CONSTRUCTION OF p-ADIC ADAMS-BARBASCH-VOGAN PACKETS
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ABsTRACT. This note is a proceeding of the IMS program “On the Langlands Program:
Endoscopy and Beyond” held in National University of Singapore from 17 Dec. 2018 to 18
Jan. 2019. The purpose is to explain p-adic Adams—Barbasch—Vogan packets constructed in

[CFMMX].
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1. OVERVIEW
In this section, we recall Arthur’s results and we explain a motivation for this lecture note.

1.1. L-parameters and A-parameters. Let F' be a non-archimedean local field of charac-
teristic zero. We denote the Weil group of F' by Wr. We consider a connected reductive split
algebraic group G over F as in the following cases:

(Br): G = SOa2y41 is the split special orthogonal group of size 2n + 1.

(Cpn): G = Sp,,, is the split symplectic group of size 2n.
We denote by II(G(F')) the set of equivalence classes of irreducible smooth representations of
G(F), and by ILiemp(G(F)) its subset consisting of equivalence classes of tempered represen-
tations. R R

Let G be the complex dual group of G, i.e., G = Sp,,(C) in the case (By); and G =

SO2,,41(C) in the case (Cy,).

Definition 1.1. Let G be in the case (By,) or (Cy,).
(1) An infinitesimal character for G is a homomorphism \: Wp — G such that
(a) X is smooth, i.e., X\ has an open kernel;
(b) the image of A consists of semisimple elements in G.
(2) An L-parameter for G is a homomorphism ¢: Wg x SLy(C) — G such that

(@) Plwpxqy: Wr— G is an infinitesimal character for G;
1
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(b) dlf1yxsra(c): SL2(C) — G is algebraic.
(3) An A-parameter for G is a homomorphism 1 : Wg x SLa(C) x SLy(C) — G such
that
(a) 7/’|WFX{1}X{1}I Wrp — G is an infinitesimal character for G;
(b) Y(Wg) is bounded;
(¢) Yl{1}xsLa(C)xSLa(C) : SL2(C) x SLa(C) — G is algebraic.

Two infinitesimal characters (resp. L-parameters, A-parameters) for G are equivalent if
they are conjugate under G. The set of equivalence classes of infinitesimal characters (resp. L-

parameters, A-parameters) for G is denoted by A(G/F) (resp. ®(G/F), ¥(G/F)).

A

We call an L-parameter ¢ (resp. an A-parameter 1) tempered if ¢(Wr) C G is bounded
(resp. Ylf1yxf1yxsLe(c) = 1). Namely, the notion of tempered L-parameters are the same
as the one of tempered A-parameters. We denote by ®iemp(G/F') (resp. Viemp(G/F)) the
subset of ®(G/F) (resp. ¥(G/F)) consisting of tempered L-parameters (resp. tempered A-
parameters) for G. Namely,

O(G/F) D Ptemp(G/F) = Viemp(G/F) C ¥(G/F).
For A € A(G/F), ¢ € ®(G/F), and ¢ € Y(G/F), we define their component groups by
Ax = Zg(Im(N))/Zg(Im(N))°,
Ag = Zg(Im(9))/Z5(Im(9))°,
Ay = Zg(lm(y)) [ Zg(Im(v))°,
respectively. They are elementary 2-groups. When G = SOg,,41, i,e, in the case (B,), the
image of —1 € G in Ay (resp. Ay, Ay) is also denoted by —1.

Let Ir be the inertia subg]ioup of Wg, and Frobp € Wy be an arithmetic Frobenius element,
i.e., alift of [x — 29 € Gal(kp/kF), where kp is the residue field of F' and ¢ is its cardinality.

We normalize the norm map | - |: Wp — R* so that |Frobp| = ¢. For w € Wg, we put
1
dp= "7 0 ) csy(0).
0 |w™2

For ¢ € ¥(G/F) and ¢ € ®(G/F), we define ¢, € ®(G/F), Ay € A(G/F) and Ay € A(G/F)
by

dyp(w,a) =P(w,a,dy), Ip(w) =P(w,dy,dw), Ag(w) = P(w,dy).
We call ¢y, the L-parameter for ¢, and Ay (resp. Ay) the infinitesimal character for ¢ (resp. ¢).

1.2. L-packets and A-packets. Set G = SOz, in the case (B)), and G = Sp,, in the
case (Cy,). The local main theorem in Arthur’s book is stated as follows.

