MEGLIN’S EXPLICIT CONSTRUCTION OF LOCAL A-PACKETS

HIRAKU ATOBE

ABSTRACT. This note is a proceeding of the workshop “On the Langlands Program: En-
doscopy and Beyond” held in National University of Singapore from 17 Dec. 2018 to 18
Jan. 2019. The purpose is to explain Meeglin’s explicit constructions of A-packets both when
the base field F' is p-adic and when F' is archimedean.

INTRODUCTION

To give a classification of discrete spectrum of automorphic forms, the notion of A-parameters
is introduced by Arthur in 1980’s. The local A-parameters are thus the “local factors” of the
global classification. In this article, we focus on the local situation.

Let F be a local field of characteristic zero, and WD F be the Weil-Deligne group of F, i.e.,
Wr x SLe(C) if F' is non-archimedean,

WOz = {WF if F'is archimedean,

where Wr is the Weil group of F'. For a quasi-split connected reductive algebraic group G
over F', we denote by G the complex dual group of G. A homomorphism ¢: WD g x SLa(C) —
G x Wg is an A-parameter for G if

(1) ¥ commutes the two projections WD g x SLo(C) — Wr and G x Wg — Wg;
(2) ¥ (Wp) consists of semisimple elements;

(3) ¥|Wp is continuous;

(4) ¢ (Wp) projects onto a relatively compact subset in @;

(5) 1|SLa(C) is algebraic for each SLo(C) C WDp x SLa(C).

Two A-parameters are said to be equivalent if they are conjugate by an element in G. We
define ¥ (@) to be the set of equivalence classes of A-parameters for G. We say that ¢ € ¥(G)
is tempered if the restriction of ¢ to the last SLy(C) is trivial, i.e., ¥ factors through the
projection WDp x SLa(C) - WDp. We denote by ®iemp(G) the subset of ¥(G) consisting
of tempered A-parameters. Associated with ¢» € ¥(G), we define the component group by
Sy = m(Zg(Im(v))/Z (@)WF ), which is a finite group. The set of equivalence classes of
irreducible representations of Sy, is denoted by Irr(Sy).

Let Irr(G(F)) be the set of equivalence classes of irreducible admissible representations of
G(F'). We denote by Irrunit(G(F)) (resp. Irrtemp(G(F'))) the subset of Irr(G(F')) consisting
of equivalence classes of unitary (resp. tempered) representations of G(F'). In 2013, Arthur
[Ar13] has completed the magnificent work on the classification of automorphic representations
of symplectic and special orthogonal groups. The local main theorem in this work is as follows.

Theorem 0.1 ([Arl3, Theorem 2.2.1]). Let G be split SOgp,+1 07 Sps,, over F.
1
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(1) For each v € W(G), there is a finite multiset 11y, over Irrynit(G(F')) with a map
Iy = Irr(Sy), 7 (- m)y,

enjoying certain (twisted and standard) endoscopic character identities. We call 1Ly,
the A-packet for G(F') associated with 1.

(2) When ¢ = ¢ € Piemp(G), the A-packet 11y is in fact a subset of Irriemp(G(F')).
Moreover the map Iy > 7 (-, m), € Irr(Sy) is injective, which is bijective when F
is non-archimedean. In addition, Ily NIy =0 for ¢ # ¢', and

Drienp (G(F)) = || .
$EDremp (G)

Theorem 0.1 (2) says that ¢ € ®iemp(G) together with 1 € Irr(Sy) classifies Irriemp (G (F)).
Let ®(G) be the set of equivalence classes of L-parameters ¢ for G, i.e., homomorphisms

¢: WDp — G x Wg such that

(1) ¥ commutes the two projections WD — Wg and G x Wr — Wg;

(2) ¥(Wp) consists of semisimple elements;

(3) ¥|Wp is continuous;

(4) ¢|SLo(C) is algebraic if F is non-archimedean.

Using the Langlands classification, Theorem 0.1 (2) can be extended to ¢ € ®(G), i.e., there
exists a finite subset 1y of Irr(G(F)) with an injective map Il > m — (-, m) 4 € Irr(Sp), which
is bijective when F' is non-archimedean, such that

Ir(G(F) = || M
PeP(G)
We call II, the L-packet for G(F) associated with ¢. Therefore, L-packets I, classify
Irr(G(F)).

On the other hands, A-packets IL, associated with 1) € ¥(G) are the “local components of
global A-packets”, and they do not classify Irryni (G(F')). For example,

e the map Iy, > 7 — (-, ), € Irr(Sy) is not injective nor surjective in general;
e there are 1,9’ € U(G) such that I, NIIy # 0 but ¢ 2 ¢';
e there exists ™ € Irryni (G(F')) such that 7 ¢ IL, for any ¢ € ¥(G).

Moreover, the A-packet IL; is determined by endoscopic character identities, so that it is
difficult to describe I, explicitly. In particular, it is an important problem to determine
whether II; is multiplicity-free, i.e., a subset of Irrynit(G(F')), or not.

Before Arthur, there are several works for “constructions of A-packets”.

e Barbasch—Vogan (1985) [BV85] constructed a packet 11, of unipotent representations
when F' = C and v is “unipotent” (of good parity). This packet is multiplicity-free. It
was proven by Moeglin—Renard [MR17] that this packet coincides with Arthur’s one.

e Adams—Johnson (1987) [AJ87] constructed a packet I, of cohomological representa-
tions when F = R and v is so-called “Adams—Johnson”. It was proven by Arancibia—
Moeglin-Renard [AMR] that this packet coincides with Arthur’s one.

e Moeglin [Mcel7] and Moeeglin-Renard [MRa, MRb] constructed Arthur’s packet IIy,
generally when F' = R by using the Howe duality correspondence, cohomological
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inductions, the translation principle, and irreducible parabolic inductions. However,
since the translation functor is difficult, they have not yet obtained the multiplicity-
free result.

e Using microlocal analysis of certain stratified complex varieties, Adams—Barbasch—
Vogan (1992) [ABV92] constructed a packet HﬁBV for general ¢ when F' = R. This
packet is multiplicity-free, and coincides with Adams-Johnson packet IL, when 1 is
“Adams—Johnson”. However, it is an open problem that whether HQBV is equal to
Arthur’s packet 1L.

e Using Jacquet modules, Moeglin constructed the A-packets II,, when F' is p-adic (up to
constructions of supercuspidal representations) in her consecutive works (e.g., [Mce06,
Moe09a/, etc.). In particular, she showed in [Mcell] that the A-packets are multiplicity-
free. For a detailed why the A-packets constructed by Meeglin agree with Arthur’s
ones, see also Xu’s paper [X17b] in addition to the original papers of Moeglin.

e In a recent work [CFMMX], using a vanishing cycles functor of perverse sheaves on
certain stratified complex varieties, Cunningham—Fiori-Mracek—Moussaoui-Xu con-
structed an “ABV packet” HszV when F' is p-adic. This is a p-adic analogue of the
work of Adams—Barbasch—Vogan [ABV92]. This packet is multiplicity-free. The main
conjecture in [CFMMX] is that HQBV would coincide with Arthur’s packet IL.

The purpose of this note is to explain Meeglin’s explicit constructions of A-packets both
when F' is p-adic and when F is archimedean. We will explain only the construction of the
packet 11, for G = SOg,, 11 or G = Spy,,, but will not treat the proofs, the map 7 <',7T>¢,
or other groups. For these topics, we refer to relevant references.

In Part 1, we will explain the p-adic case along with a series of papers of Xu [X17a, X17b, X].
In §1, we fix notations for induced representations and Jacquet modules, and recall some basic
results. For Moeglin’s constructions of A-packets, we follow a filtration of A-parameters as
follows:

(elementary) C (having a DDR) C (of good parity) C (general).

These notions are defined in §2. In §3, we treat the case where the A-parameter 1 is elemen-
tary, together with a description of L-parameters for supercuspidal representations, which is
one of main results in [X17a]. The case where 1) has a discrete diagonal restriction (DDR)
is treated in §4. In particular, we determine the cardinality of the A-packet Il in this case.
In §5, we treat the case where 1 is of good parity and the general case. In the general case,
the A-packets are constructed by irreducible parabolic inductions. As a consequence, one can
check that II; is multiplicity-free, which is the main conclusion in [X17b]. Unlike the case
of DDR, in the case of good parity, we will construct representations which are irreducible
or zero. In §6, we give an algorithm for the non-vanishing criterion of these representations,
which was established in [X].

In Part 2, we will explain the archimedean case. Both in the cases where F' = R and F' = C,
the general packets II,; are constructed by irreducible parabolic inductions from packets for
parameters of good parity as in the p-adic case. In §8, we explain the complex case along
with Moeeglin-Renard [MR17]. For v of good parity, the packet II,;, = Hgv is constructed by
assigning infinitesimal characters and wavefront sets. We also give a more explicit description
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of Hg’v by Barbasch [B89]. In §9, we explain the real case. According to Mceglin [Mcel7] and
Meeglin—Renard [MRa, MRb], one should follow a filtration of A-parameters as follows:

(unipotent) C (very regular) C (of good parity) C (general).

The packets are constructed by using the theta correspondence, cohomological inductions, the
translation principle, and irreducible parabolic inductions. However, since these techniques
seem not to be so explicit, we only explain the case where 1 is “Adams—Johnson”, which is a
spacial case of very regular parameters. In this case, the packet Il is constructed by derived
functor modules Aq(A\) with X in the good range.

Acknowledgments. The author is grateful to Wee Teck Gan for inviting him to the work-
shop “On the Langlands Program: Endoscopy and Beyond”, and for giving him the opportu-
nity for learning this topic. He also thank IMS-NUS for the hospitality.
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Part 1. The non-archimedean case

In Part 1, we explain the theory of A-packets in the non-archimedean case. Let F' be a
non-archimedean local field of characteristic zero. We denote by Wr the Weil group of F.
The norm map |-|: Wg — R* is normalized so that |Frob| = ¢~!, where Frob € W is a fixed
(geometric) Frobenius element, and ¢ = gp is the cardinality of the residual field of F'.

Each irreducible representation p of Wr of dimension d is identified with the irreducible
supercuspidal representation of GL4(F') via the local Langlands correspondence for GL4. For
each integer d, the unique irreducible algebraic representation of SLa(C) of dimension d is
denoted by S;. We denote by S, X S, the outer tensor product, which is an irreducible
representation of SLy(C) x SLa(C), and by S, ® S, the inner tensor product, which is a
representation of SLy(C) such that

Sa ® Sp = Satp-1D Satbp-3 D+ D Sja—p|+1-

For a representation IT of some group, we write s.s.(II) for the semisimplification of II.

1. INDUCED REPRESENTATIONS AND JACQUET MODULES

In this section, we recall some results on induced representations and Jacquet modules.

1.1. The case of GLy. Let P = M N be a standard parabolic subgroup of GLy(F), i.e.,
P contains the Borel subgroup consisting of upper half triangular matrices. Then the Levi
subgroup M is isomorphic to GLg, (F') X --- x GLg, (F') with dy + - -+ 4+ d, = N. For smooth
representations 71,...,7, of GLg, (F),...,GLg, (F), respectively, we denote the normalized
induced representation by

TL X oo X Ty = IndgLN(F)(ﬁ XK. -X7).

A segment is a symbol [z,y], where z,y € R with x —y € Z. We identify [z, y| with the
set {xz,z—1,...,y}ifx >y, and {z,x + 1,...,y} if z <y, so that #[x,y] = |xr —y| + 1. Let
p be an irreducible (unitary) supercuspidal representation of GL4(F'). Then the normalized
induced representation

pl-["x o xp|- |
of GLg(jz—y|+1)(F) has a unique irreducible subrepresentation, which is denoted by
(prz,...,y).

If x > y, this is called a Steinberg representation and is denoted by

-1 St(p,w —y + 1),
which is a discrete series representation of GLgz—y41)(F). When p = 1gp, (r), we write
Sty = St(1gr,(r),d) = ((d—1)/2,(d = 3)/2,...,—(d = 1)/2). If z <y, this is called a Speh
representation and is denoted by

aty

|72 Sp(p,y —x+1).
For example, if p = p is a unitary character (i.e., d = 1) and = < y, then (u;x,...,y) =
pldety, s y1)@+¥)/2 is a character of GL,_,41(F), where we denote by det), the determinant
character of GLy(F).

Definition 1.1. Let [x,y] and [2/,y'] be two segments.
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(1) When (x —y)(x —y') > 0, we say that [z,y] and [2',y'] are linked if [x,y] ¢ [2',y'],
[, Y] ¢ [x,y] as sets, and [z,y] U [z,y'] is also a segment.

(2) When (z—y)(2' —y') <0, we say that [z,y] and [z, y] are linked if [y, z] and [/, V]
are linked, and x,y & [2',y'] and 2',y & [x,y].

The linked-ness gives an irreducibility criterion for induced representations.

Theorem 1.2 (Zelevinsky [Z80, Theorems 4.2, 9.7], Moeglin—Waldspurger [MW89]). Let [x, y]
and [x',y'] be segments, and let p and p' be irreducible unitary supercuspidal representations
of GLy(F') and GLy (F), respectively. Then the induced representation

(pra, ..oy x (phsa!, .y

is irreducible unless [x,y] are [/, Y] are linked, and p = p'.

For a partition (k1, ..., k) of k, we denote by Jac, . x,) the normalized Jacquet functor of
representations of GLy(F') with respect to the standard maximal parabolic subgroup P = M N
with M = GLy, (F') x - -+ X GLg, (F'). The Jacquet module of (p;x,...,y) with respect to a
maximal parabolic subgroup is computed by Zelevinsky.

Proposition 1.3 ([Z80, Propositions 3.4, 9.5]). Let p be an irreducible (unitary) supercus-
pidal representation of GL4(F). Suppose that x # y and set k = d(|lz —y| + 1). Then
Jac(i, k) (P37, .-, y)) = 0 unless ky =0 mod d. If k1 = dm with 1 <m < |z — y|, we have

Jacy k) ((pi 2, y) = (pi@, .2 —e(m — 1)) K (p;z —em,....y),
where € € {£1} is given so that e(x —y) > 0.

