 1 if ai < bi.

When ai = bi, we choose ζi ∈ {±1} arbitrarily.

Definition 4.1. Let ψ = ⊕r
i=1ρi ⊠ Sai ⊠ Sbi ∈ ΨDDR(Gn) be an A-parameter with DDR, and

di and ζi be as above.

(1) Define Σψ to be the set of pairs (l, η) such that
• l = (l1, . . . , lr) ∈ Zr such that 0 ≤ li ≤ di/2;
• η = (η1, . . . , ηr) ∈ {±1}r such that

r∏
i=1

ηdii (−1)[di/2]+li = 1.

Here, [x] denotes the greatest integer which is not larger than x.
(2) Define an equivalence relation ∼ψ on Σψ by

(l, η) ∼ψ (l′, η′) ⇐⇒ l = l′ and ηi = η′i unless li =
di
2
.

(3) Define εl,η ∈ Âψ by

εl,η(αi) = ηdii (−1)[di/2]+li ,

where αi ∈ Aψ is the element corresponding to ρi ⊠ Sai ⊠ Sbi.
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Lemma 4.2. The cardinality of the set Σψ/ ∼ψ of equivalence classes is equal to
1

2

r∏
i=1

(di + 1) if di is odd for some i,

1

2

(
r∏
i=1

(di + 1) + (−1)
1
2
(d1+···+dr)

)
if di is even for any i.

Proof. For ϵ ∈ {±1}, we define Σϵψ by a similar set to Σψ changing the second condition with

r∏
i=1

ηdii (−1)[di/2]+li = ϵ,

and set

aϵ(d1,...,dr) = #Σϵψ/ ∼ψ .

Hence a+(d1,...,dr) = #Σψ/ ∼ψ.

If di is odd for some i, then a+(d1,...,dr) = a−(d1,...,dr) so that

aϵ(d1,...,dr) =
1

2

(
a+(d1,...,dr) + a−(d1,...,dr)

)
=

1

2

r∏
i=1

(di + 1).

Suppose that di is even for any i. Set a+∅ = 1 and a−∅ = 0. Then for r ≥ 1, we have(
a+(d1,...,dr)
a−(d1,...,dr)

)
=

1

2

(
dr + 1 + (−1)dr/2 dr + 1− (−1)dr/2

dr + 1− (−1)dr/2 dr + 1 + (−1)dr/2

)(
a+(d1,...,dr−1)

a−(d1,...,dr−1)

)
.

Note that there exists P ∈ GL2(C) such that for any α, β ∈ C,

P

(
α β
β α

)
P−1 =

(
α+ β 0
0 α− β

)
.

Thus,

P

(
a+(d1,...,dr)
a−(d1,...,dr)

)
=

(
dr + 1 0

0 (−1)dr/2

)
P

(
a+(d1,...,dr−1)

a−(d1,...,dr−1)

)

=

(∏r
i=1(di + 1) 0

0
∏r
i=1(−1)di/2

)
P

(
a+∅
a−∅

)
.

Therefore, (
a+(d1,...,dr)
a−(d1,...,dr)

)
=

1

2

(∏r
i=1(di + 1) + (−1)

1
2
(d1+···+dr) ∗

∗ ∗

)(
1
0

)
.

We obtain the lemma. □

Now for (l, η) ∈ Σψ, we define π(ψ, l, η) to be the unique irreducible subrepresentation of

r

×
i=1

(
| · |−ζi

di−li
2 Sp(St(ρi,

ai + li
2

+ ζi
ai − li

2
),
bi + li

2
− ζi

bi − li
2

)

)
⋊ π(ψ′, ε′),

where
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• ψ′ is an elementary parameter given so that

(ψ′)d =

r⊕
i=1

⊕
ci

ρi ⊠ Sci

with ci running over all integers such that

|ai − bi|+ 2li + 1 ≤ ci ≤ ai + bi − 2li − 1 and ci ≡ ai + bi − 1 mod 2,

and δρi,ci,ψ′ = ζi;

• ε′ ∈ Âψ′ is given so that

ε′(ρi, ci) = ηi · (−1)
ci−1

2
−|ai−bi

2
|−li .

We recall that Sp(St(ρ, a), b) denotes the irreducible unitary representation τρ⊠Sa⊠Sb . Also,
we remark that when ψ is elementary, any (l, η) ∈ Σψ satisfies that li = 0, and π(ψ, l, η) =
π(ψ, εl,η) with εl,η(αi) = ηi.

Theorem 4.3. Let ψ ∈ ΨDDR(Gn) be an A-parameter having a DDR. Then for (l, η), (l′, η′) ∈
Σψ,

π(ψ, l, η) ∼= π(ψ, l′, η′) ⇐⇒ (l, η) ∼ψ (l′, η′).

The A-packet Πψ is given by

Πψ =
{
π(ψ, l, η)

∣∣ (l, η) ∈ Σψ/ ∼ψ

}
.

In particular, #Πψ = #(Σψ/ ∼ψ), which is given explicitly in Lemma 4.2.

Remark 4.4. Let ψ ∈ ΨDDR(Gn). One can define a character ε
M/MW
ψ ∈ Âψ such that⟨

·, π(ψ, l, η)
⟩
ψ
= εl,η · ε

M/MW
ψ .

Example 4.5. (1) Consider ψ = S3 ⊠ S2 ∈ ΨDDR(SO7). Then Σψ/ ∼ψ= {(1,±1)} is a
singleton. The representation π(ψ, (1,±1)) is the unique irreducible subrepresentation
of

| · |−
1
2 ⟨1, 0,−1⟩⋊ 1SO1(F ).

Hence it is non-tempered, and belongs to Πϕψ with ϕψ = | · |
1
2S3 ⊕ | · |−

1
2S3.

(2) Consider ψ = S2 ⊠ S3 ∈ ΨDDR(SO7). Then Σψ/ ∼ψ= {(1,±1)} is a singleton. The
representation π(ψ, (1,±1)) is the unique irreducible subrepresentation of

| · |
1
2 ⟨−1, 0, 1⟩⋊ 1SO1(F ).

Since | · |
3
2 ⋊ 1SO1(F ) is irreducible, we have

π(ψ, (1,±1)) ↪→ | · |
1
2 ⟨−1, 0, 1⟩⋊ 1SO1(F )

↪→ | · |−
1
2 × | · |

1
2 × | · |

3
2 ⋊ 1SO1(F )

∼= | · |−
1
2 × | · |

1
2 × | · |−

3
2 ⋊ 1SO1(F )

∼= | · |−
1
2 × | · |−

3
2 × | · |

1
2 ⋊ 1SO1(F ).
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Consider the following diagram of exact sequences:

0 0 0

0 //
⟨
−3

2 ,−
1
2

⟩
⋊ π(S2) //

OO ⟨
−3

2 ,−
1
2

⟩
× | · |

1
2 ⋊ 1SO1(F )

//

OO ⟨
−3

2 ,−
1
2

⟩
⋊ 1SO3(F )

//

OO

0

0 // | · |−
1
2 × | · |−

3
2 ⋊ π(S2) //

OO

OO
| · |−

1
2 × | · |−

3
2 × | · |

1
2 ⋊ 1SO1(F )

//

OO

OO
| · |−

1
2 × | · |−

3
2 ⋊ 1SO3(F )

//

OO

OO
0

0 //
⟨
−1

2 ,−
3
2

⟩
⋊ π(S2) //

OO

⟨
−1

2 ,−
3
2

⟩
× | · |

1
2 ⋊ 1SO1(F )

//
OO

⟨
−1

2 ,−
3
2

⟩
⋊ 1SO3(F )

//
OO

0.

0 0 0

Since π(ψ, (1,±1)) ↪→ | · |−
1
2 × | · |−

3
2 × | · |

1
2 ⋊ 1SO1(F ), we see that π(ψ, (1,±1)) is a

subrepresentation of one of
⟨
−3

2 ,−
1
2

⟩
⋊π(S2),

⟨
−3

2 ,−
1
2

⟩
⋊1SO3(F ),

⟨
−1

2 ,−
3
2

⟩
⋊π(S2),

or
⟨
−1

2 ,−
3
2

⟩
⋊ 1SO3(F ). Since Jac

|·|−
1
2 ,|·|

1
2 ,|·|

3
2
(π(ψ, (1,±1))) ̸= 0 but

Jac
|·|−

1
2 ,|·|

1
2 ,|·|

3
2

(⟨
−3

2
,−1

2

⟩
⋊ π(S2)

)
= Jac

|·|−
1
2 ,|·|

1
2 ,|·|

3
2

(⟨
−1

2
,−3

2

⟩
⋊ 1SO3(F )

)
= 0,

we see that π(ψ, (1,±1)) ̸⊂
⟨
−3

2 ,−
1
2

⟩
⋊π(S2) and π(ψ, (1,±1)) ̸⊂

⟨
−1

2 ,−
3
2

⟩
⋊1SO3(F ).

Suppose that π(ψ, (1,±1)) ⊂
⟨
−3

2 ,−
1
2

⟩
⋊ 1SO3(F ). Note that⟨

−3

2
,−1

2

⟩
⋊ 1SO3(F ) ↪→

⟨
−3

2
,−1

2

⟩
× | · |−

1
2 ⋊ 1SO1(F )

∼= | · |−
1
2 ×

⟨
−3

2
,−1

2

⟩
⋊ 1SO1(F ).

Let σ be the unique irreducible subrepresentation of
⟨
−3

2 ,−
1
2

⟩
⋊1SO1(F ). Since

⟨
−3

2 ,−
1
2

⟩
×

| · |−
1
2 ⋊ 1SO1(F ) has a unique irreducible subrepresentation, π(ψ, (1,±1)) must be the

unique irreducible subrepresentation of |·|−
1
2 ⋊σ. Since

⟨
−3

2 ,−
1
2

⟩
⋊1SO1(F ) is reducible

and

Jac
|·|

1
2

(⟨
−3

2
,−1

2

⟩
⋊ 1SO1(F )

)
= | · |−

3
2 ⋊ 1SO1(F )

is irreducible, we see that Jac
|·|

1
2
(σ) = 0. Also, we note that Jac

|·|−
1
2
(σ) = 0. Hence

Jac
|·|−

1
2 ,|·|

1
2
(π(ψ, (1,±1))) = 0. This contradicts that π(ψ, (1,±1)) ↪→

⟨
−1

2 ,
1
2 ,

3
2

⟩
⋊

1SO1(F ). Therefore we conclude that

π(ψ, (1,±1)) ↪→
⟨
−1

2
,−3

2

⟩
⋊ π(S2) = | · |−1St2 × π(S2).

Hence π(ψ, (1,±1)) is non-tempered, and belongs to Πϕψ with ϕψ = |·|1S2⊕S2⊕|·|−1S2.

5. The case of good parity and the general case

In this section, we construct A-packets Πψ for general A-parameters ψ. See [X17b, §8] for
more precision. First, we consider the case where ψ is of good parity. Before the construction,
we introduce the notion of admissible orders and explain their roles in the case of general linear
groups GLN .
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5.1. Admissible order. Recall that ψ ∈ Ψ(Gn) is of good parity if ψ is a sum of irreducible
self-dual representations of the same type as ψ. When ψ = ⊕i∈Iρi ⊠ Sai ⊠ Sbi , we set
Iρ = {i ∈ I | ρi ∼= ρ}, and

ψρ =
⊕
i∈Iρ

ρ⊠ Sai ⊠ Sbi ⊂ ψ.