Theorem 1.2 ([Arl3, Theorem 2.2.1]). (1) For each ¢ € U(G/F), there is a finite mul-
tiset Iy, over II(G(F')) with a map
IIy = Irr(Ay), 7= (),
enjoying certain endoscopic character identities. When G = SOap41, 4,€, in the case
(Bn), the pairing satisfies (—=1,m), = 1. We call IL,, the A-packet of G(F) associated
with 1.
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(2) When ¢ = ¢ € Piemp(G/F'), the A-packet 11y is in fact a subset of Iliemp(G(F)).

Moreover the map 7 +— <-,7r>¢ 1s injective, and the image is

{Irr(Aw/{:tl}) in the case (By,),

Irr(Ay) in the case (Cy).
In addition, Iy N1y =0 for ¢ # ¢/, and
Htemp(G(F)) = |_| H¢‘
¢EPtemp (G/F)

By the Langlands classification, one can extend Theorem 1.2 (2) to any L-parameter ¢ €
®(G/F). Namely, there is a finite subset II, of II(G(F')) with an injection

Iy = Irr(Ag), ™ (-, m),
such that IT; NIy = 0 for ¢ # ¢, and

IGEF) = || T,
PEPR(G/F)
We call 114 the L-packet of G(F) associated with ¢. When 7 € II,, we say that ¢ is the
L-parameter of w. The map 7 — (¢,n), where ¢ € ®(G/F) is the L-parameter of 7 and
n=(,m)gy € Irr(Ap), is called the local Langlands correspondence.
The A-packets II,;, were constructed explicitly by Mceglin. See also Xu’s paper [X17] and
its references. As a consequence, Moeglin showed the following deep result.

Theorem 1.3 (Mceglin [Mcell], Xu [X17, Theorem 8.12]). The A-packet 1Ly, is multiplicity-
free, i.e., Il is a subset of II(G(F")).

1.3. The main conjecture. The L-packets give a classification of II(G(F)) but the endo-
scopic character identities fail for non-tempered L-packets in general. On the other hand, the
A-packets are “local factors” of global A-packets which classify the discrete spectrum of auto-
morphic representations, so that the local meaning of the A-packets is unclear. Furthermore,
Moeglin’s construction of L-packets might not be so hard (up to constructing supercuspidal
representations), but the one of A-packets should be quite difficult (see also [X17]).

One may desire to understand A-packets more directly. Since a classification of II(G(F))
is given by L-packets, it may be desirable that A-packets are described in terms of L-packets.

After Arthur formulated conjectures about A-packets in 1980’s, in [ABV92], Adams, Bar-
basch and Vogan constructed A-packets H’lzBV for real reductive groups purely locally. These
packets are called the Adams—Barbasch—Vogan packets (or shortly, the ABV packets).
Vogan [V93] had also given a similar definition of A-packets HszV for p-adic reductive groups
using the microlocal Euler characteristic derived from the microlocalisation functor.

In [CFMMX], the authors constructed p-adic ABV packets HQBV using vanishing cycles
functors (instead of the microlocal analysis). It is conjectured (and might be known to ex-
perts) that the ABV packets coincide with Vogan’s ones, but the definition using vanishing
cycles functors is more amenable than Vogan’s one. For the detail for the comparison of two
definitions, see [CFMMX, §7.6].

The main conjecture in [CFMMX] is roughly stated as follows:
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Conjecture 1.4. For ¢ € ¥(G/F),

IT, = )PV,

1.4. Outline of the definition of p-adic ABV packets. The p-adic ABV packets HszV
will be defined using the vanishing cycles functors of equivariant perverse sheaves on Vogan
varieties. Now we explain these terminologies roughly.

(1)

(®)

The Vogan variety is a moduli space of L-parameters. Let A € A(G/F) be an
infinitesimal character. This gives a complex variety V) (Definition 2.1) with an action
of a complex reductive group Hy = Zg(Im(A)). There is a canonical bijection

PA(G/F) ={¢p € ®(G/F) | A\y = A} = {H)-orbits in V)\}, ¢ — Cy.

See Proposition 2.2.

When there is a group action H x V' — V in the category of algebraic varieties (over
C), one can define a category Pery (V) of H-equivariant perverse sheaves on V. Every
simple object in Perg (V') is (isomorphic to) an intersection complex ZC(C, L), where
C is an H-orbit in V and L is a simple H-equivariant local system on C. Hence the
simple objects in Perg (V') are parametrized by pairs (C, p), where C' is an H-orbit in V'
and p is an isomorphism class of irreducible representations of equivariant fundamental
group Ac of C. Moreover, if (V,H) = (Vy, H)) and C = Cy, then A¢c = Ay (Lemma
2.3).