Let Ry be the Grothendieck group of the category of smooth representations of GLy (F') of
finite length. By the semisimplification, we identify the objects in this category with elements
in Ry. Equivalence classes of irreducible smooth representations of GLy (F') form a Z-basis
of Ry. Set R = ®n>0Rn. The induction functor gives a product

m:RAIR =R, 11 Ty 8.8.(T1 X T2).
This product makes R an associative commutative ring. On the other hand, the Jacquet
functor gives a coproduct
m :R—->RIR
which is defined by the Z-linear extension of

N
Irr(GLy(F)) 5 7 +— ZS-SJaC(k,ka) (7).
k=0
Then m and m* make R a graded Hopf algebra, i.e., m*: R - R®R is a ring homomorphism.

1.2. The cases of SO,+; and Sp,,. Next, we set G, to be split SOg,4+1 or Spy,, i.e.,
Gy, is the split algebraic group of type B, or C,. Fix a Borel subgroup of G,(F). Let
P = MN be a standard parabolic subgroup of G, (F'). Then the Levi part M is of the form
GLg, (F) x - -+ x GLg,. (F) x Gpo(F) with dy + - - - + d, + no = n. For a smooth representation
TR K7 X7 of M, we denote the normalized induced representation by

T ><-~-><TT>47ro:IndIGD"(F)(ﬁ@---@Tr@WO)-
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On the other hand, for a smooth representation 7 of G,,(F’), we denote the normalized Jacquet
module with respect to P by

Jacp (),
and its semisimplification by s.s.Jacp(m). When r = 1, i.e., M = GL4(F) x G,,—gq(F) and
s.s.Jacp(m) = @Ti X 7,
el

for a fixed irreducible supercuspidal unitary representation p of GL4(F') and for a real number

T, we set
Jac,|.j=(m) = @ .
el
Ti=pl-|”
This is a representation of G,,_4(F). Also, for p1,...,p, and for x1,...,2, € R, we set

Jacy, o1, p, | for (T) = Jac,, | or © -+ 0 Jacy, |1 (7).

Now suppose that an irreducible representation 7 of G, (F) is a subrepresentation (resp. a
quotient) of an induced representation 7 x 7y with irreducible representation 7 X gy of M =
GL4(F) X Gp—q(F'). Then (using the contragredient and the MVW functors if necessary), the
Frobenius reciprocity implies that s.s.Jacp(m) contains 7 X mg (resp. 7 X 7). In particular:

Lemma 1.4. Let 7 @ mg be an irreducible representation of M = GL4(F) X Gp_q(F). If
s.s.Jacp (T xmg) contains T™®my (resp. TXmy ) with multiplicity one, then the induced represen-
tation T X Ty has a unique irreducible subrepresentation (resp. a unique irreducible quotient).

We will use this technique (or its variant) to construct A-packets.
Let

R(G) = D R(G)
n>0

be the direct sum of the Grothendieck groups R(G),) of the categories of smooth representa-
tions of G, (F) of finite length. The parabolic induction defines a module structure

x: R®R(G) = R(G),
and the Jacquet functor defines a comodule structure

u:R(G) - R®R(G)
by

n
Irr(Gn(F)) > m— Zs.s.JacPd(w),
d=0

where Py = MyNy is the standard parabolic subgroup of G, (F') with the Levi factor My =
GLd(F) X Gn_d(F).

The contragredient functor 7 — 7 defines an automorphism ~: R — R in a natural way.
Let s: R® R — R ® R be the homomorphism defined by Y. 7, @ 7/ — Y. 7/ ® 7.

One can compute the Jacquet modules of induced representations by the following formula.
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Theorem 1.5 (Tadi¢ [T95]). Consider the composition
M*=(m®id)o(~®@m* )osom™ R > RIR.
Then for a standard parabolic subgroup P = MN of Gy (F) with M = GL4(F) x Gp—q(F),
and for an admissible representation T X of M, we have
(7 0 w) = M () 0 ().
1.3. Aubert involution. For 7 € R(G,,), we define D¢, (7) € R(Gy) by
De,(m)= Y (~)3mAvmd§ ") (Jacp (n)) € R(Gn),
P=MN

where P = M N runs over all standard parabolic subgroups of G, (F'), and Ay is the maximal
split central torus of M.
Theorem 1.6 ([Au95]). The operator D¢, on R(G,) has the following properties:

(1) Dg, 0 ~=~oDg,;

(2) Dg =id.

(3) When 1; = (pi; iy .., yi) fori=1,...,r,

Dg, (11 % -+« X T X mp) = 71 X -+ X 7 ¥ Dg,, (70),
where T; = (pPi; Yiy - o, T4).

(4) If P = MN with M = GLy4(F) X Gp—q(F), and if 7 € R(G,) satisfies
s.s.Jacp(m) = Zn X 7o,

then
s.s.Jacp(Dg,, (7)) = Zﬂ X Dg,,, (o).

In particular,
DGno (Jacsz(ﬁ)) = Jacg). |-« (Dg,, (7).
(5) If m is an irreducible representation of Gy (F), then there exists a sign € € {£1} such

that ® = € - D¢, () is also an irreducible representation of G, (F).
(6) If w is an irreducible supercuspidal representation, then T = 7.

For an irreducible representation 7 of G, (F'), we call the irreducible representation 7 the
Aubert involution of .
2. A-PARAMETERS

In this section, we review Arthur’s theory for A-packets.

2.1. The case of GLy. Fix a (geometric) Frobenius element Frob € Wpr. A homomorphism
Y Wr x SLa(C) x SLy(C) — GLy(C)
is called a representation of W x SLy(C) x SLy(C) if
e )(Frob) € GLN(C) is semisimple;

e )|Wr is smooth, i.e., has an open kernel;
e )|SL2(C) x SLa(C) is algebraic.
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An A-parameter for GLy (F') is a representation 1: Wg x SLa(C) x SL2(C) — GLx(C) such
that ¢(Wp) is bounded. Two A-parameters are said to be equivalent if they are equivalent
as representations.

For an A-parameter ¢ for GLy(F'), one can associate an irreducible unitary representation
7y of GLy(F') as follows: When %) is irreducible, it is decomposed into a tensor product

P =pK S, X Sy,

where p is an irreducible bounded representation of Wr. Then we set 7, to be the unique
irreducible subrepresentation Sp(St(p,a),b) of

‘a—l a—1 | ’7%X y ‘a—l a—1 | ’%
p7 2 )t 2 p7 2 PR 2 .

If b = 1, it is the Steinberg representation St(p,a) = (p;(a —1)/2,...,—(a —1)/2), and if
a = 1, it is the Speh representation Sp(p,b) = (p;—(b—1)/2,...,(b—1)/2). It is easy to
check that 7, is also the unique irreducible subrepresentation of

_b_l b_]. ‘ ‘a;lx % _b_]. b_l ’ ‘7(1;1
p7 2 LA 2 p? 2 LA 2 *

In general, ¢ can be decomposed into a direct sum

Y=11® - DYy,
where 11, ..., 1, are irreducible representations of Wr x SLa(C) x SLy(C). We set

Tw:Twlxn'XTwr,

which is irreducible by Theorem 1.2.

2.2. The case of SOy,,+1 and Sp,,,. An A-parameter for SOy, is a symplectic represen-
tation

T/J: WF X SL2(C) X SLQ(C) — San((C)

of Wg x SLa(C) x SL2(C) such that (Wp) is bounded. Similarly, an A-parameter for Sp,,
is an orthogonal representation

w: WF X SLQ(C) X SLQ((C) — SOQn+1(C)

of Wg x SLy(C) x SLg(C) such that ¢)(Wp) is bounded. For G,, = SOgy,+1 or G,, = Sps,,, we
set U(G),) to be the set of equivalence classes of A-parameters for G,. We say that ¢ € U(G),)
is tempered if ¢|{1} x {12} x SL2(C) is trivial. We denote by ®temp(Gr) the subset of ¥(Gy,)
consisting of tempered A-parameters.

For ¢ € W(SO2p41) (resp. ¢ € ¥(Spy,,)), we can decompose

¢=m1¢1+--'+mr¢r+¢'+¢lv,

where 91, ..., 1, are distinct irreducible symplectic (resp. orthogonal) representations of Wg x
SLy(C) x SLg(C), and ¢ is a sum of irreducible representations which are not symplectic
(resp. not orthogonal). We define the component group A, of ¥ by
T
Ay = P(Z/2Z)0; = (Z/27)".
i=1
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Namely, Ay, is a free Z/2Z-module of rank r and {a, ..., o, } is a basis of Ay, with a; associated
to ;. We set

r
Zyy = Zmiai € Aw

i=1
and call 2z, the central element in A;. Then S, = Wo(Zé(Im(Y/J))/Z(é)WF) is canonically
isomorphic to Ay / (zy).
As explained in Theorem 0.1, for ¢» € ¥(G,,), there is an A-packet I, which is a finite
multiset over Irry,it (G (F')), together with a map

Hw - I/M = ('77T>1j)

such that (zy, m) =1 for any 7 € II,. These are characterized by certain (twisted and stan-

dard) endoscopic character identities. Maeglin constructed A-packets explicitly, and showed
that they are multiplicity-free (see, e.g., [Mce06, Mce09a, Mcell], etc.). Since Mceglin’s
A-packets satisfy the endoscopic character identities (see also [X17b]), they coincide with
Arthur’s ones. Consequently, we obtain the following deep result.

Theorem 2.1 ([Mcell], [X17b, Theorem 8.12]). The A-packet 1L, is multiplicity-free, i.e.,
Iy is a subset of Irrynit (G (F)).

The purpose of Part 1 is to review Meeglin’s construction of A-packets. It is carried out
through several stages.
Let

A: Wg x SLa(C) — Wg x SLa(C) x SLo(C), (w,a) — (w,a, a)
be the diagonal map. For ¢ € ¥(G,,), we set g = 1 o A to be the diagonal restriction of .
Definition 2.2. Let G, = SOgy41 or G, = Spy,,. We define a chain
U(Gp) D ¥ep(Grn) D Yppr(Gr) O Ve (Gr)

as follows:

(1) ¥ € Uop(Gy) if 1 is a sum of irreducible symplectic (resp. orthogonal) representations
when Gy, = SOgp41 (resp. Gy, = Spy,, ). In this case, we say that ¥ is of good parity.

(2) ¥ € Uppr(Gr) if ¢ is of good parity and the diagonal restriction Vg = 1 o A s
multiplicity-free. In this case, we say that ¥ has a discrete diagonal restriction
(DDR).

(3) Y € Uo(Gy,) if ¢ has a DDR and

v =D iR S, K,
i€l

with min{a;,b;} =1 for any i € 1. In this case, we say that ¢ is elementary.

3. THE CASE OF ELEMENTARY PARAMETERS

In this section, we construct A-packets Il for elementary A-parameters ¢ € We(G),). See
[X17a] and [X17b, §6] for more precision. Before the construction, we review the case of
general linear groups GLy.
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3.1. The case of GLy. Let ¢ be an A-parameter for GLy(F'). Assume in this subsection
that 9 is elementary, i.e., ¥ = @icrpi ¥ Sy, WSy, with min{a;,b;} = 1 for any i € I and
pi XSy, XSy, % pj WS, XS, for i # j. Recall that one can associate an irreducible unitary
representation 7, of GLy (F"). We construct 7, once more.

If a; = b; = 1 for any ¢ € I, then 7, = X;erp;. Now fix an irreducible representation p of
W such that p C ¢|Wpg. For pX S, C 14, we set

5 1 if pWS, X1 C 1,
pay — { -1 otherwise.

Let ap be the smallest integer such that p X S,, C 4. If ag > 1, then 7, is the unique
irreducible subrepresentation of

[0,

5 ap—1
pl-1772 X Ty xp|-
where ¢/ is an elementary A-parameter such that

w&zwd_p&sao+p&5ao—2
and
50 =0 ,a0,% — 6,07@0*27’11/‘
If ap = 1 and there exists the next smallest integer a; such that p X S,, C 14, then 7 is the
unique irreducible subrepresentation of

-1 -1
<p;(51a12 ,...,0>XT¢/><<p;0,...,—51a12 >,

where ¢/ is an elementary A-parameter such that
Vg =1%a—pH(1®S,)

and 01 = 6p.q, -

3.2. L-parameters for supercuspidal representations. Let GG, be split SOg,,4+1 or Spy,,.

Fix an elementary A-parameter 1) € ¥, (G),) and a character € € ;1; such that e(zy) = 1.
When pX .S, C 14, we set €(p,a) = e(apq) € {£1}, where ), € Ay, is the element associated
to pX S, XSy or pXR ST K S,.
Definition 3.1. (1) If p® S, C g with a > 1, set
5 1 if pR S, K1 C e,
PAY T 1 ifpR1IKS, C 4.
When a =1, we set 04 = 1.
(2) Define T,y to be the set containing 0 and all integers a > 0 satisfying the following
conditions:
(chain condition): p X Sy C 1y for any k < a with k = a mod 2;
(alternating condition): e(p, k) = —e(p, k + 2) for 0 < k < a with k = a mod 2;
(initial condition): if a = 0 mod 2 so that p X Sy C g, then e(p,2) = —1.
(3) Set

bPﬂ/fHE = Imax 7;,'[,0,57
tppe = minfa > by y o |pM Sa C at,
5{),7]},8 = 5p7ap,1,/1,€7’¢'
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Remark that if a,a’ € T, with a,a’ # 0, then a = ¢’ mod 2. When {a > b, 4. [pX S, C
Ya} = 0, we understand a,, y . = 0.

Now we set ®2(G,) = Vei(Gp) N Premp(Gr). For ¢ € &2(G,,) and € € ;1; with e(zg) = 1,
we denote by 7(¢,¢) the unique element in Il corresponding to e via the bijection II; —
(Ag/ (24))". It is known that 7(¢, €) is a discrete series representation of G, (F). The following
theorem is a criterion when 7 (¢, ) is supercuspidal.

Theorem 3.2 (Moeeglin, Xu [X17a]). Let ¢ € Po(G,) and ¢ € ;1; with €(z4) = 1. Then
7(¢,€) € Il is supercuspidal if and only if a, 4. = 0o for any p C ¢|Wp.

This is one of main results in [X17a]. In the rest of this subsection, we give a sketch of the
proof of this theorem.
First, we explain the following proposition.

Proposition 3.3 ([X17a, Proposition 3.1]). Suppose that 7(¢,e) € 11y is supercuspidal. Fix
an irreducible bounded representation p of Wr. If ¢ D pX Sy, with k > 2, then ¢ D pX Si_o.