As in the previous section, we set

di = min{ai, bi}, ζi =

{
1 if ai > bi,

− 1 if ai < bi,

and we choose ζi ∈ {±1} arbitrarily when ai = bi. We fix a total order >ψ on Iρ satisfying
the following condition:

(P): For i, j ∈ Iρ, if ai + bi > aj + bj , |ai − bi| > |aj − bj |, and ζi = ζj , then i >ψ j.

We call such an order >ψ an admissible order on Iρ. Taking >ψ on Iρ for each ρ, we extend
>ψ to a partial order on I = ⊔ρIρ. Note that there are many such orders and there is no
canonical choice of them in general. When ψ has a DDR, we can always choose such an order
satisfying that for i, j ∈ Iρ,

i >ψ j ⇐⇒ ai + bi > aj + bj .

We call such orders the natural orders for parameters with DDR.
We say that ψ≫ ∈ Ψ(Gn′) dominates ψ with respect to >ψ if

ψ≫ =
⊕
i∈I

ρi ⊠ Sa′i ⊠ Sb′i

such that for each i ∈ I,

(a′i, b
′
i) =

{
(ai + 2Ti, bi) if ζi = +1,

(ai, bi + 2Ti) if ζi = −1

for some integer Ti ≥ 0. When a′i = b′i, we set ζ ′i = ζi. Note that for any ψ ∈ Ψgp(Gn) with
admissible order >ψ, one can take ψ≫ ∈ ΨDDR(Gn′) such that ψ≫ dominates ψ with respect
to >ψ, and such that the order >ψ is a natural order for ψ≫.

5.2. The case of GLN . Let ψ ∈ Ψgp(Gn). Fix an admissible order >ψ, and an A-parameter
ψ≫ ∈ ΨDDR(Gn′) which dominates ψ with respect to >ψ. In this subsection, we construct τψ
using τψ≫ .

Let τ be an irreducible representation of GLN (F ). For d ≤ N/2, we write

s.s.Jac(d,N−2d,d)(τ) =
⊕
i∈I

τ
(1)
i ⊠ τ

(0)
i ⊠ τ

(2)
i ,

where τ
(j)
i is an irreducible representation of GLd(F ) if j = 1, 2, and of GLN−2d(F ) if j = 0.

For a fixed irreducible supercuspidal unitary representation ρ of GLd(F ) and for a real number
x, we set

Jacθρ|·|x(τ) =
⊕
i∈I

τ
(1)
i

∼=ρ|·|x,τ (2)i
∼=ρ∨|·|−x

τ
(0)
i .

For example, Jacθ
|·|
d−1
2
(Std) = Std−2.
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Lemma 5.1. Let ψ = ⊕i∈Iρi ⊠ Sai ⊠ Sbi ∈ Ψgp(Gn). Fix an admissible order >ψ, and an
A-parameter ψ≫ = ⊕i∈Iρi ⊠ Sa′i ⊠ Sb′i ∈ ΨDDR(Gn′) which dominates ψ with respect to >ψ.
Then

τψ ∼= ◦i∈I
(
Jacθ

ρi|·|
ai−bi

2 +ζi ,...,ρi|·|ζi
ai+bi

2

◦ Jacθ
ρi|·|

ai−bi
2 +2ζi ,...,ρi|·|ζi(

ai+bi
2 +1)

◦ · · · ◦ Jacθ
ρi|·|

a′
i
−b′
i

2 ,...,ρi|·|ζi(
a′
i
+b′
i

2 −1)

)
(τψ≫),

where ◦i∈I is taken in the decreasing order with respect to >ψ.

For the meaning of the phrase “◦i∈I is taken in the decreasing order with respect to >ψ”,
see the following examples.

Example 5.2. (1) Consider ψ = (Sd ⊠ 1)⊕n with d > 1 so that τψ = Std × · · · × Std
(n-times). Take I = {1, . . . , n} with the order >ψ given by i >ψ i − 1. Then any
A-parameter ψ≫ which has a DDR and dominates ψ, and such that >ψ is a natural
order is of the form

ψ≫ = ψ(t1,...,tn) = Sd+t1 ⊠ 1⊕ · · · ⊕ Sd+tn ⊠ 1

with t1, . . . , tn ∈ 2Z and tn > tn−1 > · · · > t1 ≥ 0. The representation τψ≫ is given by

τψ(t1,...,tn)
= Std+t1 × · · · × Std+tn .

When t1 > 0, we have

Jacθ
|·|
d+t1−1

2

(τψ(t1,...,tn)
) = τψ(t1−2,...,tn)

.

Hence

Jacθ
|·|
d+t1−1

2 ,...,|·|
d+1
2

(τψ(t1,...,tn)
) = τψ(0,t2,...,tn)

.

Therefore we have

Jacθ
|·|
d+tn−1

2 ,...,|·|
d+1
2

◦ · · · ◦ Jacθ
|·|
d+t1−1

2 ,...,|·|
d+1
2

(τψ(t1,...,tn)
) = τψ.

(2) Consider ψ = S2 ⊠ S3 ⊕ S5 ⊠ S2. If we put (a1, b1) = (2, 3) and (a2, b2) = (5, 2) with
I = {1, 2}, then by the condition (P), the admissible order >ψ must satisfy 2 >ψ 1.
An A-parameter ψ≫ which dominants ψ is given by ψ≫ = S2 ⊠ S3 ⊕ S7 ⊠ S2. Then

τψ = Sp(St2, 3)× Sp(St5, 2),

τψ≫ = Sp(St2, 3)× Sp(St7, 2).

Since

Sp(St7, 2) ↪→
⟨
5

2
,
7

2

⟩
× Sp(St5, 2)×

⟨
−7

2
,−5

2

⟩
,

we have

Jacθ
|·|

5
2 ,|·|

7
2
(τψ≫) = τψ.
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5.3. The case of SO2n+1 and Sp2n. For ψ = ⊕i∈Iρi ⊠ Sai ⊠ Sbi ∈ Ψgp(Gn), we define di,
ζi, Σψ, ∼ψ, and εl,η as in §4.2. We fix an admissible order >ψ on Iρ for each ρ, and an

A-parameter ψ≫ ∈ ΨDDR(Gn′) such that ψ≫ dominates ψ with respect to >ψ, and such that
the order >ψ is a natural order for ψ≫. For (l, η) ∈ Σψ, we define π>ψ(ψ, l, η) by

π>ψ(ψ, l, η) = ◦i∈I
(
Jac

ρi|·|
ai−bi

2 +ζi ,...,ρi|·|ζi
ai+bi

2
◦ Jac

ρi|·|
ai−bi

2 +2ζi ,...,ρi|·|ζi(
ai+bi

2 +1)

◦ · · · ◦ Jac
ρi|·|

a′
i
−b′
i

2 ,...,ρi|·|ζi(
a′
i
+b′
i

2 −1)

)
(π(ψ≫, l, η)),

where ◦i∈I is taken in the decreasing order with respect to >ψ.

Theorem 5.3. Let ψ ∈ Ψgp(Gn) with an admissible order >ψ. Then, for (l, η) ∈ Σψ, the
representation π>ψ(ψ, l, η) does not depend on the choice of ψ≫. Moreover, it is either zero

or irreducible. If π>ψ(ψ, l, η)
∼= π>ψ(ψ, l

′, η′) ̸= 0, then (l, η) ∼ψ (l′, η′). The A-packet Πψ is
given by

Πψ = {π>ψ(ψ, l, η) | (l, η) ∈ Σψ/ ∼ψ} \ {0}.
In particular, #Πψ ≤ #(Σψ/ ∼ψ).

Example 5.4. Suppose that ψ ∈ Ψgp(SO7) such that ψd = S⊕3
2 . Then

Σψ = {(0, η) | η = (η1, η2, η3) ∈ {±1}3, η1η2η3 = 1}

with trivial equivalence relation ∼ψ, where 0 = (0, 0, 0). We always take the admissible order
>ψ given by 3 >ψ 2 >ψ 1. If we write ψ = ⊕3

i=1Sai ⊠ Sbi with (ai, bi) ∈ {(2, 1), (1, 2)}, the
sign ζi ∈ {±1} is determined by ζi = sgn(ai − bi).

Define ψ≫ = ⊕3
i=1Sa′i ⊠ Sb′i so that (a′i, b

′
i) ∈ {(2i, 1), (1, 2i)} and (a′i − b′i)(ai − bi) > 0.

Then ψ≫ dominates ψ with respect to >ψ, and has a DDR with >ψ being a natural order. In

fact, ψ≫ is elementary. Given η = (η1, η2, η3) ∈ {±1} such that η1η2η3 = 1, define ε ∈ Âψ≫

by ε(1, 2i) = ηi. Then

π>ψ(ψ, 0, η) = Jac
|·|ζ3

3
2
◦ Jac

|·|ζ3
5
2
◦ Jac

|·|ζ2
3
2
(π(ψ≫, ε)).

(1) Suppose that ζ1 = ζ2 = ζ3 = ζ. By Lemma 3.5 (together with using the Aubert
involution if necessary), Jac

|·|ζ
3
2
(π(ψ≫, ε)) is nonzero if and only if η1 = η2. In this

case, it is irreducible and we have

Jac
|·|ζ

3
2
(π(ψ≫, (+,+,+)))⊕ Jac

|·|ζ
3
2
(π(ψ≫, (−,−,+)))

∼=
{
St2 ⋊ π(S6) if ζ = +1,

det2 ⋊ 1SO5(F ) if ζ = −1.

Here, π(S6) ∈ ΠS6 is a discrete series representation of SO7(F ), and det2 is the
determinant character of GL2(F ). Hence

π>ψ(ψ, 0, (+,+,+))⊕ π>ψ(ψ, 0, (−,−,+))

∼=
{
St2 ⋊ π(S2) if ζ = +1,

det2 ⋊ 1SO3(F ) if ζ = −1.
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Since the right hand side is irreducible, exactly one of π>ψ(ψ, 0, (+,+,+)) or π>ψ(ψ, 0, (−,−,+))
is nonzero. Therefore, we have

Πψ =

{
{St2 ⋊ π(S2)} if ζ = +1,

{det2 ⋊ 1SO3(F )} if ζ = −1.

In particular, #Πψ = 1 while #(Σψ/ ∼ψ) = 4. Note that Πψ is equal to Πϕψ with

ϕψ =

S
⊕3
2 if ζ = +1,(
| · |

1
2 ⊕ | · |−

1
2

)⊕3
if ζ = −1.

In fact, one can show that π>ψ(ψ, 0, (+,+,+)) ̸= 0 and π>ψ(ψ, 0, (−,−,+)) = 0.
(2) Suppose that {ζ1, ζ2, ζ3} = {+1,−1}. we can assume without loss of generality that

ζ2 = ζ3 = ζ ̸= ζ1.
• If η = (+,+,+), since π(ψ≫, ε) is a subrepresentation of

| · |−ζ
1
2 × | · |ζ

3
2 × | · |ζ

1
2 ×

⟨
ζ
5

2
, ζ

3

2
, ζ

1

2

⟩
⋊ 1SO1(F )

↪→ | · |ζ
3
2 ×

⟨
ζ
5

2
, ζ

3

2

⟩
× | · |−ζ

1
2 × | · |ζ

1
2 × | · |ζ

1
2 ⋊ 1SO1(F ),

we have Jac
|·|−ζ

1
2
(π>ψ(ψ, 0, η)) = Jac

|·|ζ
3
2 ,|·|ζ

5
2 ,|·|ζ

3
2 ,|·|−ζ

1
2
(π(ψ≫, ε)) ̸= 0. Note that

Jac
|·|−ζ

1
2
(π(ψ≫, ε)) = π(ψ′, ε′)

with (ψ′)d = (ψ≫)d − S2 and ε′ = ε|Aψ′. Using [X17a, Lemma 5.6], Lemma 3.5
and the Aubert involution if necessary, we see that

Jac
|·|−ζ

1
2
(π(ψ≫, η)) ∼= Jac

|·|−ζ
1
2 ,|·|ζ

3
2 ,|·|ζ

5
2 ,|·|ζ

3
2
(π(ψ≫, ε))

↪→
{
St2 ⋊ 1SO1(F ) if ζ = +1,

det2 ⋊ 1SO1(F ) if ζ = −1.