The local Langalnds correspondence together with the bijection

{(&.n) | ¢ € A(G/F), n € Irr(Ag)} (@In)
{(C,p) | Hy-orbit C C V), p € Irr(Ac)} (Cy,m)

gives an injection

|_| Iy — Perp, (V,\)jiig;ple, 7 P(m).

PERA(G/F)

See Proposition 4.1.
For an Hy-orbit C'in V), define a subvariety T (V) )reg 0f the conormal bundle T (V)
by

TE (Ve = TEVA)\ | TE,(Va),

cccy

where C runs over all Hy-orbits in V) such that C C C. Then the vanishing cycles
functor gives an exact functor

PEvc: Perp, (Vi) = Perp, (T¢:(Va)reg)-

See Theorem 4.2.

We say that (z,§) € T5(Vy) is strongly regular if its Hy-orbit is open and dense
in T&(Vy). We denote by T (Va)sreg the strongly regular part of T5(Vy). Then
TE(Va)sreg € TE(Va)reg s an Hy-orbit if it is non-empty (Proposition 3.4). One can
define a functor

Evsc: Perg, (V) = Lock, (T¢(VA)sreg),
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where Loc, (T (V) )sreg) is the category of Hy-equivariant local systems on T (V) )sregs
by

EVSCP = pEVcP[— dim V)\”Té(\/}\)
Finally, we define a normalization NEvsc: Perg, (Va) — Locy, (T (Va)seg) of Evsc.

Its properties are stated in Theorem 4.4. R
(6) For an A-parameter ¢: Wp x SLa(C) x SLo(C) — G, set

U1 = ¥l yxswa)x 1y SL2(C) — G,
Y2 = Y[{1yx{1}xSLa(C) * SL2(C) — G,

£y = din (8 é) &y = i (g’ 8) €d

(g, &) € TE, (VA)sreg
where A = Ay is the infinitesimal character for ¢, and Cy = Cgy, is the Hy-orbit
corresponding to the L-parameter ¢y, for ¢». Moreover, the equivariant fundamental
group ATg (Va)sres OF T aﬁ (VA)sreg is isomorphic to Ay, (Proposition 3.5). In particular,
»

sreg’

and put

Lie(G).

Then

Téw (VA)sreg is non-empty when A = Ay, and there is an equivalence map
Loc, (T¢,, (Va)sreg) — Rep(Ary, . (Va)eres) = REP(Ay).

7) Consequently, ¢ € U(G/F) with A\, = A determines a functor
b

EVSC
EV¢: Peer(V)\) —¢> LOCH/\ (Tap(v)\)sreg) — Rep(A¢),

and its normalization NEv,. See §5.1.
(8) Note that there is the zero representation in Rep(Ay). For ¢ € ¥U(G/F), the ABV
packet HQBV is defined in Definition 5.1 by

MV =dme || T4 |Evy(P(m) #0
pedy, (G/F)

In the rest of this paper, we explain the terminologies appearing in the definition of the
ABYV packets. The proofs of several facts are devolved to the original paper [CFMMX]. The
main conjecture is stated in Conjecture 5.2.

In Appendix A, we summarize supplements: Algebraic representations of SLy(C); equivari-
ant fundamental groups and local systems; and the Kazhdan—Lusztig conjecture. In Appendix
B, we recall relations between representations of semisimple Lie groups, D-modules and per-
verse sheaves in the archimedean case.

2. VOGAN VARIETIES AND SEVERAL GROUPS ASSOCIATED TO INFINITESIMAL CHARACTERS

In this section, we define Vogan varieties V) together with several reductive groups Hy C
Jyx C K C G associated to infinitesimal characters A € A(G/F'), and give some examples.
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2.1. Infinitesimal characters for A-parameters. Let ¢): Wg x SLy(C) x SLy(C) — G be
an A-parameter for G. Recall that G is Sp2,(C) or SO2,11(C) so that one can regard v as
a self-dual representation of W x SLy(C) x SL2(C). We decompose % into a direct sum of
representations as follows:

= <@p¢@v¢> & @pjﬁWj S (@(Pk@Pz)&Ui»

iel jeJ keK

where

e for i € TUJ UK, p; is irreducible bounded representation of Wg such that p; 2 py
and p; ¥ py for i # 1,

if ¢ € I, then p; is self-dual of the same type as v;

it j € J, then p; is self-dual of the opposite type to 1;

if k € K, then pg is not self-dual;

Vi, Wj, and Uy, are representations of SLy(C) x SLa(C).