Proof. Recall that p is identified with the corresponding irreducible supercuspidal unitary
representation of GL4(F). For s € C, we consider the usual unnormalized intertwining oper-
ators

Gn F S Gn F S
Tpp(s): nd g (o] - P R ) — mdZ (o] - P B 7).

Gn F S Gn F S
Tpp(s): mdSr 4 (o] &) — IndF ) (] - P ),

where P = M N is the standard parabolic subgroup of G,,14(F) with Levi part M = GL4(F) x
Gn(F), and P = MN is the opposite parabolic subgroup to P. These operators are defined
by the meromorphic continuations of Jacquet integrals which converge when s belongs to a

certain open set in C. Since pX 7 is supercuspidal, it is known as a theorem of Harish-Chandra
that both Jp p(s) and Jpp(s) are holomorphic for Re(s) # 0.

On the other hand, there is a rational function yu(s) such that
Tpip(s) © Jpip(s) = p(s) ™.

The function p(s) is called the Plancherel measure. By results of Arthur [Ar13] and Shahidi
[S90], it is known that the Prancherel measure p(s) is given by the product of gamma factors:
1(s) = (s, p ® ¢, hr)V(—5, 0 @ ¢, 15" )y(2s, Ro p,op)y(—2s, Ro p, i)

up to a positive constant. Here, ¢r is a fixed non-trivial additive character of F', and
R Sym? if G, = SO2p41,
| A2 if G,y = Spy,,.
The ambiguity comes from the choices of Haar measures on N and N to define Jacquet
integrals. In fact, one can choose these Haar measures using ¥ so that the above equation

actually holds.
Suppose now that ¢ D p X Sy with £ > 2. Then in s € R with s > 1/2,

e v(2s,R °p, Yr) and y(—2s, R o p, w;l) are holomorphic and nonzero;

e Y(s,p® ¢,1F) is nonzero;
e v(—5,p® ¢,95") is holomorphic and has a zero at s = (k — 1)/2.
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Since p(s) is nonzero at s = (k — 1)/2, the gamma factor (s, p ® ¢, ¥r) must have a pole at
s = (k —1)/2. This occurs only when ¢ D p X Si_o. O

Now fix an irreducible bounded representation p of Wg, and a real number z. If ¢ D
p ™ So,i1 and z > 0, define ¢_ € Py(Gy—gq) with d = dim(p) by
¢ =¢—pXRSoi1®pXSoy_1.

The following lemma follows from a compatibility of twisted endoscopic character identities
and Jacquet modules.

Lemma 3.4 ([X17a, Lemma 7.2]). We have
@ T_ if D pX Sopt1 and z > 0,

PHZ @ i = 7r7€H¢_

melly 0 otherwise.

Jac

In addition, a compatibility of standard endoscopic character identities and Jacquet mod-
ules gives the following more precise result:

Lemma 3.5 ([X17a, Lemma 7.3]). Suppose that ¢ € ®o(Gy,) satisfies that ¢ DO p® Sogyq. Set
¢ =¢—pKSyi1 ®pKSoy_1.
(1) If > 1/2 and pX Szp—1 ¢ ¢, then T(¢p—,€) = Jac,|.=7(¢, ) for any € € qu\_ = ;1;
(2) If > 1/2 and p R Sop1 C ¢, then Ay = Ay @ (Z/27)0p 2041, where a,q is
the element in Ay corresponding to p X S,. Define a surjection Ay — Ay by
Qp2st1 Fr Qpag—1 and by identity on Ay . This gives an injection qu\_ — Zl\d,
Then Jac|.j«m(¢,€) = 0 unless € € qu\_, i.e.,
e(p,2x 4+ 1)e(p, 22— 1) = 1.
In this case, w(¢—,¢€) = Jac,|..7(¢,€).
(3) If v = 1/2, then Ay = Ay_ ® (Z/2Z)cpo. Let Ay — Ay be the projection, and
Al; — ;1; be the induced injection. Then Jan‘,|z7T(¢,5) =0 unless € € Z;, i.e.,

e(p,2) =1.
In this case, w(¢—, ) = Jac,..7(¢,¢).

Let ¢ € ®3(Gy) and € € ;1; such that €(z4) = 1. By Lemmas 3.4 and 3.5, a, 4. = 00
for any p C ¢|Wp if and only if Jac,..7(¢,€) = 0 for any p and € R. This condition is
equivalent that (¢, ) is supercuspidal. Hence we obtain Theorem 3.2.

3.3. The case of SO2,1 and Sp,,,. Now let ¢ € W (G)y,). We construct the elements in the
A-packet I, by induction on n. The following is the main theorem in the elementary case.

Theorem 3.6 (Mceglin). For ¢ € Vy(G,) and € € ;1; with €(zy) = 1, we can construct
a representation w(v,e) of Gn(F) as the following manner. Then w(¢, ) is irreducible,
w(,e) E (. e) ife £€, and w(y, e) satisfies the following basic properties:

(Jacquet module): If Jac,.j=(m) # 0 for some x € R, then there exists a > b,y . with

p RS, C g such that
a—1
= 6p,a,1/JT'
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(Non-unitary irreducibility): For x € (1/2)Z with x > 1/2, if © # 1/2 and p K
Sox—1 € Ya, orif 0 <2z —1 < b,yc, then p| - [ X w(1p,€) is irreducible.

(Unitary reducibility): Suppose that there exists an odd integer a such that p® S, ¢
Yq. Then p x w(1,e) is irreducible if p C g, and is semisimple of length 2 without
multiplicities otherwise. Moreover, if o is an irreducible subrepresentation of p X
(1), €) in the both cases, then p X --- X p X ¢ is irreducible.

Construction: Let ¢ € ¥y (G,,) and € € ;1; with e(zy) = 1.

(1) If ay e = oo for all p, then we define (¢, e) = m(¢)q,€), which is supercuspidal by
Theorem 3.2.

(2) If apppe > bpype +2 01 byye = 0, we define m(¢),e) to be the unique irreducible
subrepresentation of

p| ' ‘6%_1 X W(¢/75/)a
where a = ap ¢, 0 = 0y 4., and (¢, €') is given so that
Vg =va—pRSa+pBSa-2, Gpa—2p = Ipaus

and &'(p,a — 2) = e(p, a).
(3) If apye = by + 2, we divide into three cases.
(a) If by, is even and nonzero, then we define 7(1),¢) to be the unique irreducible
subrepresentation of

a—1 1
<,0,62, cee 762> A ﬂ—(¢—a€—)7

where a = ap 0, 6 = 0p e, and (1)_,e_) is given so that

-0 if < bp,1/1,sa

dp,ct) otherwise,

('(b*)d = 1/103 - P X Saa 5p,a,w, = {

and

_ €(p7 a) if v < bp,1/},€7
e_(p,a)= e(p, @) otherwise.

(b) If b, 4 - is odd and b,y . # 1, then we define 7(1),€) to be the unique common
irreducible subrepresentation of

<p;5a;17"‘70> >q7-(-(/1/)_78_)

and
a—1 b—1 Py
<,07(S 9 7"'a_5 9 >>47T(¢a5)7
where a = a, o, b ="bp ey 0 = 0pype, and (Y_,e_), (¢',€") are given so that
(WNa=vq—pRS, —pXR S, St = Op.ais

5 ifa<byye,
(w—)dzlﬂd—P&Sa—P, 5p,a,1/1_ :{ s

dp,ai) otherwise,



M@EGLIN’S EXPLICIT CONSTRUCTION OF LOCAL A-PACKETS 15
and ¢/ = ¢|Ay, and

—e(p, ) if o <bpyes
(b, ) = :
e(p, ) otherwise.

(c) If apype =3 and b,y = 1, we have (_,e_) = (¢/,¢’) in the notation (b). By
(Unitary reducibility), o = p x w(¢)/,&’) is semisimple of length 2, and hence we
can write 0 = m @ m_ according to the following two cases.

(i) When g 2 pX S, for any o > 3, we fix arbitrary parametrization in o,
and we define 7(¢, €) to be the unique irreducible subrepresentation of

pl - P03 xome

with C = E(p, 3)5'073@.
(i) When ¢4 D pX S, for some o > 3, we can specify the parametrization in
o as follows. Set (" ") so that

(Q/)”)d = (W) -p X Sa/ + p, (5,0 10" = & = 5p,a’,1/1’
with @’ = a, o, and €”(p,1) = '(p,a’). Put

IT=px <p,(5’a2 1,...,5’>>47r( "M,
- < 5,@ .,0> (", e"),
<p <p,5'a 1,...,5'>> x (",
where (p x (p;0'(a’ —1)/2,...,d")) is the unique irreducible subrepresenta-
tion of p x (p;d’(a’ —1)/2,...,0"). Hence there is an exact sequence

Os o 0.

II
o
We set 74 = o N (s.8.04) and 7_ = o N (s.5.05). Then we define 7(¢), ) to
be the unique irreducible subrepresentation of

pl- %080 3 g

with ¢ = e(p, apyre')0ppr e 0p3,0-

Remark 3.7. (1) The representation 7(1,€) can be constructed by using the generalized
Aubert involution. This is defined by a combination of induction functors and
Jacquet functors (see [X17b, §6.2]). By proving a compatibility of the generalized
Aubert involution and twisted endoscopic character identities, Xu [X17b, §6] showed
that

IIy, = {7['(1/),6) ’ €€ ;l;, e(zy) = 1}.
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(2)

3)
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For ¢ = @icrpi ¥ Sy, ¥ Sy, € Vei(G,), define its dual @ZA) € Vo (Gy) by 1& = Picrp; X
Sy, ®Sq;. Then the component group Ad} is canonically isomorphic to Ay. By [Mae06,
Theorem 5] and [X17b, Theorem 6.10], the (usual) Aubert involution of w(v, ) € Il
is given by

7, e) =7w(h,e) € I,

When ¢ = ¢ € ®2(Gy), the map 11y > © — <-,7r>¢ S ;1; is given by w(p,e) — €.
However, for general ¥ € Vo (G,,), the character <',7T(¢,€)>¢ does nmot coincide with
e. According to [X17b, Theorem 6.21], one can define a character 5¢M/MW € ;l:p
explicitly such that (-, 7(1,¢€)), = EEf/MW.

We give an example. When p = 1gr,, (p), we write (p;z,...,y) = (2,...,9).

Example 3.8. Suppose that 1) € U (SO7) such that g = S4®Ss. Fize € Z:Z, with €(zy) = 1.
For p = 1qr,(r), set 6o = Opayp and e, = €(p,a). Then (1, €) is given as follows.

(1)

(2)

(3)

If (04,02) = (+,+) and (e4,e2) = (+,+), then m = w(¢,€) is discrete series but not
supercuspidal. It is a subrepresentation of
1 1 3 1
[ [2 2w (Sa) = [ [2 x [ [2 x|+ |2 X 1g0,(m),

where w(S4) € llg, is a discrete series representation of SOs(F).
If (04,02) = (+,+) and (e4,e2) = (—,—), then ma = (¢, €) is discrete series but not
supercuspidal. It is a subrepresentation of

31 31 _1
305 ) X Lsosr) = (505 ) X |- 172 @ 1so,m).

If (04,02) = (+,—) and (e4,e2) = (+,+), then w3 = 7(1, ) is non-tempered and is
the unique subrepresentation of
_1 _1 3 1
172 3 m(Sy) = [ |72 x [+ [2 x [+ ]2 X 10, (),
where 7(S4) € Ilg, is a discrete series representation of SO5(F). Hence 3 € Iy,
with ¢y = |- |2 ® S, @ |- |2,
If (64,02) = (+,—) and (e4,€2) = (=, —), then by definition, w4 = 7o so that w4 € Iy,
15 discrete series.
If (04,62) = (—,+) and (e4,e2) = (+,+), then we claim that s = 7(¢,€) is non-
tempered and is the unique subrepresentation of
172 %o,
where o is tempered and is the direct summand of Sta X150, (Fy such that Jac‘ﬁ (o) does

not contain w(Sa), where w(S2) € g, is a discrete series representation of SO3z(F).
Hence the L-parameter of w5 is
3 3
|12+ 852+ S+ |- [2.
Indeed, by the construction,

1 _3 oy 3 1
ms > |2 X |72 X 1go,p) Z 172 X |- |2 X 1g0,(p)-



1 1 _
0 —— |2 x Igo,p) — |- ]2 x| -]

(8)
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Consider the following diagram of two exact sequences

0

lar,(r) ¥ 1s0,(F)

N|=

1
X 1g0,(p) — | |2 ¥ 7(S2) — 0.

Stz X ]-SOl(F)

0

Since w5 < | - ]% X |- |_% 1 150,4(r), we have Jac 1(ms) # 0. This implies that there

is no nonzero homomorphism ms — | - \_% X gLy (r) X 150, (F) since Jac 1 (LgLy(r) X
150,(r)) = 0. Hence there is a representation o of SO5(F') which is a common subrep-

resentation of |- |% X 1g0,(F) and Sta x 1go, () such that w5 — |- ]7% x 0. Computing
Jacquet modules, we see that

5.5.( |7 x 150,(p)) N (St2 x 1g0,(m)) # 0,
s.5.(] - |2 % m(S2)) N (Sta % 1o, () # 0.
Since Sta X 1g0, () 15 a direct sum of two irreducible tempered representations, s.s.(] -
\% X 1g0,(r)) N (Sta X 1go, () s irreducible. Hence o must be irreducible. Moreover,
since o < | - ]% X 10, (), we see that JacH
If (04,02) = (—,+) and (e4,e2) = (—,—), then ¢ = 7(1, ) is non-tempered and is
the unique subrepresentation of

1 (o) does not contain w(Sz).

72T m(S2) = |72 x |73 x| |20 Ls0,m),
where 7(S2) € Ils, is a discrete series representation of SO3(F). Hence g € Ily,
with ¢y = |- 2@ |- @S el | 7@ | 2.
If (64,62) = (—,—) and (e4,€2) = (+,+), then m = w(¢,€) is non-tempered and is
the unique subrepresentation of

_1 3 1 _1
[ 172 % Xsom) = { —5 =5 ) < |- 172 X 1so,(m)-
. 3 1 1 _1 _1 _3
Hence m7 € Ty, with ¢y = |- 2@ |- 2@ |- 20| [2&]|- |20 | 2.