Therefore, π>ψ(ψ, 0, η) is nonzero and is an irreducible subrepresentation of{
| · |−

1
2 × St2 ⋊ 1SO1(F ) if ζ = +1,

| · |
1
2 × det2 ⋊ 1SO1(F ) if ζ = −1.

• If η = (+,−,−), since π(ψ≫, ε) is a subrepresentation of

| · |−ζ
1
2 × | · |ζ

3
2 × | · |ζ

5
2 ×

⟨
ζ
3

2
, ζ

1

2

⟩
× | · |−ζ

1
2 ⋊ 1SO1(F )

↪→ | · |ζ
3
2 × | · |ζ

5
2 × | · |ζ

3
2 × | · |−ζ

1
2 × | · |ζ

1
2 × | · |−ζ

1
2 ⋊ 1SO1(F ),

we have Jac
|·|−ζ

1
2
(π>ψ(ψ, 0, η)) = Jac

|·|ζ
3
2 ,|·|ζ

5
2 ,|·|ζ

3
2 ,|·|−ζ

1
2
(π(ψ≫, ε)) ̸= 0. By the

same argument as above, we see that π>ψ(ψ, 0, η) is nonzero and is an irreducible
subrepresentation of{

| · |−
1
2 × St2 ⋊ 1SO1(F ) if ζ = +1,

| · |
1
2 × det2 ⋊ 1SO1(F ) if ζ = −1.
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• If η = (−,+,−), since π(ψ≫, ε) is supercuspidal, we have Jac
|·|ζ

3
2
(π(ψ≫, ε)) = 0

so that π>ψ(ψ, 0, η) = 0.
• If η = (−,−,+), since π(ψ≫, ε) is the same representation as in the case (1), we
have π>ψ(ψ, 0, η) = 0.

Therefore, we have

Πψ = {π>ψ(ψ, 0, (+,+,+)), π>ψ(ψ, 0, (+,−,−))}.

In particular, #Πψ = 2 while #(Σψ/ ∼ψ) = 4. Moreover,⊕
π∈Πψ

π

is the maximal semisimple submodule of ⟨−ζ/2⟩ × ⟨ζ/2,−ζ/2⟩ ⋊ 1SO1(F ). Note that
Πϕψ ⊂ Πψ but

#Πϕψ =

{
2 with ϕψ = | · |

1
2 ⊕ S2 ⊕ S2 ⊕ | · |−

1
2 if ζ = +1,

1 with ϕψ = | · |
1
2 ⊕ | · |

1
2 ⊕ S2 ⊕ | · |−

1
2 ⊕ | · |−

1
2 if ζ = −1.

5.4. General case. Finally, let ψ ∈ Ψ(Gn) be a general A-parameter for Gn. Then we can
decompose

ψ = ψ1 ⊕ ψ0 ⊕ ψ∨
1 ,

where ψ0 is an A-parameter for Gn0 of good parity, and ψ1 is a sum of irreducible represen-
tations of WF × SL2(C)× SL2(C) which are not the same type as ψ. Fix an admissible order
>ψ0 for ψ0. For (l, η) ∈ Σψ0 , we set

π>ψ(ψ, l, η) = τψ1 ⋊ π>ψ0 (ψ0, l, η).

Theorem 5.5. The representation π>ψ(ψ, l, η) is either zero or irreducible, and is independent
of the choice of ψ1. The A-packet Πψ is given by

Πψ = {π>ψ(ψ, l, η) | (l, η) ∈ Σψ0/ ∼ψ0} \ {0}.

To summarize, we obtain Mœglin’s multiplicity-free result for A-packets.

Theorem 5.6 (Mœglin [Mœ11], Xu [X17b, Theorem 8.12]). For ψ ∈ Ψ(Gn), the A-packet
Πψ is multiplicity-free, i.e., Πψ is a subset of Irrunit(Gn(F )).

5.5. Complementary results. There are useful results of Mœglin.

Proposition 5.7 ([Mœ09b, 4.2 Corollaire]). For ψ,ψ′ ∈ Ψ(Gn), if Πψ ∩ Πψ′ ̸= ∅, then
ψd ∼= ψ′

d.

We call ψ ∈ Ψ(Gn) unramified if ψ|IF × SL2(C) × {12} is trivial, where IF is the inertia
subgroup of WF .

Proposition 5.8 ([Mœ09b, 4.4 Proposition]). If ψ ∈ Ψ(Gn) is unramified, then Πψ has a
unique unramified representation of Gn(F ).
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6. A non-vanishing criterion

In the previous sections, we have constructed Πψ explicitly for any ψ ∈ Ψ(Gn). However,
when ψ is of good parity, the representation π>ψ(ψ, l, η) can be zero for (l, η) ∈ Σψ. In this
section, we give a procedure to determine whether π>ψ(ψ, l, η) is zero or not. This is the work
in [X].

By the construction in §5.4, we may assume in this section that ψ is of good parity.

6.1. Definitions and the algorithm. As in the previous section, we write

ψ =
⊕
ρ

⊕
i∈Iρ

ρ⊠ Sai ⊠ Sbi .

We set

di = min{ai, bi}, ζi =

{
1 if ai > bi,

− 1 if ai < bi.

When ai = bi, we choose ζi ∈ {±1} arbitrarily.

Definition 6.1. Suppose that ρ ⊠ Sa ⊠ Sb ⊂ ψ, and r ∈ Z with r > 0. Let J be a subset of
Iρ, and J

c be its complement in Iρ.

(1) We say that ρ⊠ Sa ⊠ Sb is in level r “far away” from J if

|a− b|
2

> 2r|J | ·

∑
j∈J

(
aj + bj

2
− 1

)
+ |J |

∑
i∈Iρ

di

 .

In this case, we write

ρ⊠ Sa ⊠ Sb ≫r ψJ =
⊕
j∈J

ρ⊠ Saj ⊠ Sbj .

(2) We say that J is “separated” from Jc if the following conditions are satisfied.
(a) For any j ∈ J and j′ ∈ Jc, either

|aj′ − bj′ |
2

>
aj + bj

2
− 1 or

|aj − bj |
2

>
aj′ + bj′

2
− 1.

This condition is equivalent that

HomSL2(C)(Saj ⊗ Sbj , Saj′ ⊗ Sbj′ ) = 0.

(b) For any admissible order >J on J , there exists a parameter ψJ≫ = ⊕j∈Jρ⊠Sa′j ⊠
Sb′j with DDR which dominates ψJ = ⊕j∈Jρ⊠ Saj ⊠ Sbj such that for any j ∈ J

and j′ ∈ Jc,

|aj′ − bj′ |
2

>
aj + bj

2
− 1 =⇒

|aj′ − bj′ |
2

>
a′j + b′j

2
− 1.

(c) For any admissible order >Jc on Jc, there exists a parameter ψJc≫ = ⊕j∈Jcρ ⊠
Sa′j ⊠Sb′j with DDR which dominates ψJc = ⊕j∈Jcρ⊠Saj ⊠Sbj such that for any

j ∈ J and j′ ∈ Jc,

|aj − bj |
2

>
aj′ + bj′

2
− 1 =⇒ |aj − bj |

2
>
a′j′ + b′j′

2
− 1.
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(3) The index set Iρ is in “good shape” if we can index Iρ = {1, . . . , Nρ} such that
ai + bi ≥ ai−1 + bi−1 and |ai − bi| ≥ |ai−1 − bi−1| for any i, and we can divide

Iρ = ⊔jI(j)ρ such that

(a) I
(j)
ρ = {i, i− 1} with ζi = ζi−1, or I

(j)
ρ = {i};

(b) I
(j)
ρ is “separated” from Iρ \ I(j)ρ .

Then there is a natural order >ψ on Iρ given by i >ψ i− 1.
(4) We say that ψ is in the generalized basic case if Iρ is in “good shape” for any ρ.

When ψ is in the generalized basic case with natural order >ψ, there is a criterion for the
non-vanishing of π>ψ(ψ, l, η) (Proposition 6.2). We reduce the general case to the generalized
basic case changing an admissible order >ψ (Proposition 6.5), and using three reduction
operators “Pull” (Propositions 6.6, 6.7), “Expand” (Proposition 6.8), and “Change sign”
(Proposition 6.9).

More precisely, we use the following algorithm.
Algorithm: Let

ψ =
⊕
ρ

⊕
i∈Iρ

ρ⊠ Sai ⊠ Sbi ∈ Ψgp(Gn),

and (l, η) ∈ Σψ/ ∼ψ. Choose an admissible order >ψ on Iρ for each ρ, and we index Iρ =
{1, 2, . . . , Nρ} such that i >ψ i− 1.

Step 1: Is ψ in the generalized basic case?
• If yes, use Proposition 6.2 (after using Proposition 6.5 unless >ψ is a natural
order).

• If no, choose ρ and 1 ≤ m ≤ Nρ such that Iρ is not in “good shape”, and for
i > m,

ρ⊠ Sai ⊠ Sbi ≫2

m⊕
j=1

ρ⊠ Saj ⊠ Sbj ,

and such that {m+ 1, . . . , Nρ} are in “good shape”. Go to Step 2.
Step 2: Choose 1 ≤ i0 ≤ m such that

max
1≤i≤m

(ai + bi) = ai0 + bi0 .

Consider

S = {i ≤ m | Sai ⊗ Sbi ⊊ Sai0 ⊗ Sbi0 , ζi = ζi0},

S = {i ≤ m | Sai ⊗ Sbi ⊆ Sai0 ⊗ Sbi0 , ζi = ζi0}.

Then there are three possibilities.
• If S ̸= ∅, go to Step 3a.
• If S = ∅ but S ⊋ {i0}, go to Step 3b.
• If S = {i0}, go to Step 3c.

Step 3a: Take i′0 ∈ S such that

max
i∈S

(ai + bi) = ai′0 + bi′0 .

Using Proposition 6.5, we rearrange the order >ψ for i ≤ m so that

ρ⊠ Sam ⊠ Sbm = ρ⊠ Sai0 ⊠ Sbi0 ,
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ρ⊠ Sam−1 ⊠ Sbm−1 = ρ⊠ Sai′0 ⊠ Sbi′0 .

Then we can “Pull” the pair ρ⊠ Sam ⊠ Sbm and ρ⊠ Sam−1 ⊠ Sbm−1 using Proposition
6.6. Consequently, the non-vanishing of π>ψ(ψ, l, η) is equivalent to those of 3 repre-
sentations {π>ψ∗ (ψ

∗, l∗, η∗)}. If we replace ψ with ψ∗, one can replace m with m− 1
or m − 2. After such replacements, go back to Step 2 if m ≥ 1. If m = 0, then Iρ is
in “good shape”, and go back to Step 1.