For i € I (resp. j € J), the structure of G gives a non-degenerate symmetric (resp. alternating)
bilinear form on V; (resp. W;). The centralizer Zz(y)(Wr)) of ¢»(Wr) is the kernel of the map

[Tov) x [T se(W;) x [ GL(Ux) — {+1},

el jeJ keK
((al)h (5] R 7k '_> H det dlmm

el

2.2. Several groups associated to infinitesimal characters. Let A\: Wp — G be an
infinitesimal character for G. Recall that we fix a Frobenius element Frobp € Wr, and we
normalize the norm map |- [: Wr — R* so that |Frobp| = ¢. We may assume that A(Frobp)
is diagonal, say diag(aq, ..., ay) for some aq,...,ay € C*. Write a; = r;u; with r; > 0 and
lu;| = 1. We define fy, sy, tx € G by

fr = A(Frobp) = diag(aq, ..., an),
sy = diag(ri,...,TN),
ty = diag(ug,...,un).
Note that syty = txsx = fn. We call sy (resp. t)) the hyperbolic part (resp. elliptic part)
of fa. Since a; = aj == wu; = uy, we have Z5(fx) C Zz(t»).
Now we define Hy C Jy, C Ky C G by

Hy = Z@()\(WF)),
Ix=ZgzAIp))N
K\ = Za(A\IF)).

Remark that Hy = Z5(A(Ir)) N Zz(fx). These are complex reductive groups, but not neces-
sarily connected. We note that f) stabilizes K and that sy € Jj.
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2.3. Vogan varieties. Let hy C jn C €, C g be the Lie algebras of Hy C J, C K, C CA?,
respectively. The adjoint action of G on g is denoted by Ad.

Definition 2.1. For A € A(G/F), we define
Vi ={z €ty | Ad(f))z = gz},
Wi ={zety| Ad(fi)z =q 'z}
Then Hy acts on Vy and 'Vy by Ad. We call Vy the Vogan variety for \.

We note that
Vi ={z €jy | Ad(s))x = gz},
Wy ={z €jy\ | Ad(sy)z = ¢ 'z}
since f) = sxtx = t)ys) and any eigenvalue of t) has complex norm 1.

There is a concrete description of V) ([CFMMX, §4.6]). Notice that sy € J\ by definition.
Let S be a maximal torus of Jy such that sy € S. We denote the set of roots of S in Jy by
R(S,Jy). Then

Va2 A ford=|{a € R(S,J\) | a(sy) = q}|.
The Lie algebra jy has a decomposition
ix=2Z(x) © [rsial,
where Z(j,) is the center of j, and [jy,j,] is a semisimple Lie algebra. They are given explicitly
by
i ix] = P se(Vi) @ P sp(W)) & P sl(Us),  Z(jn) = CPHEL

iel jeJ keK

We choose any non-degenerate symmetric bilinear form on Z(jy). Using it, we extend the
Killing form on [jy,jx] to jx so that [jx,jr] and Z(j,) are orthogonal to each other. Then we
obtain a non-degenerate symmetric Jy-invariant bilinear pairing

(\):j,\xj,\—>©

This pairing allows us to identify V) with the linear dual of Vy. It is known that the Killing
forms on so(V;), sp(W;), and sl(Uy) are given as follows.

so(V;) xso(V;) = C, (X,Y) — (dimV; — 2) - tr(XY),
sp(W;) x sp(W;) = C, (X,Y) = (dim W +2) - tr(XY),

sl(Uy) x sl(Uy) = C, (X,Y) = 2dim Uy, - tr(XY).
2.4. L-parameters and Hj-orbits in V). Let ®5(G/F) be the subset of ®(G/F) consisting
of L-parameters ¢: Wr x SLy(C) — G such that Ay = . For ¢ € ®»(G/F), set

¢ = dl{1)xsLo(c) : SL2(C) — G,
and put
zy = dp (0 1) €9
00

Then z4 € V). The Hy-orbit of x4 is denoted by Cy.
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Proposition 2.2 ([CFMMX, Proposition 3.2.2]). The map ¢ — Cy gives a bijection
5\(G/F) = Hx\Vx.

For an Hy-orbit C' in V), let Ac = m(C)n, be the Hy-equivariant fundamental group of
C'. For equivariant fundamental groups, see Appendix A.2.

Lemma 2.3 ([CFMMX, Lemma 3.6.1]). For any ¢ € ®»(G/F), we have
Ac¢ = Ap.