If (04,02) = (—,—) and (e4,€2) = (—,—), then by definition, ms = 7 so that g is
non-tempered but wg & g, with ¢¢=|-|% @||%@||%@||_%@||_%@||_%
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4. THE CASE OF DISCRETE DIAGONAL RESTRICTION

In this section, we construct A-packets I, for A-parameters ¢ € Uppr(G)p) with discrete
diagonal restrictions. See [X17b, §7] for more precision. Before the construction, we review
the case of general linear groups GLy.

4.1. The case of GLy. Let ¢ be an A-parameter for GLy(F'). Assume in this subsection
that the diagonal restriction 1y = ¥ o A is multiplicity-free. Recall that one can associate an
irreducible unitary representation 7, of GLy(F"). When ¢ D pX S, X S, with min{a, b} > 1,
we see that 7, is the unique irreducible subrepresentation of

_a—b _Ca+b—2 o " .Ca+b—2 _a—b
p’ 2 AR 2 TTZ}/ p? 2 PR 2 )

where ¢ € {£1} such that ((a —b) > 0, and
(b= pRS RS & pRS, K, 5 if ¢ =1,
V= {w—pgsmsb@pgsagxsb ifC=—1.
4.2. The case of SOg,+1 and Spy,,. Let Gy, be split SO, 41 or Sp,,,. Recall that ¢ € U(Gy,)

has a discrete diagonal restriction if ¢ is of good parity and g = ¥ o A is multiplicity-free.
Note that

Sa ® Sp = Satb-1 D Satbp-3 D+ B Sja—p|41-
Write
,
@Z):@pi&&li@&)i.
i=1
Fort=1,...,r, we set
d . b 1 if a; > bi,
i = min{a;, b}, G = { 1 ifa <b,
When a; = b;, we choose (; € {£1} arbitrarily.
Definition 4.1. Let ¢ = &]_,p; K S,, K Sy, € Uppr(Gr) be an A-parameter with DDR, and
d; and (; be as above.

(1) Define Xy to be the set of pairs (I,n) such that
ol =(l1,...,l;) €Z" such that 0 < l; < d;/2;
® 1= (7717 ce 77]7“) S {il}r such that

H nlfii (_1)[di/2]+li - 1.
i=1

Here, x| denotes the greatest integer which is not larger than x.
(2) Define an equivalence relation ~, on Xy by

(L,n) ~y (Ll/) — 1=l and n=n, unlessli:%

(3) Define e, € Ay by
5!@(0%) = ngi(—l)[di/ﬂ-‘rli’

where o;; € Ay is the element corresponding to p; ) Sy, X Sy, .
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Lemma 4.2. The cardinality of the set ¥,/ ~y of equivalence classes is equal to

1 T
5 H(d” +1) if d; is odd for some 1,
i=1
1 T
5 (T[(alZ +1)+ (—l)é(dﬁ“*dr)) if d; is even for any i.
i=1

Proof. For e € {1}, we define 27, by a similar set to ¥y, changing the second condition with

[ (-nyleer2itte = ¢,
=1

and set
Ay, dp) = #Ep/ ~y -
Hence a?:h,...,dr) =#Xy/ ~y.

If d; is odd for some i, then a?:h,...,dr) = a(_dhm’dr) so that

; I _ 11
Udrydr) = 9 (a(dl,...,dr) + a(dl,...,dr)) D) H(di +1).
i=1

Suppose that d; is even for any . Set aa’ =1 and a; = 0. Then for 7 > 1, we have

+ +
Udyor) | _ L (dT Tl ()2 d 1 (—1);“/2) Udyodrr) |
ag, ay) 2\deF+1—(=D)"2 d 414 (-1)"2) \ag ,
Note that there exists P € GL2(C) such that for any «, 5 € C,

a B\ -1 (a+B 0
PG o) = ("7 )

Thus,
+
P a(dl,...,dr) o dr + 1 0 P a?t_il,...,drfl)
a, B 0 (—1)dr/? a,;
(d1,...,dr) (d1,....dr—1)
_ (TLiza(di+ 1) 0 p ag
B 0 [T, (—1)%/2 ay )
Therefore,
az_:il""’d’“) = 1 <H;=1(di +1) + (—1)%(d1+~~~+dr) *) <1> '
Agy,....d) 2 * %) \0
We obtain the lemma. O

Now for (I,n) € Xy, we define 7(¢,1,1) to be the unique irreducible subrepresentation of

r

X <|-r<’“2”8p<sup@

i=1

a; +1; a; —;

bi +1;
5 + G 5 -

2

) ]

where
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e ¢ is an elementary parameter given so that

) =EPEPri RS,

i=1 ¢
with ¢; running over all integers such that
]ai—bi]+2li+1Scigai—i—bl-—?li—l and ¢; =a; +b; — 1 mod 2,
and Oy, ¢; = Gis
o £/ € Ay is given so that

/ c;—1 |ai7bi| L
e'(pisci) =m; - (=1)"z "1z 17h

We recall that Sp(St(p,a),b) denotes the irreducible unitary representation 7,xs,xs,. Also,
we remark that when ¢ is elementary, any (I,n) € ¥, satisfies that [; = 0, and 7(¢,1,1) =
(1, ey) With e,(as) = n;.

Theorem 4.3. Let 1) € Yppr(Gr) be an A-parameter having a DDR. Then for (1,n), (I',1') €
Xy,

T, L) =2, n) = (Ln) ~y 1)
The A-packet 1Ly is given by
Iy = {7(,L,n) | (L,n) € Zy/ ~p} -
In particular, #1I1y, = #(Xy/ ~y), which is given explicitly in Lemma 4.2.

Remark 4.4. Let ¢ € Uppr(Gy). One can define a character Ey/MW € ;1; such that

<-,7T(1;Z)7L7ﬁ)>,¢, = elvﬂ ’ gy/MW

Example 4.5. (1) Consider ¢ = S5 Sy € Uppr(SO7). Then 3y/ ~yp= {(1,£1)} is a
singleton. The representation (v, (1, £1)) is the unique irreducible subrepresentation
of

_1
| : | 2 <1a05_1> A 1SO1(F)'
Hence it is non-tempered, and belongs to Ty, with ¢y = | - |%53 ® |- ]7%53.
(2) Consider ¢ = Sy X S3 € Uppr(SO7). Then Xy/ ~p= {(1,%1)} is a singleton. The
representation 7(v, (1,41)) is the unique irreducible subrepresentation of

|12 (=1,0,1) x 150, (p)-

‘ 3 . .
Since | - [2 % 10, () i irreducible, we have

=

1
ﬂ-(wa (17:1:1)) — ‘ ’ ’5 <_1707 1> X 1801(F)
1 1
2 2

= [T2x ]2 x [ ]2 X 10, (R)
_1 1

T2 x| 2 X[ ]72 X 10, (r)
1 1
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Consider the following diagram of exact sequences:

0 0 0
A A A
0—= (=5, —5) ¥ 7(S2) —= (=3, —3) x| - [2 % Lgo,(r) — (=5, —3) ¥ Lsos(r) —> 0
A A A
_ _3 _
O=[- 72 x[-[T2xm(S2) = |-["2x[-]72 x| |2 x1g0,p) = | |72 X [[72 X 1g04) = 0
A A A
0—= (=3, —3) x 7(S2) —= (=4, =3) x |- |7 % 1s0,(r) — (— %, —3) % 1s0,() — 0.
A A A
0 0 0
Since m(, (1,£1)) < | - |*%><| 7% x| -2 % 1g0, (), we see that 7(y, (1,£1)) is a

subrepresentation of one 0f< 3 2> X ( 5’2 , < % —%> X 1504(F), <—%,

or <7§7 7%> X 1g0,4(F)- Since Jac, _1 (7T( ,(1,%£1))) # 0 but

172

3 1
IR RRERRE <<_2’_2> 8 “(S”) - Jacn NIEAN ( > X 1803<F>) =0,

we see that w(, (1,£1)) ¢ <—%, %> x(S2) and w(¥, (1,£1)) & < —%> X 150, (F)-
Suppose that w(¢, (1,£1)) C (=3, 1) x Lo, (r). Note that
3 1 3 1
—5 75 ) ¥ 1soy(r) (575 ) X |- [72 % 1s0,(p)

Let 01 be the unique irreducible subrepresentation 0f<—%, —%> X150, (F)- Since <—%, —%> X
|- 172 X 10, (F) has a unique irreducible subrepresentation, m(i, (1,41)) must be the

unique irreducible subrepresentation of |- |7% xo. Since <—%, —%> X150, () s reducible

and
3 1 _3
Jac 1 ({73 73 ) ¥ Isouw) ) = [-172 % 1s0,(m)

is irreducible, we see that Jacl ‘1( o) = 0. Also, we note that Jac -
Jac _1 1 (m(¢,(1,£1))) = 0. This contradicts that w(3, (1, £1)) < (—1,1,3)

150,(r)- Therefore we conclude that
1
W(w, (1,i1)) — <—2, —> X W(SQ) = | . ‘_1St2 X W(Sg).
Hence m(1, (1,£1)) is non-tempered, and belongs to 11y, with ¢y = |-|' Sa®Sa®|-| 7S5,

5. THE CASE OF GOOD PARITY AND THE GENERAL CASE

In this section, we construct A-packets 11, for general A-parameters ¢. See [X17b, §8] for
more precision. First, we consider the case where 1) is of good parity. Before the construction,
we introduce the notion of admissible orders and explain their roles in the case of general linear
groups GLy.
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5.1. Admissible order. Recall that v € U(G),) is of good parity if ¢ is a sum of irreducible
self-dual representations of the same type as 1. When ¢ = @icrp; ¥ Sy, X Sp,, we set
IP:{Z€I|ngp}7 and

by =EP PR S, BSy, C .

icl,

As in the previous section, we set
if a; > b;,
if a; < b;,

1
di = min{a;,b;}, G = { 1

and we choose (; € {£1} arbitrarily when a; = b;. We fix a total order >, on I, satisfying
the following condition:
(P): Fori,je Ip, if a; + b; > a; + bj, la; — b;i| > \aj — bj’, and ¢; = (j, then i >y 7.
We call such an order >, an admissible order on I,. Taking > on I, for each p, we extend
>y to a partial order on I = U,I,. Note that there are many such orders and there is no
canonical choice of them in general. When ¢ has a DDR, we can always choose such an order
satisfying that for 7,75 € I,
’L'>¢j <~ a; +b; >aj—|—bj.

We call such orders the natural orders for parameters with DDR.
We say that ¢ € ¥(G,,) dominates 1) with respect to > if

s =P pi RSy WSy
el
such that for each i € I,
Qa.; . =
v (ai, bi +2T;)  if G =—1
for some integer 7; > 0. When a] = b}, we set ¢/ = ;. Note that for any ¢ € Wy, (G,,) with

admissible order >, one can take 15, € Uppr(G,y) such that s, dominates ¢ with respect
to >y, and such that the order > is a natural order for ..

5.2. The case of GLy. Let ¢ € ¥,,(G),). Fix an admissible order >, and an A-parameter
s € Yppr(Gy) which dominates ) with respect to >,. In this subsection, we construct 7,
using 7y .
Let 7 be an irreducible representation of GLy (F'). For d < N/2, we write
1 0 2
s.s.Jacig N—ad,q)(T) = @Ti( K 7'2-( ) K Ti( ),
i€l

where Tl-(j ) is an irreducible representation of GLy(F) if j = 1,2, and of GLy_o4(F) if j = 0.
For a fixed irreducible supercuspidal unitary representation p of GL4(F') and for a real number

z, we set
0 _ (0)
JanHz(T) = @ Ti .
i€l
ri el 2V |

For example, Jacﬂ% (Stq) = Stg—o.
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Lemma 5.1. Let ¢ = @ierpi W Sy, WSy, € Vo (Gr). Fiz an admissible order >y, and an
A-parameter s, = @ierpi W Sy B Sy € Wppr(Grr) which dominates 1 with respect to >y.
Then

0
aj+b; © Jac a;—b;

Ty = O4er (Jan a;—b;

4 , ) ) a;+b;
pil | TG ] G pil | T g [T D
)
o---0Jac = o/ 4/ )(Tw>>)’
pil| T ]G T D

where oy is taken in the decreasing order with respect to >.

For the meaning of the phrase “o;c; is taken in the decreasing order with respect to >,
see the following examples.

Example 5.2. (1) Consider ¢ = (Sq ® 1) with d > 1 so that 7y = Stq X --+ X Sty
(n-times). Take I = {1,...,n} with the order >y given by i >y i — 1. Then any
A-parameter s, which has a DDR and dominates v, and such that >, is a natural
order is of the form

Us =Yy,tn) = Sty X1 D - B Sgye, K1
with ty,...,t, € 2Z and t, > t,—1 > --- >t > 0. The representation 7, 1s given by

tn) = Std+t1 X o+ X Std+tn.

.....

Hence

Therefore we have

6 (7 _
Jac’ g4, a1 O oJac dity -1 | a1 (Tw(tl tn)) =Ty-

a2 ‘ ,,,,,

Nl i

3eey ‘

(2) Consider v = Sy X S3 @ S5 X So. If we put (a1,b1) = (2,3) and (az,be) = (5,2) with
I = {1,2}, then by the condition (P), the admissible order >, must satisfy 2 > 1.
An A-parameter s, which dominants 1 is given by s = So X S3 @ S7; K Sy. Then

7y = Sp(Sta, 3) x Sp(Sts, 2),
Tys = SP(Sta, 3) x Sp(Str, 2).

Since

5 7 7 5
Sp(St772) — <27 2> X Sp(St572) X <_2>_2>7

we have
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5.3. The case of SOg,11 and Sp,,. For ¢ = ®icrp; XS, XSy, € Vo (Gr), we define d;,
Giy Xy, ~yy and g, as in §4.2. We fix an admissible order >, on I, for each p, and an
A-parameter ¢s. € Yppgr(Gyy) such that 15 dominates ¢ with respect to >, and such that
the order >y is a natural order for .. For (I,n) € ¥y, we define T, (¥,1,m) by

agtb; ©Jac ;b o (aith;
572 pill T il T Y

7T>¢ (@Z” L ﬂ) = O4¢cJ (Jac | |“igbi
pil

+¢;
b

o---oJac  _y al 4! >(7T(¢>>»Lﬂ))a

1% . i1
pil 1T il T Y

where oy is taken in the decreasing order with respect to >.