Step 3b: Take i′0 ∈ S such that i′0 ̸= i0. Using Proposition 6.5, we rearrange the
order >ψ for i ≤ m as in Step 3a. Then we can “Pull” the pair ρ ⊠ Sam ⊠ Sbm
and ρ ⊠ Sam−1 ⊠ Sbm−1 using Proposition 6.7. Consequently, the non-vanishing of
π>ψ(ψ, l, η) is equivalent to those of 2 representations {π>ψ∗ (ψ

∗, l∗, η∗)}. If we replace
ψ with ψ∗, one can replace m with m− 1 or m− 2. After such replacements, go back
to Step 2 if m ≥ 1. If m = 0, then Iρ is in “good shape”, and go back to Step 1.

Step 3c: Using Proposition 6.5, we rearrange the order >ψ for i ≤ m so that

ρ⊠ Sam ⊠ Sbm = ρ⊠ Sai0 ⊠ Sbi0 .
Then we can “Expand” ρ⊠ Sam ⊠ Sbm using Proposition 6.8. Consequently, the non-
vanishing of π>ψ(ψ, l, η) is equivalent to that of a representation π>ψ∗ (ψ

∗, l∗, η∗). Go
to Step 4.

Step 4: For the parameter ψ∗ obtained in Step 3c, consider the set S∗ as in Step 2 with
ρ⊠ Sai0 ⊠ Sbi0 := ρ⊠ Sa∗m ⊠ Sb∗m , which is the “Expansion” of ρ⊠ Sam ⊠ Sbm .

• If S∗ ̸= ∅, go back to Step 3a after replacing ψ with ψ∗.
• If S∗ = ∅, it is necessary that |a∗m− b∗m| ≤ 1, and ζi ̸= ζn for i < m. Go to Step 5

Step 5: Using Proposition 6.5, we rearrange the order >ψ for i ≤ m so that
1
2
...
m

⇝


m
1
...

m− 1

 .

Then we can “Change sign” of ρ⊠Sa∗m⊠Sb∗m using Proposition 6.9. Consequently, the
non-vanishing of π>ψ∗ (ψ

∗, l∗, η∗) is equivalent to that of a representation π>ψ∗∗ (ψ
∗∗, l∗∗, η∗∗).

If we replace ψ∗ with ψ∗∗, the set S∗ becomes non-empty. After such replacements,
go back to Step 1.

Step 6: By the above steps, the non-vanishing of π>ψ(ψ, l, η) is equivalent to those of
several representations {π>ψ⋆ (ψ⋆, l

⋆, η⋆)}, where each ψ⋆ is in the generalized basic

case. Use Proposition 6.2, we obtain the conditions on (l, η) for π>ψ(ψ, l, η) ̸= 0.

In the rest of this section, we state several propositions appearing in this algorithm.

6.2. Generalized basic case. Recall that ψ is in the generalized basic case if for each ρ,
the index set Iρ is in “good shape”, i.e., Iρ = {1, . . . , Nρ} with ai + bi ≥ ai−1 + bi−1 and

|ai − bi| ≥ |ai−1 − bi−1| for any i, and we can divide Iρ = ⊔jI(j)ρ such that

(a) I
(j)
ρ = {i, i− 1} with ζi = ζi−1, or I

(j)
ρ = {i};

(b) I
(j)
ρ is “separated” from Iρ \ I(j)ρ .

In this case, we use the natural order >ψ on Iρ such that i >ψ i− 1. In the generalized basic
case, there is a non-vanishing criterion for π>ψ(ψ, l, η).
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Proposition 6.2 ([X, Proposition 4.3]). When ψ is in the generalized basic case, π>ψ(ψ, l, η) ̸=
0 if and only if for any ρ and any I

(j)
ρ , if I

(j)
ρ = {i, i− 1} has two elements, then

ηi = (−1)di−1ηi−1 =⇒ li + li−1 >
ai−1 + bi−1

2
− |ai − bi|

2
− 1,

ηi ̸= (−1)di−1ηi−1 =⇒ −|ai − bi| − |ai−1 − bi−1|
2

≤ li − li−1 ≤
(ai + bi)− (ai−1 + bi−1)

2
.

Remark 6.3. Let ψ be in the generalized basic case, and Iρ = ⊔jI(j)ρ be the division as in
Definition 6.1 (3).

(1) If #I
(j)
ρ = 1 for any ρ and any j, then by Definition 6.1 (2)-(a), ψ has a DDR.

(2) We say that ψ is in the basic case if there exists a unique pair (ρ, j) such that

#I
(j)
ρ = 2. Mœglin gave a non-vanishing criterion for π>ψ(ψ, l, η) when ψ is in the

basic case such that I
(j)
ρ = {i, i− 1} with Sai ⊗ Sbi

∼= Sai−1 ⊗ Sbi−1
. Proposition 6.2 is

a generalization of Mœglin’s result.

Using Proposition 6.2, we obtain the following necessary conditions on non-vanishing of
π>ψ(ψ, l, η) in general.

Lemma 6.4 ([X, Lemmas 4.6, 4.7]). Fix an admissible order >ψ on Iρ, and let k >ψ k − 1
be two adjacent elements in Iρ such that ζk = ζk−1. Suppose that π>ψ(ψ, l, η) ̸= 0.

(1) If Sak ⊗ Sbk ⊇ Sak−1
⊗ Sbk−1

, then{
ηk = (−1)dk−1ηk−1 =⇒ lk + lk−1 > dk−1 − 1,

ηk ̸= (−1)dk−1ηk−1 =⇒ 0 ≤ lk − lk−1 ≤ dk − dk−1.

(2) If Sak ⊗ Sbk ⊆ Sak−1
⊗ Sbk−1

, then{
ηk = (−1)dk−1ηk−1 =⇒ lk + lk−1 > dk − 1,

ηk ̸= (−1)dk−1ηk−1 =⇒ 0 ≤ lk−1 − lk ≤ dk−1 − dk.

We denote by Σ
(+)
ψ (resp. Σ

(−)
ψ ) the subset of Σψ satisfying the conditions in Lemma 6.4

(1) (resp. (2)) for any ρ and any adjacent pair {k, k − 1} in Iρ with ζk = ζk−1. Note that if

(l, η) ∼ψ (l′, η′) and (l, η) ∈ Σ
(±)
ψ , then (l′, η′) ∈ Σ

(±)
ψ .

6.3. Change of admissible orders. Let ψ ∈ Ψgp(Gn). We choose an admissible order >ψ
on Iρ, and we index Iρ = {1, . . . , Nρ} such that i >ψ i − 1. Now for fixed 1 < k ≤ Nρ, we
denote by >′

ψ the order on Iρ obtained so that i >′
ψ j if and only if i >ψ j and (i, j) ̸= (k, k−1),

or (i, j) = (k − 1, k). Assume that >′
ψ is also an admissible order.

When ζk = ζk−1 and Sak ⊗Sbk ⊇ Sak−1
⊗Sbk−1

, we define (l′, η′) = S+(l, η) for (l, η) ∈ Σ
(+)
ψ

as follows:

• If i ̸= k, k − 1, then l′i = li and η
′
i = ηi.
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• If ηk = (−1)dk−1ηk−1, then
l′k−1 = lk−1,

l′k = lk + 2lk−1 − dk−1,

η′k−1 = −(−1)dkηk−1,

η′k = (−1)dk−1ηk.

• If ηk ̸= (−1)dk−1ηk−1 and lk − 2lk−1 < (dk + 1)/2− dk−1, then
l′k−1 = lk−1,

l′k = lk − 2lk−1 + dk−1,

η′k−1 = −(−1)dkηk−1,

η′k = (−1)dk−1ηk.

• If ηk ̸= (−1)dk−1ηk−1 and lk − 2lk−1 ≥ (dk + 1)/2− dk−1, then
l′k−1 = lk−1,

l′k = −lk + 2lk−1 + dk − dk−1,

η′k−1 = −(−1)dkηk−1,

η′k = −(−1)dk−1ηk.

When ζk = ζk−1 and Sak ⊗ Sbk ⊆ Sak−1
⊗ Sbk−1

, we define (l′, η′) = S−(l, η) for (l, η) ∈ Σ
(−)
ψ

as follows:

• If i ̸= k, k − 1, then l′i = li and η
′
i = ηi.

• If ηk = (−1)dk−1ηk−1, then
l′k = lk,

l′k−1 = lk−1 + 2lk − dk,

η′k = −(−1)dk−1ηk,

η′k−1 = (−1)dkηk−1.

• If ηk ̸= (−1)dk−1ηk−1 and lk−1 − 2lk < (dk−1 + 1)/2− dk, then
l′k = lk,

l′k−1 = lk−1 − 2lk + dk,

η′k = −(−1)dk−1ηk,

η′k−1 = (−1)dkηk−1.

• If ηk ̸= (−1)dk−1ηk−1 and lk−1 − 2lk ≥ (dk−1 + 1)/2− dk, then
l′k = lk,

l′k−1 = −lk−1 + 2lk + dk−1 − dk,

η′k = −(−1)dk−1ηk,

η′k−1 = −(−1)dkηk−1.
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Then one can check that S± : Σ
(±)
ψ / ∼ψ→ Σ

(∓)
ψ / ∼ψ and that they are inverse to each other.

Hence S+ and S− are bijective.
When ζk ̸= ζk−1, not assuming any extra conditions on ak, bk, ak−1, bk−1, we define (l

′, η′) =

U(l, η) for (l, η) ∈ Σψ by l′i = li and η
′
i = ηi for i ̸= k, k − 1, and by
l′k−1 = lk−1,

l′k = lk,

η′k−1 = (−1)dkηk−1,

η′k = (−1)dk−1ηk.

Then one can check that U(l, η) ∈ Σψ and that U ◦ U = id. Hence U : Σψ/ ∼ψ→ Σψ/ ∼ψ is
bijective.

Proposition 6.5 ([X, Propositions 5.1, 5.3]). (1) Suppose that ζk = ζk−1 and Sak⊗Sbk ⊇
Sak−1

⊗ Sbk−1
. Then π>ψ(ψ, l, η) = 0 unless (l, η) ∈ Σ

(+)
ψ / ∼ψ, in which case,

π>ψ(ψ, l, η)
∼= π>′

ψ
(ψ, l′, η′)

with (l′, η′) = S+(l, η) ∈ Σ
(−)
ψ / ∼ψ.

(2) Suppose that ζk = ζk−1 and Sak ⊗ Sbk ⊆ Sak−1
⊗ Sbk−1

. Then π>ψ(ψ, l, η) = 0 unless

(l, η) ∈ Σ
(−)
ψ / ∼ψ, in which case,

π>ψ(ψ, l, η)
∼= π>′

ψ
(ψ, l′, η′)

with (l′, η′) = S−(l, η) ∈ Σ
(+)
ψ / ∼ψ.

(3) Suppose that ζk ̸= ζk−1. Then

π>ψ(ψ, l, η)
∼= π>′

ψ
(ψ, l′, η′)

for any (l, η) ∈ Σψ/ ∼ψ with (l′, η′) = U(l, η) ∈ Σψ/ ∼ψ.

6.4. Reduction operator 1: “Pull”. In this subsection, we introduce a reduction operator
“Pull”. Choose an admissible order >ψ. We index Iρ = {1, . . . , Nρ} such that i >ψ i − 1.
First, we suppose that there exists m such that

• for i > m,

ρ⊠ Sai ⊠ Sbi ≫1

m⊕
j=1

ρ⊠ Saj ⊠ Sbj ;

• Sam ⊗ Sbm ⊋ Sam−1 ⊗ Sbm−1 and ζm = ζm−1.