Now we set
M= ||
PERA(G/F)
to be the union of the L-packets associated with ¢ € ®,(G/F). The LLC together with
Proposition 2.2 and Lemma 2.3 gives the following:

Proposition 2.4. There is a canonical injection
I\ — {(C,p) | Hx-orbit C C Vy, p € Irr(Ac)}.

2.5. Examples of ®,(G/F) and V). In this subsection, we describe Vy, tVy and ®,(G/F)
more explicitly.
Let A = Ay be the infinitesimal character for the A-parameter

@b:(@pi@%)@ By v,

iel jed
as in §2.1 (with K = (). Suppose that 1 is of good parity, i.e., each irreducible constituent of
1 is self-dual of the same type as 1. Then for each i € I and j € J, there are decompositions
Vi=Vie, ®-—-@oVin)eVipe (Vie - oVh),
Wj = (ijtj G- D Vijl) @ (W;I ©---D W]?k,tj)a
where
o Vi (resp. Wjy) is a totally isotropic subspace of V; (resp. Wj) for i = 1,...,¢;
(resp. j =1,...,t;);
o Vi ® V7 (resp. W @ W]*,k) is non-degenerate for i = 1,...,¢; (resp. j =1,...,1;);
o Vi ® Vl*k, (resp. Wi @ W]?tk,) is orthogonal to V;j @ Vl*k (resp. Wiy @ Wj*k) for
K # k;
e 1§ is the orthogonal complement of (V;, @ - @& Vi) @& (Vi@ & V)

such that sy stabilizes V; ; (resp. W) and acts on it by the scalar ¢* (resp. qk_%). Moreover,
dim(Vj p41) < dim(V; ) and dim(Wj p41) < dim(W; ;) for £ > 1.

We have
I JJow) < [[SeW;), ix=EDso(Vi) & P sp(W;),
i€l jeJ iel jeJ
and

qHc[] (O(Vi,o) X H GL(VZ-JC)) <[] 1‘] GL(W, ).
k=1

iel jeJ k=1
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More explicitly, Jy is the kernel of
HO X H Sp(W;) — {£1}, ()i, (B5);) — Hdet ) dimei
i€l jeJ i€l

and H, is the kernel of

11 <0(vi70) X H GL(VM)> < [1 ﬁGL(WM) — {1},
k=1

i€l jed k=1

((vis (aig)k)is (bjk) k) — H det(ai)dimpi.
el

The Vogan variety V), is the subspace of jy given by

tj

t;
D P Hom(V; 41, Vir) @ @ | Sym(W; 1, Wj1) & @ Hom (W1, W) | ,

icl k=1 jeJ k=2

where Sym(W;;, W;1) = {¢ € Hom(W};,W;1) | ¢* = —c} with ¢* € Hom(W}, W; 1) being
defined so that

<Cw17 w2>Wj - <w17 C*w2>W]~

for wy, wy € W}, More precisely, ®y_ Hom(V; 1, Vi x) and Sym(Wy, W;1)® (@ZjZQHom(Wj,k,l, Wik))
are regarded as subspaces in so(V;) and sp(W;) by

OV;,ti Ai,ti
Ov,, | Ai1
*
(Aig)r — Ovio | A € so(V;),
Oy,
A;iti
Ovy,
Ow,, Bit
0Wj,2 BJ}Q
OWj,l Bj71
(Bjk)k — Ow:, B, € sp(IV;),
OWJi2
Bg*t
OWth]‘
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where A7, € Hom(V}", V%) (with V) := Vio) and B}, € Hom(W}, , W7, ) are defined
so that
<Ai,kva U*>Vi + <Uv Azkv*>vi = Oa
(Bjrw, w )y, + (w, B%kw*>w- =0
for v € Vjp—1, v* € Vz*k and w € Wjp_1, w* € W*k, respectively. Choosing bases of V; ;. and
W 1., we have an identification

tj

t;
V= @ @ Matdi,kydi,k—l C)a® @ Symdj’l C) e @ Ma‘tdj,kydj,kfl ],

iel k=1 jeJ k=2
where we set d; , = dim(V; 1), d;jr = dim(W} ), and Symdjyl((C) is the subspace of Mat,, , (C)
consisting of symmetric matrices. Therefore, as an algebraic variety, V) is the affine space A%
with

J

t
d= sz’kdlk 1+Z ]1 ]1+1 +Zdjkdjk 1

iel k=1 jeJ

Similarly, Vy is the subspace of jy given by

@@Hom ik Vik—1) EB@ Sym(Wj1, W;) @@Hom ik Wik—1) |,

el k=1 jeJ

which is isomorphic to
tj

@ @ Matdl k—1,di. k EB @ Symd ) @ @ Matdj,k_l,dj,k ((C)

iel k=1 jeJ k=2
Since J) is semisimple, the bilinear pairing (| ): jx X jx — C is defined by the Killing form.
The restriction ( | ): V) x V) — C is given explicitly by