Theorem 5.3. Let ¢ € Vg, (Gy) with an admissible order >y. Then, for (I,n) € Xy, the
representation ., (1,1,1n) does not depend on the choice of V.. Moreover, it is either zero
or irreducible. If ms (¥,1,n) = 75 (Y, U, n) # 0, then (L,n) ~y (I',n'). The A-packet 11y, is
given by

My = A{ms, (¥, L) | (L) € Xy/ ~p} \{0}.
In particular, #I1y, < #(Xy/ ~yp).

Example 5.4. Suppose that ¢ € Wy, (SO7) such that g = 5593. Then

Sy ={0,1) | n = (n,m2,m3) € {£1}3, mnans = 1}

with trivial equivalence relation ~y, where 0 = (0,0,0). We always take the admissible order
>y given by 3 >y 2 >, 1. If we write 1 = @3S, ¥ Sy, with (a;,b;) € {(2,1),(1,2)}, the
sign ¢; € {£1} is determined by (; = sgn(a; — b;).

Define s = @?lea; X Sy, so that (aj,b;) € {(2i,1),(1,2¢)} and (a; — b;)(a; — b;) > 0.
Then 1. dominates 1 with respect to >y, and has a DDR with >, being a natural order. In
fact, Vs is elementary. Given n = (n1,m2,m3) € {£1} such that ninans = 1, define € € /@
by €(1,2i) = n;. Then -

7>, (¥,0,1) = Jac‘.l%% o Jacl.‘%% o Jac‘,|42% (m(Ys, €)).

(1) Suppose that ¢4 = (2 = (3 = (. By Lemma 3.5 (together with using the Aubert
involution if necessary), Jac|‘|4%(7r(w>>,6)) is monzero if and only if m = n2. In this

case, it is irreducible and we have
JaCHC% (ﬂ-(w>>a (+a +7 +))) @ Ja’CHC% (77'(1/)>>, (_7 ) +)))
N {Stz NW(SG) if (=41,
o det2 X 1SO5(F) ZfC = —1.
Here, m(Sg) € llg, is a discrete series representation of SO7(F), and dety is the
determinant character of GLa(F'). Hence
7T>¢ (QIZJ,Q, (+7 +, +)) D 7T>¢ (%Q, (77 R +))
-~ {Stg x m(S2) if ( =41,
- detg X 1SOg(F) ZfC =—1.
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Since the right hand side is irreducible, exactly one of w~ (¥, 0, (+,+,+)) or 7>, (1,0, (=, —, +))
is nonzero. Therefore, we have

{Sta x 7(S2)} if ¢ =41,
v {{detg X lsoym ) if (=1,
In particular, #11y, = 1 while #(3Xy/ ~y) = 4. Note that 11, is equal to Iy, with
S5° if ¢ =+1,
A N TR R v

In fact, one can show that 7., (4,0, (+,+,+)) # 0 and 7>, (¥, 0, (=, —,+)) = 0.
(2) Suppose that {(1,C2,(3} = {+1,—1}. we can assume without loss of generality that

G=0G=C#q.
o Ifn=(+,+,+), since m(Vs,€) is a subrepresentation of

¢l 3 1 5 .3 ,1
’| CQ X|.|C2 )<|~|C2 X<C27C27C2>><|]‘SOI(F)

3 5 .3 el 1 1
< 198 (6565 ) w179 |19 % 150,
we have Jacl.r(% (7>, (¥,0,1)) = JaCI-IC%,\'IC%J'|<%7|'TC% (m(1s,€)) # 0. Note that
JaCH7<% (ﬂ-(w>>7 E)) = ﬂ-(w/7€/)

with (V")q = (s)a — S2 and €' = ¢|Ay. Using [X17a, Lemma 5.6], Lemma 3.5
and the Aubert involution if necessary, we see that

Jac‘.rg% (m(Ys,m)) = JaCH%%7‘_|C%7|_‘<%’|.‘<% (m(Ys,€))
{St2 “1so,m)  if ¢ =+,
dety X 1so, (F) if ( =—1.
Therefore, 7., (1,0,n) is nonzero and is an irreducible subrepresentation of
1 .
{|"_2 XStQXI 1801(F) Zf(;:_|_17
1 .
|.‘§ Xdetgxlsol(F) sz:_l

o Ifn=(+,—,—), since m(V¥,€) is a subrepresentation of
el 3 5 3 .1 1
7 1 1 (G657 Lo
19 |19 199 5 |74 192 ]2 0 L0, (s

we have Jac‘.|_c%(w>w(w,g,ﬂ)) = Jacwg 68 6d < (m(¢s,€)) # 0. By the
same argument as above, we see that 7, (¥,0,n) is nonzero and is an irreducible
subrepresentation of

1 .
{| |72 x Ste @ 1go, ;) if ¢ =+,
1 .
|'|5 XdetQXI 1801(F) ZfCZ—]_.
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o Ifn=(—,+,—), since m(Y>,¢€) is supercuspidal, we have Jac‘.|6% (m(¢s,e)) =0

so that 7~ ,(¥,0,n) = 0.
o Ifn=(—,—,+), since m(Ys, ) is the same representation as in the case (1), we

have 7T>1p (%Qa B) =0.
Therefore, we have

H'lf) = {7r>1/) (¢7Q7 (+7 +7 +))7 7T>¢ (1/}797 (+) ) _))}
In particular, #11, = 2 while #(Xy/ ~y) = 4. Moreover,

@7’[’

7T€H¢

is the maximal semisimple submodule of (—(/2) x ((/2,—(/2) % 150,(r). Note that
Hd’w C IL, but
s 2 with ¢y = |20 S DS d| |2 if ¢ =+1,
¢ =
YL withey=|-Fel-PeSel el F  if(=—L

5.4. General case. Finally, let ¥ € U(G,,) be a general A-parameter for G,,. Then we can
decompose

¢:¢1@¢0@¢¥7

where 1) is an A-parameter for Gy, of good parity, and 1 is a sum of irreducible represen-
tations of W x SLa(C) x SLy(C) which are not the same type as 1. Fix an admissible order
>y, for ¢g. For (1,1) € Xy,, we set

>y (¢7 La ﬂ) = Typy X 7T>¢,0 (w(]a L ﬂ)

Theorem 5.5. The representation 7., (¥,1,m) is either zero or irreducible, and is independent
of the choice of 1. The A-packet 11y, is given by

Iy =A{m>, (¥, L) [ (L,n) € Bye/ ~po} \ {0}
To summarize, we obtain Moeglin’s multiplicity-free result for A-packets.

Theorem 5.6 (Moeeglin [Mcell], Xu [X17b, Theorem 8.12]). For ¢ € ¥(G,,), the A-packet
IL, is multiplicity-free, i.e., IL is a subset of Irrunit (G (F)).

5.5. Complementary results. There are useful results of Mceglin.

Proposition 5.7 ([Mce09b, 4.2 Corollaire]). For ¢,¢' € U(G,), if Ily N1y # 0, then
Vg =)

We call ¢ € U(G,,) unramified if ¢|Ir x SLa(C) x {12} is trivial, where I is the inertia
subgroup of Wg.

Proposition 5.8 ([Mce09b, 4.4 Proposition|). If ¢ € VU(Gy,) is unramified, then Il has a
unique unramified representation of G (F').
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6. A NON-VANISHING CRITERION

In the previous sections, we have constructed Il explicitly for any ¢ € ¥(G,,). However,
when ¢ is of good parity, the representation 7 (¢,1,1) can be zero for (I,n) € ¥y. In this
section, we give a procedure to determine whether 7 (¥,1,7m) is zero or not. This is the work
in [X].

By the construction in §5.4, we may assume in this section that 1 is of good parity.

6.1. Definitions and the algorithm. As in the previous section, we write
b =EPEPrRS, S,
p icl,
We set
d ) . 1 if a; > b;,
i = minfa b}, Gi= { —1  ifa < b
When a; = b;, we choose (; € {£1} arbitrarily.

Definition 6.1. Suppose that pX S, K S, C o, and r € Z with r > 0. Let J be a subset of
I,, and J¢ be its complement in I,.

(1) We say that pX S, K Sy, is in level r “far away” from J if

la =0l _ o a]+b
—— > 2 > L) +1J]D d;

jeJ i€l,
In this case, we write
pR S, RSy > by =P pK Sa; K Sp,.
Jj€J
(2) We say that J is “separated” from J¢ if the following conditions are satisfied.
(a) For any j € J and j' € J., either
laj — byl _ aj +b; laj —bj| _ aj + by
> -1 > —
2 2 T 2
This condition is equivalent that

Homgy, (¢)(Sa; @ Sb;, Sa; @ Sp,) =0

(b) For any admissible order > on J, there exists a parameter 1y, = @jg/)@S X
Sb’ with DDR which dominates v¥; = @jejp W Sa; X Sp, such that for any j 6 J

and je Je,
|aj; —bjr| _ a;j +b; Jaj —by| _ aj+;
> -1 = > -
2 2 2 2
(¢) For any admissible order > jc on J¢, there ezists a parameter Yy = Bjegep K
Sa;_ X Sb;_ with DDR which dominates v e = @jejep™ Sy, WSy, such that for any

jeJ andj € J°,

! /
lag = bl _ a +by laj — bl % toy
2 2 2 2
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(3) The index set I, is in “good shape” if we can index I, = {1,...,N,} such that
a; +b; > aj—1 + bi—1 and |a; — b;| > |aj—1 — bi—1| for any i, and we can divide
I, = I_IjI,()j) such that
(a) I = {i,i — 1} with ¢ = ¢y, or IY) = {i};
(b) I,(,j) is “separated” from I, \ I,gj).
Then there is a natural order >y on I, given by i >y i — 1.

(4) We say that 4 is in the generalized basic case if I, is in “good shape” for any p.

When %) is in the generalized basic case with natural order >, there is a criterion for the
non-vanishing of 7~ (¢,1,n) (Proposition 6.2). We reduce the general case to the generalized
basic case changing an admissible order >, (Proposition 6.5), and using three reduction
operators “Pull” (Propositions 6.6, 6.7), “Expand” (Proposition 6.8), and “Change sign”
(Proposition 6.9).

More precisely, we use the following algorithm.

Algorithm: Let
Y= @@P X Saz‘ X Sbi € \Ijgp(Gn)v
p i€l,
and (I,n) € ¥y/ ~y. Choose an admissible order >, on I, for each p, and we index I, =
{1,2,...,N,} such that i >, i — 1.
Step 1: Is 1 in the generalized basic case?
e If yes, use Proposition 6.2 (after using Proposition 6.5 unless > is a natural
order).
e If no, choose p and 1 < m < N, such that I, is not in “good shape”, and for
i>m,
m
p&sai @Sbi >>9 @p&saj &Sbj,
j=1
and such that {m +1,..., N,} are in “good shape”. Go to Step 2.
Step 2: Choose 1 < ig < m such that

1%%);1(% + b;) = a;, + big.
Consider
S={i<m| S ®Sy, & Sa;y @ Sb,» G = Ciohs
S={i<m|Se @Sy C Say, ®Sp,, Gi = Cio}-

Then there are three possibilities.
o If S £ (), go to Step 3a.
e If S=10but S 2 {ip}, go to Step 3b.
e If S = {ip}, go to Step 3c.
Step 3a: Take i, € S such that
I?Ezgx(ai +b;) = ay + by.
Using Proposition 6.5, we rearrange the order > for ¢ < m so that

pR S, K Sy, = pK Sy, KSy, ,

10
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pX S, XS, | =pK Sai6 X 5’%.

Then we can “Pull” the pair pX S, XS, and pX S, XS, | using Proposition
6.6. Consequently, the non-vanishing of 7, (¢,1,7) is equivalent to those of 3 repre-
sentations {W>w* (¥*,1*,n*)}. If we replace 1 with ¢*, one can replace m with m — 1
or m — 2. After such replacements, go back to Step 2 if m > 1. If m = 0, then I, is
in “good shape”, and go back to Step 1.

Step 3b: Take if, € S such that i), # ig. Using Proposition 6.5, we rearrange the
order >, for ¢ < m as in Step 3a. Then we can “Pull” the pair p X S,,, X S,

and p X S, XS5, using Proposition 6.7. Consequently, the non-vanishing of
>, (¥,1,7m) is equivalent to those of 2 representations {77>w* (¥*,1*,n*)}. If we replace
1 with ¥*, one can replace m with m — 1 or m — 2. After such replacements, go back
to Step 2 if m > 1. If m = 0, then I, is in “good shape”, and go back to Step 1.

Step 3c: Using Proposition 6.5, we rearrange the order >, for ¢ < m so that

p&samﬁsbm:pﬁsa. &Sbio'

%0

'm—1

Then we can “Expand” pX S, XS, —using Proposition 6.8. Consequently, the non-
vanishing of 7> (1,1, 1) is equivalent to that of a representation 7~ . (", [*,7%). Go
to Step 4.
Step 4: For the parameter 1* obtained in Step 3c, consider the set S* as in Step 2 with
p®Sq, B Sy, = pKSa: K Sy , which is the “Expansion” of p& S, B .Sp,, .
e If S* £ (), go back to Step 3a after replacing 1) with 1)*.
e If S* = (), it is necessary that |a}, — 0% | < 1, and ¢; # (, for i < m. Go to Step 5

Step 5: Using Proposition 6.5, we rearrange the order >, for ¢ < m so that

1 m

2 1
VNS

m m—1

Then we can “Change sign” of pXS,: X Sp. using Proposition 6.9. Consequently, the
non-vanishing of > . (", 1", ") is equlvalent to that of a representation T e (™, 1", ™).
If we replace * with ¥**, the set S* becomes non-empty. After such replacements,
go back to Step 1.

Step 6: By the above steps, the non-vanishing of 7 (4,1, n) is equivalent to those of
several representations {7 .(¢*,[*,n*)}, where each 1* is in the generalized basic
case. Use Proposition 6.2, we obtain the conditions on (I, 7) for 7, (1,1,1) # 0.