We denote by >′
ψ the order on Iρ obtained so that i >′

ψ j if and only if i >ψ j and (i, j) ̸=
(m,m− 1), or (i, j) = (m− 1,m). Set (a♯m, b

♯
m), (a

♯
m−1, b

♯
m−1), (a

♭
m, b

♭
m), and (a♮m, b

♮
m) so that

• max{a♯m, b♯m} = max{am, bm}+ 2Tm, min{a♯m, b♯m} = min{am, bm}, and so that ζ♯m =
ζm, where Tm is an arbitrary positive integer such that

ρ⊠ Sai ⊠ Sbi ≫1 ρ⊠ Sa♯m ⊠ Sb♯m
for i > m;
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• max{a♯m−1, b
♯
m−1} = max{am−1, bm−1}+2Tm−1, min{a♯m−1, b

♯
m−1} = min{am−1, bm−1},

and so that ζ♯m−1 = ζm−1, where Tm−1 is the integer given by

Tm−1 = Tm +
|am − bm| − |am−1 − bm−1|

2
;

• max{a♭m, b♭m} = max{am, bm} + 2T , min{a♭m, b♭m} = min{am, bm}, and so that ζ♭m =
ζm, where T is an arbitrary positive integer such that

T <
|ai − bi| − (am + bm)

2
+ 1

for i > m;

• max{a♮m−1, b
♮
m−1} = max{am−1, bm−1} + 2T , min{a♮m−1, b

♮
m−1} = min{am−1, bm−1},

and so that ζ♮m−1 = ζm−1, where T is an arbitrary positive integer such that

T <
|ai − bi| − (am−1 + bm−1)

2
+ 1

for i > m.

Define ψ♯, ψ♭, and ψ♮ by

ψ♯ = ψ −

(
m⊕

i=m−1

ρ⊠ Sai ⊠ Sbi

)
+

(
m⊕

i=m−1

ρ⊠ S
a♯i
⊠ S

b♯i

)
,

ψ♭ = ψ − ρ⊠ Sam ⊠ Sbm + ρ⊠ Sa♭m ⊠ Sb♭m ,
ψ♮ = ψ − ρ⊠ Sam−1 ⊠ Sbm−1 + ρ⊠ S

a♮m−1
⊠ S

b♮m−1
.

We may identify Σψ with Σψ∗ canonically for ∗ ∈ {♯, ♭, ♮}.

Proposition 6.6 ([X, Proposition 6.1]). Let (l, η) ∈ Σψ and set (l′, η′) = S+(l, η). Then
π>ψ(ψ, l, η) ̸= 0 if and only if all of

π>ψ(ψ
♯, l, η), π>ψ(ψ

♭, l, η), π>′
ψ
(ψ♮, l′, η′)

are nonzero.

Next, we suppose that there exists m such that

• for i > m,

ρ⊠ Sai ⊠ Sbi ≫1

m⊕
j=1

ρ⊠ Saj ⊠ Sbj ;

• Sam ⊗ Sbm = Sam−1 ⊗ Sbm−1 and ζm = ζm−1;
• there is no i < n such that Sai ⊗ Sbi ⊊ Sam ⊗ Sbm and ζi = ζm.

Set (a♯m, b
♯
m), (a

♯
m−1, b

♯
m−1), and (a♭m, b

♭
m) so that

• max{a♯m, b♯m} = max{am, bm}+ 2Tm, min{a♯m, b♯m} = min{am, bm}, and so that ζ∗m =
ζm, where Tm is an arbitrary positive integer such that

ρ⊠ Sai ⊠ Sbi ≫1 ρ⊠ Sa♯m ⊠ Sb♯m
for i > m.
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• max{a♯m−1, b
♯
m−1} = max{am−1, bm−1}+2Tm−1, min{a♯m−1, b

♯
m−1} = min{am−1, bm−1},

and so that ζ♯m−1 = ζm−1, where Tm−1 = Tm;

• max{a♭m, b♭m} = max{am, bm} + 2T , min{a♭m, b♭m} = min{am, bm}, and so that ζ♭m =
ζm, where T is an arbitrary positive integer such that

T <
|ai − bi| − (am + bm)

2
+ 1

for i > m.

Define ψ♯ and ψ♭ by

ψ♯ = ψ −

(
m⊕

i=m−1

ρ⊠ Sai ⊠ Sbi

)
+

(
m⊕

i=m−1

ρ⊠ S
a♯i
⊠ S

b♯i

)
,

ψ♭ = ψ − ρ⊠ Sam ⊠ Sbm + ρ⊠ Sa♭m ⊠ Sb♭m .

We may identify Σψ with Σψ∗ canonically for ∗ ∈ {♯, ♭}.

Proposition 6.7 ([X, Proposition 6.3]). Let (l, η) ∈ Σψ. Then π>ψ(ψ, l, η) ̸= 0 if and only if
all of

π>ψ(ψ
♯, l, η), π>ψ(ψ

♭, l, η)

are nonzero.

6.5. Reduction operator 2: “Expand”. In this subsection, we introduce a reduction
operator “Expand”. Choose an admissible order >ψ. We index Iρ = {1, . . . , Nρ} such that
i >ψ i− 1. Suppose that there exists m such that

• for i > m,

ρ⊠ Sai ⊠ Sbi ≫2

m⊕
j=1

ρ⊠ Saj ⊠ Sbj ;

• am + bm ≥ ai + bi for i < m;
• there is no i < n satisfying Sai ⊗ Sbi ⊆ Sam ⊗ Sbm and ζi = ζm.

Let

tm = min

{[
|am − bm|

2

]}
∪
{
|am − bm| − |ai − bi|

2

∣∣∣∣ i < m, ζi = ζm

}
.

Here, [x] denotes the greatest integer which is not larger than x. Set (a∗m, b
∗
m) so that

max{a∗m, b∗m} = max{am, bm}, min{a∗m, b∗m} = min{am, bm} + 2tm, and so that ζ∗m = ζm.
Define ψ∗ by

ψ∗ = ψ − ρ⊠ Sam ⊠ Sbm + ρ⊠ Sa∗m ⊠ Sb∗m .

Proposition 6.8 ([X, Proposition 6.4]). For any (l, η) ∈ Σψ, we set (l∗, η∗) to be l∗i = li for
i ̸= m, l∗m = lm + tm, and η

∗
i = ηi for any i. Then

π>ψ(ψ, l, η) ̸= 0 ⇐⇒ π>ψ(ψ
∗, l∗, η∗) ̸= 0.
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6.6. Reduction operator 3: “Change sign”. In this subsection, we introduce a reduction
operator “Change sign”. Choose an admissible order >ψ. We index Iρ = {1, . . . , Nρ} such
that i >ψ i− 1. Suppose that there exists m such that

• for i > m,

ρ⊠ Sai ⊠ Sbi ≫1

m⊕
j=1

ρ⊠ Saj ⊠ Sbj ;

• a1 + b1 ≥ ai + bi and ζi ̸= ζ1 for 1 < i ≤ m;
• |a1 − b1| ≤ 1.

Set (a∗1, b
∗
1) = (b1, a1) + (|a1 − b1|, |a1 − b1|) and ζ∗1 = −ζ1. Define ψ∗ by

ψ∗ = ψ − ρ⊠ Sa1 ⊠ Sb1 + ρ⊠ Sa∗1 ⊠ Sb∗1 .

Proposition 6.9 ([X, Propositions 6.5, 6.6]). Let (l, η) ∈ Σψ. When l1 = d1/2, we assume
that η1 = −1. We set (l∗, η∗) to be l∗i = li, η

∗
i = ηi for i ̸= 1 and

l∗1 =

{
l1 + 1 if |a1 − b1| = 1, η1 = +1,

l1 otherwise,
η∗1 =

{
η1 if |a1 − b1| = 0,

− η1 if |a1 − b1| = 1.

Then
π>ψ(ψ, l, η) ̸= 0 ⇐⇒ π>ψ(ψ

∗, l∗, η∗) ̸= 0.

6.7. Example. We give an example for adapting the algorithm. We again consider ψ ∈
Ψgp(SO7) such that ψd = S⊕3

2 . As in Example 5.4, Σψ = {(0, η) | η ∈ {±1}3, η1η2η3 = 1}.
When ζ1 = ζ2 = ζ3, by Lemma 6.4, π>ψ(ψ, 0, η) = 0 unless η = (+,+,+). Since Πψ ̸= ∅,

we have π>ψ(ψ, 0, (+,+,+)) ̸= 0.
When ζ1 = ζ2 = ζ ̸= ζ3, by Lemma 6.4, π>ψ(ψ, 0, η) = 0 unless η1 = η2. Assume this

condition. Note that η3 = +1. We apply Algorithm in §6.1.
Step 1 for ψ: The parameter ψ is not in the generalized basic case. Setting m = 3, go

to Step 2.
Step 2 for ψ: Take i0 = 3. Then S = ∅ and S = {3}. Go to Step 3c.
Step 3c for ψ: Proposition 6.8 gives no information. Go to Step 4.
Step 4 for ψ: Since S = ∅, go to Step 5.
Step 5 for ψ: Let >′

ψ be the new order such that 2 >′
ψ 1 >′

ψ 3. Then by Proposi-

tion 6.5 (3), we have π>ψ(ψ, 0, η)
∼= π>′

ψ
(ψ, 0, (−η1,−η2, η3)). By Proposition 6.9,

π>′
ψ
(ψ, 0, (−η1,−η2, η3)) ̸= 0 if and only if π>′

ψ
(ψ∗, l∗, η∗) ̸= 0, where ψ∗ = ψ − Sa3 ⊠

Sb3 ⊕Sb3+1⊠Sa3+1, l
∗ = (0, 0, 1), and η∗ = (−η1,−η2,−η3) = −η. Go back to Step 1.

Step 1 for ψ∗: The parameter ψ∗ is not in the generalized basic case. Setting m = 3,
go to Step 2.

Step 2 for ψ∗: Take i0 = 3. Since ζ∗1 = ζ∗2 = ζ∗3 , we have S = {1, 2}. Go to Step 3a.
Step 3a for ψ∗: Take i′0 = 2. By Proposition 6.9 (2), π>′

ψ
(ψ, l∗, η∗) ̸= 0 if and only if

π>ψ(ψ
∗, l∗, η∗∗) ̸= 0, where η∗∗ = (+,+,−) if η = (+,+,+), and η∗∗ = (−,−,+) if

η = (−,−,+). By Proposition 6.6, π>ψ(ψ
∗, l∗, η∗∗) ̸= 0 if and only if all of

π>ψ(ψ
♯, l∗, η∗∗), π>ψ(ψ

♭, l∗, η∗∗), π>
ψ♮
(ψ♮, l♮, η♮)

are nonzero, where

• {a♯3, b
♯
3} = {5, 2}, {a♯2, b

♯
2} = {4, 1}, {a♯1, b

♯
1} = {2, 1}, and ζ♯1 = ζ♯2 = ζ♯3 = ζ;
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• {a♭3, b♭3} = {7, 2}, {a♭2, b♭2} = {2, 1}, {a♭1, b♭1} = {2, 1}, and ζ♭1 = ζ♭2 = ζ♭3 = ζ;

• {a♮3, b
♮
3} = {3, 2}, {a♮2, b

♮
2} = {8, 1}, {a♮1, b

♮
1} = {2, 1}, and ζ♮1 = ζ♮2 = ζ♮3 = ζ;

• 2 >ψ♮ 3 >ψ♮ 1, l
♮ = 0, and η♮ = (+,−,+) if η = (+,+,+), and η♮ = (−,+,−) if

η = (−,−,+). Go back to Step 1.