(((Ai,k:)i,ka (Bjk)ik) | ((Af )ik, (B;;k)j,k))

t
=> 2(dimV; - 2) Z r(A; g Afy) + > (dim Wy +2) [ tr(Bj 1B ;) + 2> tr(B;xBj )
i€l Jj€J k=2

The sets ®,(G/F) and V) /H) can be complicated. For a positive integer k, we denote by Sy
the unique irreducible algebraic representation of SLy(C) of dimension k. For its realization,
see Appendix A.1 below.

Example 2.5. Suppose that A = Ay with
QZ):[)&(SS,@SE)),

where p is irreducible and self-dual of the same type as ¢. Then dy =2, dy =2 and dy =1 so
that
{0(2, C) x GLy(C) x GL{(C) if dim(p) = 0 mod 2,
A p—

SO(2,C) x GLg(C) x GL1(C) if dim(p) =1 mod 2,
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and
V,\ = Matgg(C) D MatLg((C).
The action of Hy on V) is given by
(,71,72) - (X1, X2) = (mX1a™ !, 92 Xoy; )

for (a,71,72) € Hy and (X1, X2) € V).
For simplicity, we assume that dim p is even. Then the elements ¢ in ®\(G/F) and the
associated groups Ay, the vectors xy € Vy, the Hy-orbits Cy are listed as follows:

e p1=p@(-Pa|-'"a|-'"e1ela| |[tal-|tal |2, Ay, 2Z/2Z, and

ro=((§ 0).00) ccn={(3 )} x 00,
shr=pe(-Pol el 5ol 58] [ 0|7, A4, =1, ad
1 /1 —/-1
(5l o) o)
cCo={ (1 1) |, 50000 o} t0.0;

rw—yz=r2+y*=22+w?=0
e p3=p@(-Pol-'eleSsel [Tl |7?), Ay = (Z2/22)*, and

(3 9 00
o= {5 0) |aonsio o hurso] x (00K
e ba=pR (| PBS30 S| |72), Ap, XZ/2Z, and
79, = ((é (f) 7<0,0>> € Cy, = GLa(C) x {(0,0)};
e ps=p3(- 25| - 'e1e1a| |"La|-|"25), Ay, = Z/2Z, and

-
v = (0 0)-0.0) e ={ (0 0)} x 1@ @200

¢ d=p@ (| 25 ®| 28 ®| [T28®|-|725), Ay = 1, and
1 1 —v—1 1
Lo = 2(_\/_71 1 >7\/§<17_V_1)>

(z,y,2,w)#(0,0,0,0), (a,b)#&0,0), zw—yz=0, | .
(az+bz,ay+bw)=(0,0), (az—bx)?+(aw—by)?=0["’

¢ br=p® (25010 S®| [725), Ay, = (Z/22)%%, and

N
cCo={(2 4) )

(a,b)#

( 70)7 zw—yz=0,
(az+bz,ay+bw)=(0,0)

, (az—bx)2—|—(aw—by)27é0} ;
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e ps=p@(|-['Ssa|-|"@|-|7t|-[71Ss), Apy 2 1, and

1 e
(a,b)#£(0,0), zw—yz=0, )2_0} :

— ry
€ Cpy = {((z w) ,(a,0)) az+bz#£0, (az+bz)?+(ay+bw
sy =pa(-'e1eSe| 7)), Ay = (2/22)%*, and

{6900
¢ Co={((2 4) )

e Pro=p® (|- |%S4 @ |- |_%5'4), Apy =1, and

= (3 ) v)

_ r 'y (a,b)#(0,0), TWw— 27&07
€ Con = {(<z w> (@, b)) (ax+bz)2+(ay+bzz)220}

i d)ll =p (53 D 85)7 A¢11 = (2/22)@27 and

Lo = <((1) (1)> 7(170))
(a,b)#£(0,0), :cw—yz;éO,} '

Ty
€ Cy,, = {(<z w> » (a,0)) (ax+b2)%+(ay+bw)?#£0

Note that Cy, is a unique closed orbit and Cy,, is a unique open dense orbit. The closure
relations of Hy-orbits are given as follows:

(a,b)#(0,0), xwfygzO, B .
(ax+bz)?+(ay+bw)?#0 or (@z—bx)%+(aw—by)?£0 [’

I

Cypy =Cp C Cp C Cp C Cy C Cp, C Cyy,
N N U U
Cys C Cys C Cp C Cpy C Cgy.