In the rest of this section, we state several propositions appearing in this algorithm.
6.2. Generalized basic case. Recall that 1 is in the generalized basic case if for each p,
the index set I, is in “good shape”, i.e., I, = {1,...,N,} with a; + b; > a;—1 + b;—1 and
la; — bi] > ]ai 1 — bi—1| for any ¢, and we can divide I, = I_ijéj) such that
(a) I —{zz—l}\mth(@ Gi— 1,0rI —{}
(b) I‘(;j) is “separated” from Ip\I 25

In this case, we use the natural order >, on I, such that i >, i — 1. In the generalized basic
case, there is a non-vanishing criterion for 7~  (v,1, 7).
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Proposition 6.2 ([X, Proposition 4.3]). When v is in the generalized basic case, ., (1,1, 1) #
0 if and only if for any p and any Iﬁ(,j), if I,gj) = {i,i — 1} has two elements, then

. i—1 + bi— a; — b;
ni:(*l)dz_l’r]ifl — li+li—1> i 12 ) 17‘ 12 l| 71’

i1, ai = bil = lai—1 — bi—1 l_1 i< (@; +b;) — (@;—1 + bi—1)
i 7é ( 1) Ni—1 —> 9 >~ lz lz—l > 9 .

Remark 6.3. Let v be in the generalized basic case, and I, = I_Ijlgj)

Definition 6.1 (3).

(1) If #I,(,j) =1 for any p and any j, then by Definition 6.1 (2)-(a), ¥ has a DDR.

(2) We say that 1 is in the basic case if there exists a unique pair (p,j) such that
#Igj) = 2. Meglin gave a non-vanishing criterion for ., (¢, 1,m) when 9 is in the
basic case such that I,()]) = {i,i— 1} with Sy, ® Sp, = Sa,_, ® Sy, ,. Proposition 6.2 is
a generalization of Meglin’s result.

be the division as in

Using Proposition 6.2, we obtain the following necessary conditions on non-vanishing of
7>, (1,1, 1) in general.

Lemma 6.4 ([X, Lemmas 4.6, 4.7]). Fiz an admissible order >, on I,, and let k >y k — 1
be two adjacent elements in I, such that (x = (1. Suppose that 7, (1, 1,1) # 0.

(1) If Sak ® Sbk 2 Sak,1 ® Sbk—l’ then

e = (=) = U+ ley > dp_g — 1,
e # (~D) %ty = 0< 1l — 1 < dp — dp_1.

(2) If Sak X® Sbk - Sak,l &® Sbkfw then

e = (—1)% 1y = I+l >dp, — 1,
e # (=) %1y = 0<ljq —lp < dp_1 — di.

We denote by Zf;r) (resp. Zl(/:)) the subset of ¥, satisfying the conditions in Lemma 6.4
(1) (resp. (2)) for any p and any adjacent pair {k,k — 1} in I, with (; = (;,—;. Note that if
1) ~p (U) and (1) € 57, then (I, 7/) € 4.

)~y T i P £ (0

6.3. Change of admissible orders. Let ¢ € V,,(G),). We choose an admissible order >,
on I,, and we index I, = {1,...,N,} such that i > i — 1. Now for fixed 1 < k < N,,, we
denote by >, the order on I, obtained so that i >, j if and only if i >y j and (4, j) # (k,k—1),

or (i,j) = (k —1,k). Assume that >, is also an admissible order.

When ¢, = (4—1 and Sy, ® Sp, 2 Sa,_, @ Sp,_,, we define @’,ﬂ’) = S*(l,n) for (I,n) € ESZF)

as follows:

o If i # k,k—1, then I, = [; and n, = ;.
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o If g, = (—1)%-19;_q, then
g1 = 1,
U=l + 2l — di_1,
772—1 = —(—1)dk7)k—1,
M = (=1) %1
o If ny, # (—=1)%—1n_y and Iy — 2l < (dg +1)/2 — di_1, then
(11 = lk—1,
p =l — 201 + dp_1,
M1 = —(—1)dk77k—17
e = (1) %o
o If ny, # (—1)% 1y and Iy — 2lp_1 > (dg +1)/2 — di_1, then
ooy = le—1,
U= —lp +2lg_1 +dy — dp_1,
M1 = —<—1)dk77k—1,
e = —(=1) %y

When (i, = (-1 and Sy, @ Sy, € S, ® Sp,._,, we define (l,,ﬂ') = S~ (l,n) for (I,n) € 22)_)
as follows:

o If i # k,k—1, then I, = l; and 1} = n;.

o If g, = (—1)%-19;_q, then

(1=,
o1 = lh—1 + 2l — di,
e = —(=1) %,
M1 = (‘Udk??kfl-
o If ny, # (—1)%—1n_y and Iy — 2l < (dg—1 +1)/2 — d}, then
I, = l,
Uy = lp—1 — 2l + di,
M, = —(=1)%1n,
(M1 = (_1)dk77k—1-
o If ny # (—1)%1n_y and Ip_1 — 2l > (dg_1 +1)/2 — dy, then
U = Iy,
Uy = —lg—1+ 2l + d_1 — dy,
e = —(=1) %y,
Moy = —(=1) 1.
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Then one can check that S*: fo) | ~p— EEZF) / ~y and that they are inverse to each other.
Hence ST and S™ are bijective.

When (i # (x_1, not assuming any extra conditions on ag, by, ax_1, bp_1, we define (I’, n') =
U(l,n) for (I,n) € By by Ij = 1; and n; = n; for i # k,k — 1, and by
=1
k—1 — Yk—1,
;c = lka
/ _ dk
Me—1 = (1) %11,
= (1) % .
Then one can check that U(l,1) € ¥y and that U o U = id. Hence U: 5,/ ~y— g/ ~y is
bijective.
Proposition 6.5 ([X, Propositions 5.1, 5.3]). (1) Suppose that (i, = (x—1 and Sq, ®Sp, 2
Sap_y @ Spy,_,- Then 7= (¥,1,n) = 0 unless (I,n) € Ez(:)/ ~y, in which case,

7r>¢, (@Z)?L Q) = 7T>;p (¢7L/7ﬂ/)
with (U,n) = $* (L) € 57/ ~y.
(2) Suppose that (. = (-1 and Sa, @ Sy, € Say_y @ Sp,_,- Then 7=, (¥,1,n) = 0 unless
(Ln) € Efp_)/ ~y, 1 which case,

7r>1p (¢7 L Q) = 7T>;/} (¢7 lla ﬂ/)

with (U',n) = 8~ (L) € 557/ ~y.
(3) Suppose that (i # Cx—1. Then

7r>¢; (1/}7 L ﬂ) = 7T>;b (1/}7 Lla ﬂ/)

for any (I,n) € Xy/ ~y with (L/,Q/) =U(l,n) € Xy/ ~y-

6.4. Reduction operator 1: “Pull”. In this subsection, we introduce a reduction operator
“Pull”. Choose an admissible order >,. We index I, = {1,...,N,} such that ¢ >, i — 1.
First, we suppose that there exists m such that

e for i > m,

p B Sa, B Sp, > @p@ Saj X Sbj§
j=1
° Sam & Sbm D) Sam_l &® Sbm71 and Cm = Cm—l'

We denote by >, the order on I, obtained so that i >}, j if and only if i >y j and (i,7) #
(m,m—1), or (i,7) = (m—1,m). Set (ak, bh), (afn_l,b?n_l), (a2,,0%.), and (ad,,b%) so that
o max{al,, by} = max{am,bm} + 2T, min{ab,, bf} = min{am, by}, and so that ¢f, =

Cm, where T, is an arbitrary positive integer such that

P S, B Sy, 1 pH S, WS,

for i > m;
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o max{afn_l, bgn_l} = max{am—1,bm-1}+2T -1, min{afn_l, bfn_l} = min{a;,—1,bm—1},
and so that Cfn_l = (-1, where T},_1 is the integer given by

|a’m - bm| - |am—1 - bm—l’ .

2 )

e max{a’,, b’} = max{am, by} + 27T, min{a’,, b’ } = min{am,b,}, and so that ¢’ =
(m, where T is an arbitrary positive integer such that

\ai — b2| — (am + bm)

2

Tm1=Tm+

T < +1

for i > m;
° max{afn_l,bfn_l = max{am—1,bm-1} + 27T, min{afn_l,bEn_l} = min{am—1,bm-1},

and so that Cfn_l = (m—1, where T' is an arbitrary positive integer such that

la; — bi| — (am—1 + bm—1)
2

T < +1

for ¢ > m.
Define ¥, ¢, and ¢! by

w:qp—(@ pX]Saiﬁsbi>+<

m

D P@Sag@%g)v
i=m—1 1=m—1
¢b :¢—p®5am®5bm+p®5a%®5b%,

¢h:¢—p@5am71&5bm_l+p®5au 71&5&; -

1

We may identify X, with Xy« canonically for * € {f,b,4}.

Proposition 6.6 ([X, Proposition 6.1]). Let (I,n) € Sy and set (I',n') = ST(l,n). Then
7, (10, 1,n) # 0 if and only if all of

o, (W L), sy (0 L), (W00

are nonzero.

Next, we suppose that there exists m such that

e for i > m,

m
pR Sy, ® Sy, 1 @ p R Sa; WSy ;
j=1
i Sam ® Sbm = Samfl ® Sbm—l a‘nd Cm = Cm—17
e there is no i < n such that S,, ® Sy, € Sq,, ® Sp,, and ¢; = G-
Set (ab,, b), (agn_l,bgn_l), and (a?,,b’,) so that
o max{abh, b} = max{am, bm} + 2T, min{al,, b5} = min{am, bm}, and so that ¢, =
Cm, where T, is an arbitrary positive integer such that
pX S, KSy, > pX Sagn X Sbgn

for 7 > m.
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o max{afn_l, bgn_l} = max{am—1,bm-1}+2T -1, min{afn_l, bfn_l} = min{a;,—1,bm—1},
and so that Cﬁn_l = (m—1, where T, 1 = T)p;

e max{a’,,b’,} = max{an, by} + 27, min{a’,,b’.} = min{a,,,bn}, and so that ¢}, =
Cm, where T' is an arbitrary positive integer such that

la; — bi| — (am + b))

T
< 2

+1

for i > m.
Define ¢ and ¢ by

W =1 — ( D p&Sai@Sbi>+< P pgsaggsbo,

i=m—1 i=m—1

Y =9 —pRS,, BS,, +pKS, KS,.
We may identify ¥, with ¥y« canonically for x € {#,b}.

Proposition 6.7 ([X, Proposition 6.3]). Let (I,1) € Xy. Then m ,(¥,1,1) # 0 if and only if
all of

>y (wﬁ’ L ﬂ)a >y (wba L ﬂ)

are nonzero.

6.5. Reduction operator 2: “Expand”. In this subsection, we introduce a reduction
operator “Expand”. Choose an admissible order >,. We index I, = {1,...,N,} such that
i >y % — 1. Suppose that there exists m such that

e for i > m,
m
p B Sa; K S, > @pgsaj &Sb]i
j=1

® a,, + by > a; +b; for i < m;
e there is no i < n satisfying S,, ® Sy, € Sa,, ® Sp,, and ; = G-

Let
. {[‘am_bm’]} {|am_bm‘_‘ai_bi‘
tym =ming | —— U
2 2

Here, [z] denotes the greatest integer which is not larger than z. Set (a},,b},) so that

i <m, Cz:Cm}

max{a’,, b5} = max{an,by}, min{a’,, b5} = min{an,, by} + 2t,,, and so that (}, = (.
Define ¢* by

w*:¢—P®Sam@5bm+p®5’a¢n&5b%.

Proposition 6.8 ([X, Proposition 6.4]). For any (I,n) € Xy, we set (I*,n*) to be If =1; for
i #m, U}, =l + ty, and n7 =mn; for any i. Then

7T>w<¢al,ﬂ) 7& 0 7T>w(7vb*7£*7ﬂ*) ?é 0.
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6.6. Reduction operator 3: “Change sign”. In this subsection, we introduce a reduction
operator “Change sign”. Choose an admissible order >,. We index I, = {1,..., N,} such
that ¢ >, i — 1. Suppose that there exists m such that

e for i > m,

pR S, B Sy, 1 @ pR S, R S5
7j=1
e a;+b; >a;+b and G # ¢ for 1 <i<m;
[ ] |a1 —b1| S 1.
Set (al,b ) (bl,al) + (]al — b1|, ]al — b1|) and Cf = —(1. Define ¢¥* by
’QZJ*:1[)—p®5a1&5b1+p&5a?®55{.

Proposition 6.9 ([X, Propositions 6.5, 6.6]). Let (I,n) € ¥y. When Iy = dy/2, we assume
that m = —1. We set (I",n*) to be I =1;, nf =mn; fori# 1 and

o h+1l  ifla—b|=1m=+1, _ [m if lar — b1| =0,
L A otherwise, = m if lay — b1| = 1.

Then
7r>w(walaﬂ)7£0 — 7T>w( *L* )7&0

6.7. Example. We give an example for adapting the algorithm. We again consider ¢ €
U, (SO7) such that 1g = S5°. As in Example 5.4, Sy = {(0,1) | n € {£1}3, mnans = 1}.
When (1 = (2 = (3, by Lemma 6.4, 7~ (,0,1) = 0 unless n = (+,+,+). Since Il # 0,
we have 15, (1.0, (4 +,+)) £ 0.
When (1 = (2 = ¢ # (3, by Lemma 6.4, 7~ (¢),0,17) = 0 unless 7, = 72. Assume this
condition. Note that n3 = +1. We apply Algorithm in §6.1.
Step 1 for i: The parameter v is not in the generalized basic case. Setting m = 3, go
to Step 2.
Step 2 for v: Take ig = 3. Then S = ) and S = {3}. Go to Step 3c.
Step 3c for v: Proposition 6.8 gives no information. Go to Step 4.
Step 4 for v: Since S = (), go to Step 5.
Step 5 for 1: Let >:z) be the new order such that 2 >§/) 1 >2Z) 3. Then by Proposi-
tion 6.5 (3), we have 7, (1,0,m) = 7T>w(z/}, 0, (—n1, —m2,7m3)). By Proposition 6.9,

7r>§b(1/1,Q, (—=m1, —m2,m3)) # 0 if and only if T (¥*,1*,n*) # 0, where ¢* = ¢ — Sy, K
Sty @ Spy1 8 Sag+1, £ = (0,0,1), and n* = (— 771, —n2, —n3) = —n. Go back to Step 1.
Step 1 for *: The parameter ¢* is not in the generalized basic case. Setting m = 3,
go to Step 2.
Step 2 for ¢*: Take ig = 3. Since (§ = (5 = (3, we have S = {1,2}. Go to Step 3a.
Step 3a for ¢*: Take i(, = 2. By Proposition 6.9 (2), T (¥, 1%,1%) 7é 0 if and only if
7r>¢(1/}*7ﬁ777* ) 7é 0 where 77** = (+ +, ) if n= (+ +, +> and 77 - (_7_7+) if
n = (—,—,+). By Proposition 6.6, 7~ (¢*,1*,n**) # 0 if and only if all of

7r>1p (@ZJ aﬁv L)a 7r>¢ (wbaﬁv L**)a 7T>¢h (¢hvﬁ7 l)
are nonzero, where

o {af, b5} = {52}, {ab, b5} = {4, 1}, {a} B} = (2,1}, and F =G = = ¢
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i {ag’b%} = {772}’ {a|§7bg} = {2’ 1}a {abl’bg} = {27 1}7 and C? = Cg = Cg =G

o {af,bi} = {32}, {a}, 0]} = {8, 1}, {a}, 0]} = (2,1}, and (f = = ¢ = ¢;

© 2>, 3>, 1, 18=0 and nf = (+,—,+) if n = (+,+,4), and nf = (—, +, ) if
1= (—,—,+). Go back to Step 1.