Step 1 for ψ♯, ψ♭, ψ♮: All of ψ♯, ψ♭, and ψ♮ are in the generalized basic case. By
Proposition 6.2, we see that all of π>ψ(ψ

♯, l∗, η∗∗), π>ψ(ψ
♭, l∗, η∗∗), and π>

ψ♮
(ψ♮, l♮, η♮)

are nonzero. Go to Step 6.
Step 6 for ψ: As a consequence, we see that π>ψ(ψ, 0, η) ̸= 0 for η = (+,+,+) and
η = (−,−,+). This is compatible with Example 5.4. (Note that in Example 5.4 (2),
we assume that ζ2 = ζ3 = ζ ̸= ζ1, but now we assume that ζ1 = ζ2 = ζ ̸= ζ3.)
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Part 2. The Archimedean case

The theory of A-packets are also established in the archimedean case. In Part 2, we review
the archimedean case for Gn = SO2n+1 or Sp2n.

7. A-parameters

In this section, we recall the A-parameters in the archimedean case.

7.1. Weil groups and their representations. The Weil groups of C and R are given by

WC = C×, WR = C× ⊔ C×j,

respectively, where

j2 = −1, jzj−1 = z for z ∈ C×.

Then there exists a canonical exact sequence

1 −−−−→ WC −−−−→ WR −−−−→ Gal(C/R) −−−−→ 1.

The norm maps | · | : WC → R× and | · | : WR → R× are given by |z| = zz for z ∈ WC ⊂ WR,
and |j| = 1. Note that | · | on WC = C× is not the absolute value but the modulus character
of C× on C.

For each integer k, we define a unitary character χk of WC = C× by

χk(z) = z−k(zz)
k
2

for z ∈ C×. We sometimes write χk(z) as (z/z)
k
2 , but one has to keep χk(−1) = (−1)k in

mind. Any character of WC is of the form

| · |αχk
for some α ∈ C and k ∈ Z.

There are exactly two quadratic characters of WR. One is the trivial character 1, and the
other is the sign character

sgn: WR → {±1}
given by sgn(j) = −1 and sgn(z) = 1 for z ∈ C×. Any character of WR is of the form

| · |αsgnδ

for some α ∈ C and δ ∈ {0, 1}. The character | · |sgn implies an isomorphism

W ab
R

∼−→ R×, j 7→ −1, z 7→ zz.

Via this isomorphism, we identifyW ab
R with R×. In particular, any character ofWR is regarded

as a character of R×.
For each integer k, we define a 2-dimensional representation

ρk : WR → GL2(C)

by

ρk(j) =

(
0 (−1)k

1 0

)
, ρk(z) =

(
χk(z) 0
0 χk(z)

)
for z ∈ C×.

It is the induced representation from the character χk ofWC. Note that ρk ∼= ρ−k, ρ0 ∼= 1⊕sgn,
and that ρk is irreducible when k ̸= 0. Moreover, ρk is orthogonal (resp. symplectic) if k is
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even (resp. k is odd). Any irreducible representation of WR is a character or a 2-dimensional
representation of the form

| · |αρk
for some α ∈ C and k ∈ Z with k > 0.

By abuse of notation, for k ∈ Z, we denote by ρk the irreducible (limit of) discrete series
representation of GL2(F ) with minimal O(2)-type ±(|k|+ 1).

7.2. The case of GLN . Let F = R or F = C. A homomorphism

ψ : WF × SL2(C) → GLN (C)

is a representation of WF × SL2(C) if
• ψ|WC is continuous;
• ψ|SL2(C) is algebraic.

An A-parameter for GLN (F ) is a representation ψ : WF × SL2(C) → GLN (C) such that
ψ(WF ) is bounded.

For an A-parameter ψ for GLN (F ), one can associate an irreducible unitary representation
τψ of GLN (F ) as follows: When ψ is irreducible, ψ is of the form ψ = χ ⊠ Sd for some a
character χ of WF , or ψ = ρk ⊠ Sd for some k > 0 (with F = R). When ψ = χ⊠ Sd so that
N = d, we set τψ = χ ◦ detd. When F = R and ψ = ρk ⊠ Sd so that N = 2d, we set τψ to be
the unique irreducible subrepresentation of

ρk| · |
d−1
2 × ρk| · |

d−3
2 × · · · × ρk| · |−

d−1
2 .

In general, ψ can be decomposed into a direct sum

ψ = ψ1 ⊕ · · · ⊕ ψr,

where ψ1, . . . , ψr are irreducible representations of WF × SL2(C). Then we set

τψ = τψ1 × · · · × τψr ,

which is irreducible.

7.3. The case of SO2n+1 and Sp2n. We denote by SO2n+1 the special orthogonal group with
respect to a quadratic space over F of dimension 2n+1. We do not assume here that SO2n+1

is (quasi-)split over F . Namely, when F = R, the group SO2n+1(R) of R-points is isomorphic
to SO(p, q) for some (p, q) with p+ q = 2n+ 1.

An A-parameter for SO2n+1 is a symplectic representation

ψ : WF × SL2(C) → Sp2n(C)

such that ψ(WF ) is bounded. Similarly, an A-parameter for Sp2n is an orthogonal represen-
tation

ψ : WF × SL2(C) → SO2n+1(C)
such that ψ(WF ) is bounded. For G = SO2n+1 or G = Sp2n, we set Ψ(G) to be the set of
equivalence classes of A-parameters for G. We say that ψ ∈ Ψ(G) is tempered if ψ|{1} ×
SL2(C) is trivial. We denote by Φtemp(G) the subset of Ψ(G) consisting of tempered A-
parameters.

One can define the component group Aψ of ψ, and the central element zψ ∈ Aψ as in

the p-adic case. Then Sψ = π0(ZĜ(Im(ψ))/Z(Ĝ)WF ) is canonically isomorphic to Aψ/ ⟨zψ⟩.
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As explained in Theorem 0.1 (at least when G is split), for ψ ∈ Ψ(G), there is an A-packet
Πψ, which is a finite multiset over Irrunit(G(F )), together with a map

Πψ → Âψ, π 7→ ⟨·, π⟩ψ
enjoying certain (twisted and standard) endoscopic character identities such that ⟨zψ, π⟩ψ = 1

for any π ∈ Πψ. The purpose of Part 2 is to review a construction of A-packets when F = R
or F = C.

8. Complex case

In this section, we consider F = C. Let G = SO2n+1 or Sp2n over C. We identify G with
G(C). Fix a Borel subgroup B of G, and a maximal compact subgroup K of G. Define

• T = B ∩K, a maximal torus in K;
• H = ZG(T ), a Cartan subgroup of G;
• g = Lie(G), b = Lie(B), k0 = Lie(K), t0 = Lie(T ), h = Lie(H), the Lie algebras;
• W =W (g, h) the Weyl group;
• a0 =

√
−1t0, and A = exp(a0).

Then H = TA, and (B,H) is a Borel pair of G. Set Ĝ = Sp2n(C) when G = SO2n+1, and

Ĝ = SO2n+1(C) when G = Sp2n. Fix a Borel pair (B̂, Ĥ) of Ĝ. The Lie algebra of Ĝ is
denoted by ĝ.

8.1. Local Langalnds correspondence over C. Recall that an L-parameter is a contin-
uous homomorphism

ϕ : WC = C× → Ĝ

such that the image consists of semisimple elements. Let Φ(G) be the set of conjugacy classes
of L-parameters. Taking a conjugation if necessary, we may assume that the image of ϕ is

contained in Ĥ. Since ϕ is semisimple, we can decompose it into a direct sum

ϕ = | · |s1χk1 ⊕ · · · ⊕ | · |sNχkN

with N = 2n or N = 2n+ 1. We define λϕ, µϕ ∈ X∗(Ĥ)⊗Z C = X∗(H)⊗Z C = t∗ ∼= CN by

λϕ =

(
s1 +

k1
2
, . . . , sN +

kN
2

)
, µϕ =

(
s1 −

k1
2
, . . . , sN − kN

2

)
.

This satisfies that λϕ − µϕ = (k1, . . . , kN ) ∈ X∗(H). The map ϕ 7→ (λϕ, µϕ) gives a canonical
bijection

Φ(G) → {(λ, µ) ∈ h∗ × h∗ | λ− µ ∈ X∗(H)}/∆W.

For λ, µ ∈ h∗ such that λ − µ ∈ X∗(H), take ϕ : C× → Ĥ such that λ = λϕ and µ = µϕ.
Then ϕ can be regarded as a character of H. We set X(λ, µ) to be the K-finite part of
the normalized induction IndGB(ϕ). We call X(λ, µ) the principal series representation
with parameter (λ, µ). Define X(λ, µ) by the unique irreducible subquotient of X(λ, µ)
containing the K-representation of extremal weight λ − µ. We call X(λ, µ) the Langlands
subquotient of X(λ, µ). The W ×W -orbit of (λ, µ) is called the infinitesimal character
of X(λ, µ).
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Proposition 8.1 (Zhelobenko). The map (λ, µ) 7→ X(λ, µ) gives a bijection

{(λ, µ) ∈ h∗ × h∗ | λ− µ ∈ X∗(H)}/W → Irr(G),

where Irr(G) is the set of equivalence classes of irreducible (g,K)-modules.

Corollary 8.2 (Local Langlands correspondence over C). There exists a canonical bijection

Φ(G) → Irr(G), ϕ 7→ X(λϕ, µϕ).

8.2. Reduction. Next, we consider the A-parameters ψ ∈ Ψ(G). To construct the A-packets
Πψ, we consider a subset Ψgp(G) of Ψ(G). We define that an A-parameter ψ belongs to
Ψgp(G) if ψ is a sum of irreducible self-dual representations of the same type as ψ. In this
case, we say that ψ is of good parity.

Since WC = C× has no irreducible self-dual representations other than 1, any parameter
ψ ∈ Ψgp(G) is of the form

ψ =

t⊕
i=1

Sdi ,

where d1 ≥ · · · ≥ dt are positive even (resp. odd) integers such that d1 + · · · + dt = 2n
(resp. d1 + · · ·+ dt = 2n+ 1) when G = SO2n+1 (resp. when G = Sp2n).

In general, ψ ∈ Ψ(G) can be decomposed into a direct sum

ψ = ψ1 ⊕ ψ0 ⊕ ψ∨
1 ,

where ψ0 is an A-parameter of good parity for a classical group G0 of the same type as G,
and ψ1 is a sum of irreducible representations of WC × SL2(C) which are not the same type
as ψ. In this setting, the A-packet Πψ can be described by Πψ0 .

Theorem 8.3 ([MR17, Theorem 6.12]). Let ψ = ψ1 ⊕ ψ0 ⊕ ψ∨
1 be as above. Then for any

π0 ∈ Πψ0, the induced representation
τψ1 ⋊ π0

is irreducible, and does not depend on the choice of ψ1. The A-packet Πψ is given by

Πψ = {τψ1 ⋊ π0 | π0 ∈ Πψ0} .

8.3. The case of good parity. In this subsection, we assume that ψ ∈ Ψ(G) is of good
parity. In this case, we may regard ψ as an algebraic representation

ψ : SL2(C) → Ĝ.

By differential, we obtain a map dψ : sl2(C) → ĝ. Taking a conjugation if necessary, we may
assume that

dψ

(
1 0
0 −1

)
∈ ĥ ∼= h∗.

Its W -orbit is denoted by λψ ∈ h∗/W .