3. A-PARAMETERS AND STRONGLY REGULAR ELEMENTS IN THE CONORMAL BUNDLE

In this section, we define the regular part of the conormal bundle T (V)), and we introduce
the notion of strongly regular elements.

3.1. Cotangent space and conormal bundle to the Vogan variety. Let 7*(V)) be the
cotangent space to the Vogan variety V). For an H)y-orbit C' in V), we denote the conormal
bundle by T¢(Vy). Recall that V) is an affine space.

Proposition 3.1 ([CFMMX, Propositions 5.2.1, 5.3.1]). There is an Hj-equivariant isomor-
phism
T*(V)\) = V)\ X tV)\.
Similarly,
TE(VA) ={(z,§) eT*(V)) |z € C, [2,§] =0},
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where [-,+] denotes the Lie bracket on jy, and we identity Vy and 'V with subspaces of jy.
Since Vy = tVy, we can define an Hy-equivariant isomorphism
T*(Va) = T*("V), (2,8) = (& 2),
which we call transposition. As in Proposition 3.1, for an Hy-orbit B in 'V, we have
T5('Va) ={(&,2) € T*('V3) | € € B, [¢,2] = 0}.

Lemma 3.2. For any Hy-orbit C in V), there is a unique Hy-orbit C* in 'V such that the
restriction of the transposition gives an isomorphism

TE(Vy) = TE (V).

The map C — C* is a bijection
H)\Vy — H)\'Vy.

Define T¢(Va)reg C T¢(Vy) by
Té(vx\)reg =Te(Va)\ U Té'l(vx\)v
C
Cl#c}gél
where C] runs over all Hy-orbits in V) such that C' C Ciand Cy # C.

Proposition 3.3 ([CFMMX, Proposition 5.4.3]). If (z,£) € T5(Va)reg, then (z,§) € C x C*,
[z,6] =0, and (z [ §) = 0.

We say that (x,§) € Tg(V)) is strongly regular if its Hy-orbit is open and dense in
TE(Vy). We write TE (V) )sreg for the strongly regular part of T4 (V)).

Proposition 3.4 ([CFMMX, Proposition 5.5.1]). We have
TE(Va)sreg © T (VA )reg:
Moreover, TE(Vy)sreg is an Hx-orbit if it is non-empty.
Let ) be an A-parameter for G such that A = \,;. We set

U1 = Y] (1yxsiae)x 1} SL2(C) — G,

b2 = Y|y {1y xs1ae): SL2(C) = G,
and we put

£y = diy <8 é) &y = diy ((1’ 8) € § = Lie(0).

It is easy to see that

(ajw’ 57/1) € Té’¢ (VA)v
where Cy = Cy,, is the Hy-orbit corresponding to the L-parameter ¢, for 9.

Proposition 3.5 ([CFMMX, Propositions 5.6.1, 5.7.1]). We have
(xw’&ﬁ) € Té’w (V)\)sreg-

Moreover, the equivariant fundamental group ATg (Va)sreg O T(’Sw(V)\)Sreg is isomorphic to Ay,.
5 (V)5
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Example 3.6. Consider
A=px(-Pe|-'e|-'elele|-Tal [ tal |,

which is the same as in Example 2.5. Then the A-parameters 1 € ¥(G/F') such that A = Ay,
and the associated vectors (x,&y) are listed as follows:

o 1 =pXR1K (S3® S5) and

(¢ o) e c=((8 9. () e

o Y3 =pR(S3K1P1KS;) and

(¢ 00) e =((8 9.9 e

o g =pX S, XSy and

vw=(3(_ym ) VD) € Can

e (L ) i) e

o g =pK (S5 X1P1KX S3) and

(¢ 00) e =((b 9. () e

e 1o =pXR S XS and
1
Lpro = (<(1) (1)) vﬁ(la \% _1)> € C¢1m
1 1 v—1 1 1 .
§w102(2<\/j1 _1>72(\/j1>>€tVA7

° ¢11:p®(83@55)®1 and

(s ) 00) 6 0= ((¢ §0)

For a realization of Sk, see Appendiz A.1.