Step 1 for o, ¢°, % All of ¢f, ¢, and ¢" are in the generalized basic case. By
Proposition 6.2, we see that all of 7., (Y, I, ), T, (¥°, 1%, n**), and T> (V0,18 nj)
are nonzero. Go to Step 6.

Step 6 for ¢: As a consequence, we see that 7 (1,0,1) # 0 for = (+,+,+) and
n = (—,—,+). This is compatible with Example 5.4. (Note that in Example 5.4 (2),
we assume that (o = (3 = ( # (1, but now we assume that (; = (o = ¢ # (3.)
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Part 2. The Archimedean case

The theory of A-packets are also established in the archimedean case. In Part 2, we review
the archimedean case for G,, = SOg2p,+1 or Spy,,.

7. A-PARAMETERS
In this section, we recall the A-parameters in the archimedean case.

7.1. Weil groups and their representations. The Weil groups of C and R are given by
We=C*, Wr=C*UC*j,

respectively, where

j2=—-1, jzj~l=z forzeC*.
Then there exists a canonical exact sequence
1 — We Wgr Gal(C/R) —— 1.
The norm maps | - |: W — R* and | - |: Wr — R* are given by |z| = 2Z for z € W C Wk,

and [j| = 1. Note that | - | on W = C* is not the absolute value but the modulus character
of C* on C.
For each integer k, we define a unitary character xx of W¢ = C* by

Xk(2) = Eik(zf)g
for z € C*. We sometimes write yi(z) as (Z/E)g, but one has to keep x(—1) = (—=1)* in
mind. Any character of W¢ is of the form
| %Xk
for some o € C and k € Z.
There are exactly two quadratic characters of Wxr. One is the trivial character 1, and the
other is the sign character
sgn: Wr — {£1}
given by sgn(j) = —1 and sgn(z) = 1 for z € C*. Any character of Wy is of the form
[+ *sgn’
for some a € C and § € {0,1}. The character | - [sgn implies an isomorphism
WEP S R*, j =1, 2 27

Via this isomorphism, we identify Wﬁb with R*. In particular, any character of Wy is regarded
as a character of R*.
For each integer k, we define a 2-dimensional representation

pr: Wr — GLQ((C)

ni) = (1 ) = (5 mreec

by

Xk (Z)
It is the induced representation from the character xj of We. Note that px =2 p_k, po = 1Esgn,
and that py is irreducible when k # 0. Moreover, py is orthogonal (resp. symplectic) if k is
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even (resp. k is odd). Any irreducible representation of Wy is a character or a 2-dimensional
representation of the form
|- %Pk
for some o« € C and k € Z with k£ > 0.
By abuse of notation, for k € Z, we denote by py the irreducible (limit of) discrete series
representation of GLa(F') with minimal O(2)-type +(|k| + 1).

7.2. The case of GLy. Let =R or ' = C. A homomorphism
¢: WF X SLQ((C) — GLN(C)
is a representation of Wr x SLy(C) if
o |W¢ is continuous;
e )|SLy(C) is algebraic.
An A-parameter for GLy(F') is a representation 1: Wr x SLo(C) — GLx(C) such that
¥ (Wp) is bounded.

For an A-parameter v for GLy(F'), one can associate an irreducible unitary representation
7y of GLn(F) as follows: When 1 is irreducible, 1 is of the form ¢ = x X Sy for some a
character x of Wg, or ¢ = pr K Sy for some k > 0 (with FF = R). When ¢ = x X S; so that
N =d, we set 7y, = x odety. When F' =R and ¢ = p;, ¥ S; so that N = 2d, we set 7 to be
the unique irreducible subrepresentation of

d—1 d—3 d—1
2

Pl T XpE| 2T X xopp|-|T T

In general, ¢ can be decomposed into a direct sum

Y=91 D S Yy,

where 11, ...,1, are irreducible representations of Wr x SLa(C). Then we set
Ty = Ty X -+ X Ty,

which is irreducible.

7.3. The case of SO2,11 and Sp,,,. We denote by SOg,,4+; the special orthogonal group with
respect to a quadratic space over F' of dimension 2n + 1. We do not assume here that SOgy, 11
is (quasi-)split over F. Namely, when F' = R, the group SOsg,+1(R) of R-points is isomorphic
to SO(p, q) for some (p,q) with p+ ¢ =2n + 1.

An A-parameter for SOg,41 is a symplectic representation

1/): WF X SLQ((C) — szn((C)

such that ¢(Wr) is bounded. Similarly, an A-parameter for Sp,,, is an orthogonal represen-
tation
w: WF X SLQ(C) — SOQn+1(C)

such that ¢¥(Wp) is bounded. For G = SOgy,4+1 or G = Spy,,, we set ¥(G) to be the set of
equivalence classes of A-parameters for G. We say that ¢ € U(G) is tempered if ¥[{1} x
SLy(C) is trivial. We denote by ®iemp(G) the subset of ¥(G) consisting of tempered A-
parameters.

One can define the component group Ay of ¢, and the central element z, € A, as in

the p-adic case. Then Sy, = WO(Z@(Im(z/J))/Z(é)WF) is canonically isomorphic to Ay / (zy)-
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As explained in Theorem 0.1 (at least when G is split), for ¢» € ¥(G), there is an A-packet
I1, which is a finite multiset over Irryui(G(F')), together with a map

TR

enjoying certain (twisted and standard) endoscopic character identities such that (zy, ), =1

for any 7 € II,. The purpose of Part 2 is to review a construction of A-packets when F' = R
or FF=C.

8. COMPLEX CASE

In this section, we consider F' = C. Let G = SOg,41 or Sp,,, over C. We identify G with
G(C). Fix a Borel subgroup B of G, and a maximal compact subgroup K of G. Define

T = BN K, a maximal torus in K;
H = Zg(T), a Cartan subgroup of G;
g = Lie(G), b = Lie(B), ¢ = Lie(K), to = Lie(T"), h = Lie(H), the Lie algebras;
W = W (g, bh) the Weyl group;
= /—1ty, and A = exp(ao).
Then H = T'A, and (B, H) is a Borel pair of G. Set G = Sp2,,(C) when G = SO2p41, and
G = SO2n+1((C) when G = Sp,,. Fix a Borel pair (B, H) of G. The Lie algebra of G is
denoted by g.

8.1. Local Langalnds correspondence over C. Recall that an L-parameter is a contin-
uous homomorphism

¢: We = C* — é
such that the image consists of semisimple elements. Let ®(G) be the set of conjugacy classes

of L-parameters. Taking a conjugation if necessary, we may assume that the image of ¢ is
contained in H. Since ¢ is semisimple, we can decompose it into a direct sum

with N =2n or N =2n + 1. We define Ay, 1y € X\ (H H)®7C = X*(H) ®zC =t =2 CN by

. k:l k‘N i k‘l k'N
/\¢—<S1+2,...,SN+2>, /L¢—<S1 ?,...,SN 2).

This satisfies that Ay — 1y = (k1,...,kn) € X*(H). The map ¢ — (Ag, itg) gives a canonical
bijection
O(G) = {(Ap) €0 X" [ A—pe XT(H)}/AW.

For A, € h* such that A\ — p € X*(H), take ¢: C* — H such that A = Ag and p1 = fig.
Then ¢ can be regarded as a character of H. We set X (A, p) to be the K-finite part of
the normalized induction Ind%(¢). We call X (), ) the principal series representation
with parameter (A, ). Define X (), ) by the unique irreducible subquotient of X (), )
containing the K-representation of extremal weight A\ — . We call X (), i) the Langlands
subquotient of X (A, ). The W x W-orbit of (), ) is called the infinitesimal character
of X (A, u).
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Proposition 8.1 (Zhelobenko). The map (A, ) — X (\, i) gives a bijection
{p)eb™ xh" | A—pe X*(H)}/W — Irr(G),
where Irr(G) is the set of equivalence classes of irreducible (g, K)-modules.

Corollary 8.2 (Local Langlands correspondence over C). There exists a canonical bijection
(G) = (), &> X\ ).

8.2. Reduction. Next, we consider the A-parameters ¢ € ¥(G). To construct the A-packets
II;, we consider a subset W, (G) of W(G). We define that an A-parameter ¢ belongs to
V., (G) if 4 is a sum of irreducible self-dual representations of the same type as ¢. In this
case, we say that ¢ is of good parity.

Since W = C* has no irreducible self-dual representations other than 1, any parameter
Y € Wgp(G) is of the form

t
=D Sa.,
i=1

where d; > --- > d; are positive even (resp. odd) integers such that dy + --- + dy = 2n
(resp. dy + -+ -+ dy = 2n + 1) when G = SOg,,41 (resp. when G = Spy,,).
In general, 1) € ¥(G) can be decomposed into a direct sum

b =1 @ o B Yy,

where 1y is an A-parameter of good parity for a classical group Gy of the same type as G,
and 1 is a sum of irreducible representations of W x SLa(C) which are not the same type
as 1. In this setting, the A-packet II, can be described by IL,.

Theorem 8.3 ([MR17, Theorem 6.12]). Let 1 = 11 & g D 1)) be as above. Then for any
7o € Ily,, the induced representation
Ty X TO
is irreducible, and does not depend on the choice of 1. The A-packet 11y, is given by
Hw = {7‘¢1 X T | o € HTZJO}'
8.3. The case of good parity. In this subsection, we assume that ) € ¥(G) is of good
parity. In this case, we may regard v as an algebraic representation
¥: SLy(C) — G.

By differential, we obtain a map di): slo(C) — g. Taking a conjugation if necessary, we may

assume that
1 0 ~
w(y %) e

Its W-orbit is denoted by Ay € h*/W.
We set U, to be the G-orbit of
0 1 ~

which is a special nilpotent orbit. By the duality of Lusztig—Spaltenstein, we obtain a nilpotent
orbit Oy C g from U,. Using the Killing form, we may identify g = g*, and we regard Oy as
a nilpotent orbit in g*.

I

b*.
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Associated to a representation 7 of GG, one can define a subset in the nilpotent cone in g*,
denoted by WF(7) and called the wavefront set. Since we focus on complex groups, when
7 is irreducible, WF(7) is the closure of a nilpotent orbit.

Definition 8.4 (Barbasch-Vogan [BV85]). For ¢ € Wy, (G), we define a packet HEV by the
set of irreducible Harish-Chandra modules m of G with infinitesimal character (Ay, \y), and
with wavefront set WF () = Oy.

Let A, be the component group of 1. There is a quotient Zw of Ay, called Lusztig’s
quotient, such that the packet HEV is parametrized by the character group i;, i.e., there is
a bijection

i; >Ny € Hgv.
Theorem 8.5 ([MR17, Theorem 10.1}). Let ¢ € Wy, (G). Then we have Il = Hgv. More-
over, the map Ily > ™ — (-, 7r>¢ € Ay is given by m, — 1. In particular, this map is injective,
and the image of this map is i;
Using a deep result of Barbasch [B89] for his classification of the unitary dual of G, one

can describe the A-packet HEV for ¢ € Wy, (G) more precisely. In the rest of this section, we
explain this description.

8.4. Barbasch—Vogan packets: Type B,. In this subsection, we set G = SOg,41. Then
¥ € (@) is of the form ¢ = @!_,S,., where d; is even for any i, and Zf/:l d; = 2n. When
t' is odd, we set t = t'. When ¢’ is even, we set d; = 0 and t = ¢/ + 1. We may assume that
dy > -+ > dy.

We define a subalgebra m of g = s09,,4+1(C) by

do +d di—1+d
m = gl (2—'2_3,(C> X - x gl <t12+t,(C) x 504, +1(C).

Set k = (t — 1)/2. For each j € {1,...,k}, let F7 be the irreducible finite dimensional
holomorphic representation of gl((da; + daj+1)/2,C) with infinitesimal character
Aj: dgj—l dgj—?) _d2j+1—3 _d2j+1—1
! 2 72 2 2 '
Namely, F7 is the 1-dimensional representation given by

Fj:g[<d2j+2d2j+1,@) 9XH%H(X> cC.

When daj > dojy1, we define Fi by the irreducible finite dimensional holomorphic represen-
tation of gl((da; + daj+1)/2,C) with infinitesimal character
Voo doj — 1 doji1+3 dojp1—1 _d2j+1 —1 _d2j+1 +1
"1 5 5 , 5 ey 5 , 5 .

Namely, A/ , is obtained from )\{ by the sign change of (daj+1 +1)/2.
For each j € {1,...,k}, we define a representation Fj of gl((ds; + da2;+1)/2,C) by

F(X)=F(X)® F/(X) for X € gl((dy + d2j41)/2,C).
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In addition, when dg; > daj+1, we define a representation .7:11 of gl((da; + d2j4+1)/2,C) by
FLUX)=F(X)® F(X) for X € gl((dy+ dajt1)/2,C).

Note that for €; € {£1} such that €; = 1 if do; = daj+1, the representation ng of the Lie
algebra gl((da; + d2j+1)/2,C) can be lifted to an irreducible representation of the Lie group

GL((dg; + d2j11)/2,C), which is denoted by the same notation FZ,. For example,

doj—dojt1
1

FI: GL((daj + doj41)/2,C) 3 g (det(g)det(g)) e C”.