We set Uψ to be the Ĝ-orbit of

dψ

(
0 1
0 0

)
∈ ĝ,

which is a special nilpotent orbit. By the duality of Lusztig–Spaltenstein, we obtain a nilpotent
orbit Oψ ⊂ g from Uψ. Using the Killing form, we may identify g ∼= g∗, and we regard Oψ as
a nilpotent orbit in g∗.
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Associated to a representation π of G, one can define a subset in the nilpotent cone in g∗,
denoted by WF(π) and called the wavefront set. Since we focus on complex groups, when
π is irreducible, WF(π) is the closure of a nilpotent orbit.

Definition 8.4 (Barbasch–Vogan [BV85]). For ψ ∈ Ψgp(G), we define a packet ΠBV
ψ by the

set of irreducible Harish-Chandra modules π of G with infinitesimal character (λψ, λψ), and

with wavefront set WF(π) = Oψ.

Let Aψ be the component group of ψ. There is a quotient Aψ of Aψ, called Lusztig’s

quotient, such that the packet ΠBV
ψ is parametrized by the character group Âψ, i.e., there is

a bijection

Âψ ∋ η 7→ πη ∈ ΠBV
ψ .

Theorem 8.5 ([MR17, Theorem 10.1]). Let ψ ∈ Ψgp(G). Then we have Πψ = ΠBV
ψ . More-

over, the map Πψ ∋ π → ⟨·, π⟩ψ ∈ Âψ is given by πη 7→ η. In particular, this map is injective,

and the image of this map is Âψ.

Using a deep result of Barbasch [B89] for his classification of the unitary dual of G, one
can describe the A-packet ΠBV

ψ for ψ ∈ Ψgp(G) more precisely. In the rest of this section, we
explain this description.

8.4. Barbasch–Vogan packets: Type Bn. In this subsection, we set G = SO2n+1. Then

ψ ∈ Ψ(G) is of the form ψ = ⊕t′
i=1Sdi , where di is even for any i, and

∑t′

i=1 di = 2n. When
t′ is odd, we set t = t′. When t′ is even, we set dt = 0 and t = t′ + 1. We may assume that
d1 ≥ · · · ≥ dt.

We define a subalgebra m of g = so2n+1(C) by

m = gl

(
d2 + d3

2
,C
)
× · · · × gl

(
dt−1 + dt

2
,C
)
× sod1+1(C).

Set k = (t − 1)/2. For each j ∈ {1, . . . , k}, let F j be the irreducible finite dimensional
holomorphic representation of gl((d2j + d2j+1)/2,C) with infinitesimal character

λj1 =

(
d2j − 1

2
,
d2j − 3

2
, . . . ,−d2j+1 − 3

2
,−d2j+1 − 1

2

)
.

Namely, F j is the 1-dimensional representation given by

F j : gl

(
d2j + d2j+1

2
,C
)

∋ X 7→ d2j − d2j+1

4
tr(X) ∈ C.

When d2j > d2j+1, we define F̃ j by the irreducible finite dimensional holomorphic represen-
tation of gl((d2j + d2j+1)/2,C) with infinitesimal character

λj−1 =

(
d2j − 1

2
, . . . ,

d2j+1 + 3

2
,
d2j+1 − 1

2
, . . . ,−d2j+1 − 1

2
,−d2j+1 + 1

2

)
.

Namely, λj−1 is obtained from λj1 by the sign change of (d2j+1 + 1)/2.

For each j ∈ {1, . . . , k}, we define a representation F j
1 of gl((d2j + d2j+1)/2,C) by

F j
1(X) = F j(X)⊗ F j(X) for X ∈ gl((d2j + d2j+1)/2,C).
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In addition, when d2j > d2j+1, we define a representation F j
−1 of gl((d2j + d2j+1)/2,C) by

F j
−1(X) = F j(X)⊗ F̃ j(X) for X ∈ gl((d2j + d2j+1)/2,C).

Note that for ϵj ∈ {±1} such that ϵj = 1 if d2j = d2j+1, the representation F j
ϵj of the Lie

algebra gl((d2j + d2j+1)/2,C) can be lifted to an irreducible representation of the Lie group

GL((d2j + d2j+1)/2,C), which is denoted by the same notation F j
ϵj . For example,

F j
1 : GL((d2j + d2j+1)/2,C) ∋ g 7→

(
det(g)det(g)

) d2j−d2j+1
4 ∈ C×.

Let P = MN be a parabolic subgroup of G with Lie(M) = m. Then for ϵ = (ϵ1, . . . , ϵk) ∈
{±1}k such that ϵj = 1 if d2j = d2j+1, we define πϵ by the irreducible subquotient of the
parabolic induction

F1
ϵ1 × · · · × Fk

ϵk
⋊ 1SOd1+1(C)

containing its minimal K-type. If we set

λ =

(
λ11, . . . , λ

k
1,
d1 − 1

2
, . . . ,

1

2

)
,

µ =

(
λ1ϵ1 , . . . , λ

k
ϵk
,
d1 − 1

2
, . . . ,

1

2

)
,

then

πϵ ∼= X(λ, µ).

The Barbasch–Vogan packet ΠBV
ψ is given by

ΠBV
ψ =

{
πϵ

∣∣∣ ϵ ∈ {±1}k, ϵj = 1 if d2j = d2j+1

}
.

In particular, #ΠBV
ψ = 2m with m = #{j ∈ {1, . . . , k} | d2j ̸= d2j+1}.

8.5. Barbasch–Vogan packets: Type Cn. In this subsection, we set G = Sp2n. Then
ψ ∈ Ψ(G) is of the form ψ = ⊕t

i=1Sdi , where di is odd for any i, and
∑t

i=1 di = 2n + 1. In
particular, we note that t is odd. We may assume that d1 ≥ · · · ≥ dt.

We define a subalgebra m of g = sp2n(C) by

m = gl

(
d1 + d2

2
,C
)
× · · · × gl

(
dt−2 + dt−1

2
,C
)
× spdt−1(C).

Set k = (t − 1)/2. For each j ∈ {1, . . . , k}, let F j be the irreducible finite dimensional
holomorphic representation of gl((d2j−1 + d2j)/2,C) with infinitesimal character

λj1 =

(
d2j−1 − 1

2
,
d2j−1 − 3

2
, . . . ,−d2j − 3

2
,−d2j − 1

2

)
.

Namely, F j is the 1-dimensional representation given by

F j : gl

(
d2j−1 + d2j

2
,C
)

∋ X 7→ d2j−1 − d2j
4

tr(X) ∈ C.
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When d2j−1 > d2j , we define F̃ j by the irreducible finite dimensional holomorphic represen-
tation of gl((d2j−1 + d2j)/2,C) with infinitesimal character

λj−1 =

(
d2j−1 − 1

2
, . . . ,

d2j + 3

2
,
d2j − 1

2
, . . . ,−d2j − 1

2
,−d2j + 1

2

)
.

Namely, λj−1 is obtained from λj1 by the sign change of (d2j + 1)/2.

For each j ∈ {1, . . . , k}, we define a representation F j
1 of gl((d2j−1 + d2j)/2,C) by

F j
1(X) = F j(X)⊗ F j(X) for X ∈ gl((d2j−1 + d2j)/2,C).

In addition, when d2j−1 > d2j , we define a representation F j
−1 of gl((d2j−1 + d2j)/2,C) by

F j
−1(X) = F j(X)⊗ F̃ j(X) for X ∈ gl((d2j−1 + d2j)/2,C).

Note that for ϵj ∈ {±1} such that ϵj = 1 if d2j−1 = d2j , the representation F j
ϵj of the Lie

algebra gl((d2j−1 + d2j)/2,C) can be lifted an irreducible representation of the Lie group

GL((d2j−1 + d2j)/2,C), which is denoted by the same notation F j
ϵj . For example,

F j
1 : GL((d2j−1 + d2j)/2,C) ∋ g 7→

(
det(g)det(g)

) d2j−1−d2j
4 ∈ C×.

Let P = MN be a parabolic subgroup of G with Lie(M) = m. Then for ϵ = (ϵ1, . . . , ϵk) ∈
{±1}k such that ϵj = 1 if d2j−1 = d2j , we define πϵ by the irreducible subquotient of the
parabolic induction

F1
ϵ1 × · · · × Fk

ϵk
⋊ 1Spdt−1(C)

containing its minimal K-type. If we set

λ =

(
λ11, . . . , λ

k
1,
dt − 1

2
, . . . , 1

)
,

µ =

(
λ1ϵ1 , . . . , λ

k
ϵk
,
dt − 1

2
, . . . , 1

)
,

then

πϵ ∼= X(λ, µ).

The Barbasch–Vogan packet ΠBV
ψ is given by

ΠBV
ψ =

{
πϵ

∣∣∣ ϵ ∈ {±1}k, ϵj = 1 if d2j−1 = d2j

}
.

In particular, #ΠBV
ψ = 2m with m = #{j ∈ {1, . . . , k} | d2j−1 ̸= d2j}.

9. Real case

In this section, we consider F = R. Let G = SO2n+1 or Sp2n over R.
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9.1. Filtration of A-parameters. For ψ ∈ Ψ(G), we define a unitary representation ψd of
WC = C× by

ψd(z) = ψ

(
z,

(
(z/z)

1
2 0

0 (z/z)−
1
2

))
for z ∈ C×.

Definition 9.1. We define a chain

Ψ(G) ⊃ Ψgp(G) ⊃ Ψvreg(G) ⊃ Ψunip(G)

as follows:

(1) ψ ∈ Ψgp(G) if ψ is a sum of irreducible self-dual representations of the same type as
ψ. In this case, we say that ψ is of good parity.

(2) ψ ∈ Ψvreg(G) if ψ is of good parity and ψ is of the form

ψ =

(
r⊕
i=1

ρki ⊠ Sdi

)
⊕

⊕
j∈J

sgnδj ⊠ Sd′j


such that ki − ki+1 ≥ di + di+1 for 1 ≤ i < r and kr ≥ dr +maxj∈J d

′
j. In this case,

we say that ψ is very regular.
(3) ψ ∈ Ψunip(G) if ψ is of good parity and ψ|WC is trivial, i.e., ψ is very regular with

r = 0. In this case, we say that ψ is unipotent.

We also define ΨAJ(G) ⊂ Ψvreg(G) so that:

(4) ψ ∈ ΨAJ(G) if ψ is of good parity and ψd is multiplicity-free, i.e., ψ is very regular
with #J ≤ 1. In this case, we say that ψ is Adams–Johnson.

For ψ ∈ ΨAJ(G), Adams–Johnson [AJ87] constructed a packet ΠAJ
ψ using derived functor

modules Aq(λ) for λ in the good range. It is called an Adams–Johnson packet. Later,
Arancibia–Mœglin–Renard [AMR] showed that Πψ = ΠAJ

ψ , i.e., Arthur’s packets are Adams–

Johnson packets when ψ ∈ ΨAJ(G).
On the other hand, Mœglin [Mœ17] constructed a packet Πψ for ψ ∈ Ψunip(G) using theta

liftings. It is called a unipotent packet. After these works, Mœglin–Renard [MRa] con-
structed a packet Πψ for ψ ∈ Ψvreg(G) from unipotent packets using cohomological inductions.
They showed that this A-packet is multiplicity-free.

To extend the A-packet to ψ ∈ Ψgp(G), Mœglin–Renard [MRb] used the translation prin-
ciple. However, since this translation must be used while crossing the walls, the translation
functor is difficult to understand, and the multiplicity-free result cannot easily be deduced
from the case where ψ is very regular.

Finally, for general ψ, the packet Πψ is constructed by irreducible parabolic inductions
([MRa, Proposition 4.3, Théorème 4.4]). In particular, the multiplicity-free result for general
ψ is reduced to the case where ψ is of good parity (([MRa, Corollaire 4.5])).

In the next subsection, we explain the construction of Πψ only for ψ ∈ ΨAJ(G). For other
cases, see the relevant papers.

9.2. Adams–Johnson packets. Note that a representation ψ ofWR×SL2(C) is in ΨAJ(SO2n+1)
if and only if

ψ =

(
r⊕
i=1

ρki ⊠ Sdi

)
⊕ sgnδ ⊠ Sd0 ,
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where

• ki > 0 and di > 0 for 1 ≤ i ≤ r;
• ki + di ≡ 0 mod 2 for 1 ≤ i ≤ r and d0 ≡ 0 mod 2;
• 2

∑r
i=1 di + d0 = 2n;

• δ ∈ {0, 1};
• ki − ki+1 ≥ di + di+1 for 1 ≤ i < r and kr ≥ dr + d0,

and is in ΨAJ(Sp2n) if and only if

ψ =

(
r⊕
i=1

ρki ⊠ Sdi

)
⊕ sgnδ ⊠ Sd0 ,

where

• ki > 0 and di > 0 for 1 ≤ i ≤ r;
• ki + di ≡ 1 mod 2 for 1 ≤ i ≤ r and d0 ≡ 1 mod 2;
• 2

∑r
i=1 di + d0 = 2n+ 1;

• δ ∈ {0, 1} such that δ ≡
∑r

i=1 di mod 2;
• ki − ki+1 ≥ di + di+1 for 1 ≤ i < r, and kr ≥ dr + d0.

In this subsection, we fix such ψ.
We use the following coordinates for SO(p, q) and Sp2n(R):

SO(p, q) =

{
g ∈ SLp+q(R)

∣∣∣∣ tg(1p 0
0 −1q

)
g =

(
1p 0
0 −1q

)}
,

Sp2n(R) =
{
g ∈ GL2n(R)

∣∣∣∣ tg( 0 1n
−1n 0

)
g =

(
0 1n

−1n 0

)}
.

We choose a maximal torus T of G defined over R such that T (R) is compact as follows.
When G(R) = SO(p, q), setting

rθ =

(
cos θ sin θ
− sin θ cos θ

)
,

the group T (R) consists of the matrices of the form



rθ1
. . .

rθ(p−1)/2

1
rθ′1

. . .

rθ′
q/2


or



rθ1
. . .

rθp/2
rθ′1

. . .

rθ′
(q−1)/2

1


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for θi, θ
′
j ∈ R according to p ̸≡ q ≡ 0 mod 2 or p ̸≡ q ≡ 1 mod 2. When G(R) = Sp2n(R), we

set

T (R) =





a1 b1
. . .

. . .

an bn
−b1 a1

. . .
. . .

−bn an



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ai,bi∈R,
a2i+b2i=1


.

Let θ be the Cartan involution given by

θ : g 7→ t0gt
−1
0

with

t0 =


(
1p 0
0 −1q

)
if G(R) = SO(p, q),(

0 1n
−1n 0

)
if G(R) = Sp2n(R).

Note that t0 ∈ T (R) such that t20 ∈ Z(G(R)). Take a θ-stable Borel subgroup B of G
containing T .

Let Σψ be the set of matrices p1 q1
...

...
pr qr


such that

• pi and qi are non-negative integers for i = 1, . . . , r;
• pi + qi = di for i = 1, . . . , r;
• 2

∑r
i=1 pi ≤ p and 2

∑r
i=1 qi ≤ q if G(R) = SO(p, q) with p+ q = 2n+ 1.

Note that there exists a canonical bijection

Σψ ∼=


Sd0/2 ×

(
r∏
i=1

Sdi

)\
Sn

/
S[p/2] ×S[q/2] if G(R) = SO(p, q),

r∏
i=1

P2(di) if G(R) = Sp2n(R),

where [x] denotes the greatest integer which is not larger than x, and P2(di) is the set of pairs
of integers (pi, qi) with pi, qi ≥ 0 such that pi + qi = di.

For w = (pi qi)i ∈ Σψ, we take a θ-stable parabolic subgroup Qw = LwUw of G containing
B such that the Levi Lw is defined over R, and its R-points Lw(R) is given as follows: Define



MŒGLIN’S EXPLICIT CONSTRUCTION OF LOCAL A-PACKETS 47

ι : Mp,q(C) → M2p,2q(R) by

ι


x1,1 . . . x1,q

...
. . .

...
xp,1 . . . xp,q

+
√
−1

y1,1 . . . y1,q
...

. . .
...

yp,1 . . . yp,q


 =


x1,1 y1,1 . . . x1,q y1,q
−y1,1 x1,1 . . . −y1,q x1,q

...
...

. . .
...

...
xp,1 yp,1 . . . xp,q yp,q
−yp,1 xp,1 . . . −yp,q xp,q


for xi,j , yi,j ∈ R. We put

η =


1

−1
. . .

1
−1

 ∈ O(2q).

Note that ηι(d)η−1 = ι(d) for d ∈ Mq(C). When G(R) = SO(p, q), setting p0 = p− 2
∑r

i=1 pi
and q0 = q − 2

∑r
i=1 qi so that p0 + q0 = d0 + 1, the group Lw(R) consists of the matrices of

the form

h =



ι(a1) ι(b1)η
−1

. . .
. . .

ι(ar) ι(br)η
−1

A B
ηι(c1) ηι(d1)η

−1

. . .
. . .

ηι(cr) ηι(dr)η
−1

C D


for ai ∈ Mpi,pi(C), bi ∈ Mpi,qi(C), ci ∈ Mqi,pi(C), di ∈ Mqi,qi(C) such that

(
ai bi
ci di

)
∈ U(pi, qi)

for i = 1, . . . , r, and

(
A B
C D

)
∈ SO(p0, q0). When G(R) = Sp2n(R), the group Lw(R) consists

of the matrices of the form

h =



a1 b1 a′1 −b′1
c1 d1 c′1 −d′1

. . .
. . .

ar br a′r −b′r
cr dr c′r −d′r

A B
−a′1 −b′1 a1 −b1
c′1 d′1 −c1 d1

. . .
. . .

−a′r −b′r ar −br
c′r d′r −cr dr

C D



,
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where

(
ai bi
ci di

)
+
√
−1

(
a′i b′i
c′i d′i

)
∈ U(pi, qi) for i = 1, . . . , r, and

(
A B
C D

)
∈ Spd0−1(R). Note

that Lw contains T , and

Lw(R) ∼= U(p1, q1)× · · · ×U(pr, qr)×

{
SO(p0, q0) if G(R) = SO(p, q),

Spd0−1(C) if G(R) = Sp2n(R).

Set

λj =

(
kj + dj − 1

2
,
kj + dj − 3

2
, . . .

kj − dj + 1

2

)
∈
(
1

2
Z
)dj

and

λψ =


(
λ1, . . . , λr,

d0 − 1

2
,
d0 − 3

2
, . . . ,

1

2

)
if G = SO2n+1,(

λ1, . . . , λr,
d0 − 1

2
,
d0 − 3

2
, . . . , 1

)
if G = Sp2n.

Let ρ be the half sum of positive roots of T with respect to B, so that

ρ =


(
n− 1

2
, n− 3

2
, . . . ,

1

2

)
if G = SO2n+1,

(n, n− 1, . . . , 1) if G = Sp2n.

Fix w = (pi qi)i ∈ Σψ. Define a unitary character χλψ : Lw(R) → C× as follows: If h ∈ Lw(R)
is of the above form, we set

χλψ(h) =


spinδ

(
A B
C D

) r∏
j=1

det

(
aj bj
cj dj

)λj1−n+ 1
2
+(d1+···+dj−1)

if G(R) = SO(p, q),

r∏
j=1

det

((
aj bj
cj dj

)
+
√
−1

(
a′j b′j
c′j d′j

))λj1−n+(d1+···+dj−1)

if G(R) = Sp2n(R),

where spin: SO(p0, q0) → {±1} is the spinor character. When p0q0 = 0, we interpret spin to
be the trivial character. The restriction of χλψ to T (R) is equal to λψ − ρ ∈ X∗(T ) ∼= Zn.

For each w ∈ Σψ, we define

πw = AQw(χλψ)

to be the derived functor modules. Since the character χλψ is in the good range, i.e.,
Re ⟨λψ, α⟩ > 0 for any simple root α of T appearing Lie(Uw), it is nonzero and irreducible
with infinitesimal character λψ. Moreover, πw ̸∼= πw′ if w ̸= w′.

Definition 9.2 (Adams–Johnson [AJ87]). For ψ ∈ ΨAJ(Gn), we define a packet ΠAJ
ψ by

ΠAJ
ψ = {πw | w ∈ Σψ} .

Arancibia–Mœglin–Renard identified Adams–Johnson packets with Arthur’s one.

Theorem 9.3 ([AMR]). For ψ ∈ ΨAJ(G), we have

Πψ = ΠAJ
ψ .
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The map Πψ ∋ π 7→ ⟨·, π⟩ψ ∈ Âψ is determined by

⟨zψ, πw⟩ψ =

{
(−1)[

p−q
2

] if G(R) = SO(p, q),

1 if G(R) = Sp2n(R)
and

⟨αi, πw⟩ψ = (−1)
pi−qi−δi

2

for w = (pi qi)i ∈ Σψ and αi ∈ Aψ associated to ρki ⊠ Sdi, where

δi =

{
0 if di ≡ 0 mod 2,

(−1)
∑i−1
j=1 dj if di ≡ 1 mod 2.

Remark 9.4. We remark that∑
p+q=2n+1
p is odd

#

(
S d0

2

×

(
r∏
i=1

Sdi

)
\Sn/S p−1

2
×S q

2

)
=

(
d0
2

+ 1

) r∏
i=1

(di + 1),

#

r∏
i=1

P2(di) =

r∏
i=1

(di + 1).

One might regard these computations as an analogue to Lemma 4.2. Hence A-parameters with
DDR may be regarded as a p-adic analogue of “Adams–Johnson” parameters.

As an example, we consider ψ = ϕ ∈ ΨAJ(G)∩Φ(G), i.e., the case where d1 = · · · = dr = 1
and d0 ∈ {0, 1} so that r = n. In this case, for any w = (pi qi)i ∈ Σψ, we have (pi, qi) ∈
{(1, 0), (0, 1)}. Moreover, the Levi Lw is just the fixed maximal torus T . The irreducible
representation πw is the discrete series representation of Harish-Chandra parameter{

(λi1 , . . . , λip0 ;λj1 , . . . , λjq0 ) if G(R) = SO(p, q),

((p1 − q1)λ1, . . . , (pn − qn)λn) if G(R) = Sp2n(R),

where we write λψ = (λ1, . . . , λn) with λ1 ≥ · · · ≥ λn > 0, and we define i1 < · · · < ip0
and j1 < · · · < jq0 so that {i1, . . . , ip0} = {i ∈ {1, . . . , n} | pi = 1} and {j1, . . . , jq0} = {j ∈
{1, . . . , n} | qj = 1}. Hence p0 = [p/2] and q0 = [q/2]. The pairing ⟨·, πw⟩ϕ is given by

⟨αi, πw⟩ϕ = (−1)i−1(pi − qi)

for i = 1, . . . , n.
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