Let P = M N be a parabolic subgroup of G with Lie(M) = m. Then for € = (€1,...,€;) €
{:l:l}k such that €; = 1 if dy; = daj41, we define 7, by the irreducible subquotient of the
parabolic induction

1 k
‘Felx"'x‘FekxlsOd1+1(C)

containing its minimal K-type. If we set

-1 1
A= (A},...,A’f,dl >

2 "2
dp—1 1
_ 1 k 1
/L—()\El,...7)\ek, 9 7...,2>,
then
Te = Y()\a :u)
The Barbasch—Vogan packet HEV is given by

Hgv = {Tr6

In particular, #Hgv =2" with m = #{j € {1,...,k} | doj # daj+1}

€€ {:tl}k, €5 = 1if dgj = d2j+1} .

8.5. Barbasch—Vogan packets: Type C),. In this subsection, we set G = Sp,,,. Then
¢ € U(G) is of the form ¢ = ®!_, Sy, where d; is odd for any 4, and Si_, d; = 2n + 1. In
particular, we note that ¢ is odd. We may assume that d; > --- > d;.

We define a subalgebra m of g = sp,,,(C) by

m:g[<d1;d2,(ﬁ) X e xg[<dt—2;—dt—17(c> x spg,_1(C).

Set k = (t — 1)/2. For each j € {1,...,k}, let F7 be the irreducible finite dimensional
holomorphic representation of gl((dg;j—1 + d2;)/2,C) with infinitesimal character

)\j _ dgjfl—]_ d2j71—3 _dgj—?) _dgj—l
1 2 ’ 2 2 2 ’

Namely, F7 is the 1-dimensional representation given by

Fi g[<dzj12+d2f,(c> 5 X wtrm cc.
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When daj_1 > daj;, we define Fi by the irreducible finite dimensional holomorphic represen-
tation of gl((da;j—1 + d2;)/2,C) with infinitesimal character
Vo doj—1 —1 doj +3 doj —1 _dgj—l _d2j+1
71 5 T g T g 5 5 :

Namely, A , is obtained from )\{ by the sign change of (dg; +1)/2.
For each j € {1,...,k}, we define a representation F7 of gl((dej_1 + dz2;)/2,C) by

F(X)=F/(X)® F/(X) for X € gl((dgj—1+ da;)/2,C).
In addition, when dg;j_1 > daj, we define a representation .7:11 of gl((daj—1 + da;)/2,C) by
F(X)=FI(X)® F/(X) for X €gl((dgj_1+ da;)/2,C).

Note that for e¢; € {£1} such that €; = 1 if dyj—1 = dyj, the representation ]—“gj of the Lie
algebra gl((dgj—1 + d2;)/2,C) can be lifted an irreducible representation of the Lie group

GL((d2j—1 + d2;)/2,C), which is denoted by the same notation .7:6]] For example,

doj_1—d2;

Fi: GL((doj_1 + da;)/2,C) 3 g > (det(g)det(g)) T e

Let P = M N be a parabolic subgroup of G with Lie(M) = m. Then for € = (e1,...,€;) €
{#£1}* such that €¢; = 1 if dyj—1 = da;, we define 7. by the irreducible subquotient of the
parabolic induction

1 k
Fey X X Fe X 1SPdt71((C)

containing its minimal K-type. If we set

di — 1
A= <A%,...,A’f,t2,...,1>,

dy — 1
/"L:<A21""’)\§k’ 2 ,...,1),

then
e = X (\, ).

The Barbasch—Vogan packet HEV is given by

HEV = {71‘6

€c {:tl}k, €5 = 1if dgjfl = dgj} .

In particular, #Hgv =2" with m = #{j € {1,...,k} | doj—1 # do;}.

9. REAL CASE

In this section, we consider F' = R. Let G = SOg,41 or Sp,,, over R.
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9.1. Filtration of A-parameters. For ¢y € U(G), we define a unitary representation v, of

We = C* by
Ya(z) = <Z, ((2/02)2 (Z/S);)) for z € C*.

Definition 9.1. We define a chain
\IJ(G) ) \I}gp(G) > \Ijvreg(G) D \Ilunip(G)
as follows:

(1) o € Wep(G) if Y is a sum of irreducible self-dual representations of the same type as
. In this case, we say that ¢ is of good parity.
(2) ¥ € Voo (G) if 1 is of good parity and 1 is of the form

T
_ dj
= (@pkl XSdl) @ @sgn Y &Sdg_
i=1 jeJ
such that k; — ki1 > di +diyq for 1 < i <r and k., > d, + maxjc; d;. In this case,
we say that ¢ is very regular.
(3) ¥ € Winip(G) if ¥ is of good parity and Y|Wc is trivial, i.e., 1 is very regqular with
r = 0. In this case, we say that i is unipotent.
We also define Wa3(G) C Vyreg(G) so that:
(4) ¥ € Vas(Q) if ¥ is of good parity and g is multiplicity-free, i.e., 1 is very reqular
with #J < 1. In this case, we say that ¢ is Adams—Johnson.

For ¢ € Ua3(G), Adams—Johnson [AJ87] constructed a packet HfZ‘] using derived functor
modules Aq(A) for A in the good range. It is called an Adams—Johnson packet. Later,
Arancibia-Mceglin-Renard [AMR] showed that I, = H;z‘], i.e., Arthur’s packets are Adams—
Johnson packets when 1) € W ;(G).

On the other hand, Meeglin [Mcel7] constructed a packet IIy for 1) € Wyyip(G) using theta
liftings. It is called a unipotent packet. After these works, Moeglin-Renard [MRa] con-
structed a packet Iy, for 1) € Wy (G) from unipotent packets using cohomological inductions.
They showed that this A-packet is multiplicity-free.

To extend the A-packet to 1) € Wy, (G), Moeglin-Renard [MRb] used the translation prin-
ciple. However, since this translation must be used while crossing the walls, the translation
functor is difficult to understand, and the multiplicity-free result cannot easily be deduced
from the case where 1) is very regular.

Finally, for general 1, the packet IL, is constructed by irreducible parabolic inductions
([IMRa, Proposition 4.3, Théoreme 4.4]). In particular, the multiplicity-free result for general
1 is reduced to the case where 1) is of good parity (([MRa, Corollaire 4.5])).

In the next subsection, we explain the construction of Il only for 1) € W25(G). For other
cases, see the relevant papers.

9.2. Adams—Johnson packets. Note that a representation ¢ of WgxSLo(C) isin W 3(SO2,41)

if and only if
Y= (EB J Sdz-> @ sgn’ ) Sy,
i=1
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where
o ki>0and d; >0 for1<i<r;
e ki+d; =0mod 2 for 1 <7 <r and dy =0 mod 2;
° 22;:1di—|—d0:2n;
e 0 c{0,1};
o ki —kiv1>di+di1 for 1 <i<rand k. > d, + do,

and is in WA 3(Spy,) if and only if

Y= (@pkz X Sd,) @ sgn’ K Sy, ,

i=1
where
e ki>0andd; >0for 1 <i<r;
e ki+d;=1mod2for 1 <i<randdy=1mod 2;
° 22;:1d1‘+d0:2n+1;
e 5 € {0,1} such that § =>_;_, d; mod 2;
o ki —kiv1 >di+dip for 1 <i<r,and k, > d, + dp.

In this subsection, we fix such .
We use the following coordinates for SO(p, ¢) and Sp,,, (R):

. (1, 0\ (1, 0
9<0 -1,)77 o -1,/
L (0 1, [0 1,
I\-1, 0)97\-1, o)

We choose a maximal torus 7' of G defined over R such that 7'(R) is compact as follows.
When G(R) = SO(p, q), setting

SO(p,q) = {g € SLpiq(R)

Spy, (R) = {g € GL2n(R)

[ cosf sinf
"= \—sinf cosd )’
the group T'(R) consists of the matrices of the form

Tg, To,

012 T, ),
or o)

7"9/1

To

/
(g—1)/2

Tor
94/2
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for 91-,0; € R according to p Z ¢ = 0 mod 2 or p Z ¢ = 1 mod 2. When G(R) = Sp,,,(R), we
set

)
ar b1

Gn by aivbieRv
—b1 al a%%—b%:l

—by, an

Let 6 be the Cartan involution given by
0: g togtal

with

(b 5,) e®=sop.a).
(A,
(3 5)  ite®=sm@.

n
Note that tg € T(R) such that 3 € Z(G(R)). Take a f-stable Borel subgroup B of G
containing T'.
Let Xy be the set of matrices

P11 @1
DPr  4r
such that
e p; and ¢; are non-negative integers for ¢ = 1,...,r;

ep,+q=d;fori=1,... 1
e 2% pi<pand 2> ;¢ <qif G(R) =S0(p,q) with p+ ¢ =2n+ 1.

Note that there exists a canonical bijection

Sgy/2 X (H 6@) \671/6@/2} x Bl i GR)=S0(p,q),
E?/) ~ i=1

H Pa(d;) if G(R) = Spy,(R),
i=1

where [z]| denotes the greatest integer which is not larger than x, and Pa(d;) is the set of pairs
of integers (p;, ¢;) with p;,¢; > 0 such that p; + ¢; = d;.

For w = (p; ¢;); € Xy, we take a -stable parabolic subgroup Q., = LUy, of G containing
B such that the Levi L,, is defined over R, and its R-points L,,(R) is given as follows: Define
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t: My 4(C) — Moy 24(R) by

11 Y11 | ---| Tl Ylg
r1,1 ... Tlg Y1 .- Yig —Yi,1 T11|---| Yl Tig
2 RS N VSN B R  B E E '

Ipl ... Tpg Yp,1 -+ Upg Tp,1  Yp,1 Tpg  Ypg

“Yp1 Tpl|---| “Ypg Tpg

for z; ;,y;; € R. We put
1
-1
n= € 0(2¢9).

—1

Note that nu(d)n~! = 1(d) for d € My(C). When G(R) = SO(p, q), setting po =p — 2\, p;

and go = ¢ — 2., ¢; so that py + go = do + 1, the group L,,(R) consists of the matrices of
the form

t(a1) o(br)n !

((ar) !

ne(cr) ne(di)n!

nu(cr) nu(dy)n!
8; D

for a; € M, , (C), b; € My, 4,(C), ¢; € My, ,(C), d; € My, 4, (C) such that <Zl ZZ> € U(pi, a:)
B

fori=1,...,r, and <é D> € SO(po, qo). When G(R) = Sp,,,(R), the group L,,(R) consists

of the matrices of the form

/ /
ar by a. =t
¢ dy a —=d
. A B
- 7 7
Cl 1 —C1 dl
/ /
—a, b, ar —byp
/ U
Cr dr —Cr d'r‘
C D
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/

where < ' di) +v-1 (C; d‘) € U(ps,qi) fori=1,...,r, and <C D) € Spy,—1(R). Note

C; i
that L,, contains T', and

N SO(po,q0)  if G(R) = SO(p, q),
Luw(®) = Ulpr, @) - x Ulpr, 4r) {Spdol(c) if G(R) = Spy, (R).
Set
Vi (kj—l-dj—l,kj—i-dj—?:"”kj—dj—i-l) . <1Z>dj
2 2 2 2
and
(Al,...,/\r,doz_l,dogg,...,;) it G =8502,11,
p—
' <)\1,...,)\”,d02_1,d02_3,...,1> if G = Spy,,.

Let p be the half sum of positive roots of T' with respect to B, so that

1 3 1 .

p— <n—2,n—2,,2> lfG:SOQn+1,
(n,mn—1,...,1) it G = Spy,,.

Fix w = (p; ¢i)i € ¥y. Define a unitary character xy,: Ly (R) — C* as follows: If h € L, (R)

is of the above form, we set

A B\ - a; bj

in0 Y

spin < c D> | |1 det <cj d;
]:

r a b a b X —n-(dy++dj_1)
[Laee (& ) ev=i (% 1)) i G(R) = Spy, (),
i J J J
\ J

J

N —n+i+(di++dj_1)
) if G(R) =50(p, q),

XXy (h) =

where spin: SO(po, qo) — {£1} is the spinor character. When pygo = 0, we interpret spin to
be the trivial character. The restriction of x,, to T'(R) is equal to Ay, — p € X*(T') = Z".
For each w € ¥, we define

mw = A, (X,)
to be the derived functor modules. Since the character x,, is in the good range, ie.,

Re (Ay, ) > 0 for any simple root o of T" appearing Lie(U,), it is nonzero and irreducible
with infinitesimal character A,. Moreover, m,, 2 m, if w # w'.

Definition 9.2 (Adams—Johnson [AJ87]). For ¢ € Wa3(Gy,), we define a packet HQJ by
HQJ:{ﬂw | we Xy},
Arancibia—Maeglin—Renard identified Adams—Johnson packets with Arthur’s one.
Theorem 9.3 ([AMR]). For ¢ € ¥3(G), we have
IT, = 1Ty
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The map Iy > m <',7T>¢, € ;l; s determined by

P—g

(i) = LD GR) =S50(p,q),
M B if G(R) = Spy, (R)

and a5,
(i, mw)y = (=1)

for w = (p; ¢;)i € Ly and o; € Ay, associated to py, XSy, , where
0 if d; = 0 mod 2,

TlEDEAY ifdi=1mod 2.

Remark 9.4. We remark that

r

Soo# (6(120 x <H6d> (CHYICH 63) = (CZQ‘) + 1) [T +1),

p+q=2n+1 i=1 =1
p is odd
r

,
# [ Padi) = T](di +1).
i=1 i=1
One might regard these computations as an analogue to Lemma 4.2. Hence A-parameters with
DDR may be regarded as a p-adic analogue of “Adams—Johnson” parameters.

As an example, we consider ) = ¢ € U55(G)NP(G), i.e., the case where dy =--- =d, =1
and dy € {0,1} so that r = n. In this case, for any w = (p; ¢;)i € Xy, we have (p;,¢;) €
{(1,0),(0,1)}. Moreover, the Levi L,, is just the fixed maximal torus 7. The irreducible
representation m, is the discrete series representation of Harish-Chandra parameter

()\il""’)\ipo;)\jl7"'7)\jq0) if G(R) :SO(p,q),
((pl - Q1)/\1» ) (pn - qn))‘n) if G(R) = Sp2n(R)v
where we write Ay, = (A1,...,A,) with Ay > -+ > X\, > 0, and we define iy < --- < ip,

and j1 < -+ < jg, so that {i1,...,ip} ={i € {1,....,n} | pi =1} and {j1,...,Jg} = {j €
{1,...,n} | ¢; = 1}. Hence py = [p/2] and qp = [¢/2]. The pairing <-,7rw>¢ is given by

() = (—1)' " (pi — )

fori=1,...,n.
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