Let Locp, (Té'w (VA)sreg) be the category of Hjy-equivariant local systems on Té'w (V) sreg-
Then (xy,&y) € T¢, (V\)sreg determines an equivalence

LOCH/\ (Tgw (V)\)Sreg) - Rep(ATéw (V/\)sreg) = R’ep(Aw)

4. VANISHING CYCLES FUNCTOR OF PERVERSE SHEAVES ON VOGAN VARIETIES

In this section, we define microlocal vanishing cycles functors, which we will use to define
the ABV packets.
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4.1. L-packets and equivariant perverse sheaves on V). For an algebraic variety V', one
can consider the category Per(V') of perverse sheaves, which is a subcategory of the derived
category D(V) = D%(V) of bounded (constructible) Q-sheaves on V. See [BBDS82].

When H xV — V is a group action in the category of algebraic varieties, one can define the
category Perg (V') of H-equivariant perverse sheaves on V', equipped with a forgetful functor

Perg (V) — Per(V).

For more precision, see [CFMMZX, §3.4-3.6]. Every simple object in Perg (V') is the intersection
complex ZC(C, L), where C is an H-orbit in V| and L is a simple H-equivariant local system
of C. It is defined by

IC(C, L) = Im (PH(j1£) — PH"(Rj.L)) ,

where j is the embedding C' < V. Let Locy(C) denote the category of H-equivariant local
systems of C. Hence there exists a canonical bijection:

Per (V)5 oy {(C, £) | H-orbit C C V, L € Locy (C)S™P)

/iso /iso

~ {(C,n) | H-orbit C C V, n e Irr(Ac)},

where A¢ is the H-equivariant fundamental group of C.
Now we consider the Vogan variety V' = V) equipped with the action of the reductive group
H = H),. Proposition 2.4 gives the following:

Proposition 4.1 ([CFMMX, Proposition 3.6.2]). There is a canonical injection

I, — PerHA(V)\)jiiISI;ple, 7 P(r).

4.2. Vanishing cycles functors. In this subsection, we fix the notation for vanishing cycles
functors. Let
o k=CI[t]], K =C((t)); B -
e K be a separable closure of K, and R be the integral closure of R in K;
e S = Spec(R), n = Spec(K), s = Spec(C), and S = Spec(R).
Note that S is a trait, i.e., the spectrum of a henselian discrete valuation ring with generic

point 77 and special point s. The morphism s — S has a canonical section corresponding to
C — C[[t]]. Hence we have

j A
n S <——=s.

2

Let 77 be a geometric point of S localized at 7, i.e., 7: Spec(K) — n — S. Note that
Gal(7/n) = Z. For any morphism X — S, we have the cartesian diagram:

. Jix

bx77 ‘ bX/
T
n
>
n

Js

|

|

<.

|
L
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where X = X x5 5, Yﬁ =X X517, and X, =X Xg's.
Recall that
e “a sheaf on X x5 7” means a sheaf on X; equipped with a Gal(7/n)-action;
e D(X, xsn) = D2(X, x47) is the bounded derived category of constructible Q,-sheaves
on X X 1;
e “a sheaf on X, x4 S” means a triple (F,, Fs, Fs = Fy), where F;, and F, are sheaves
on X, xsn and on Xy, respectively, and F; — F, is a Gal(77/n)-equivariant morphism,
with the action on Fs being trivial; o
o D(X,x,95) = DIC’(X s X5.9) is the bounded derived category of constructible Q,-sheaves
on Xg X4 5.
There exists a functor
RUx, : D(X;) — D(Xs x5 1)
called the nearby cycles functor [DK73]. This is defined by

R\I/XW]’F - (ZXE)* (JXW>* (bX'r] )*’F

for 7 € D(X,), which is a sheaf on X, equipped with an action of Gal(7/n) obtained from
the canonical action on (bx, )*F. Finally, there exists a functor

RO x: D(X) — D(X, x4 S)

called the vanishing cycles functor. The triangle

RO x
2N

i RUx, %,

is a distinguished triangle in D(X;xS). Thus, for F € D(X), we obtain a long exact sequence
s = HI(5 b5 F) —= HI(RUx, j§ F) —= HI(ROxF) —= HITH (i by F) — -

4.3. Definition of functors. Now fix an infinitesimal character A € A(G/F'), and consider
the Vogan variety V) with an action of a reductive group H). Recall in §2.3 that we fixed a
non-degenerate symmetric Jy-invariant bilinear pairing (| ): jx X jx — C. By restriction, we
obtain an s-morphism

(1): T*(Va) = Ak = Spec(C[f)).

For an Hy-orbit B C 'Vy, we denote by
Xp=(VaxB)xu 8§58

the base change of the restriction of ( | ) to V) x B along the canonical map g: S — AL.
Namely, we have a cartesian diagram

XB V)\XB

fB\L l(l)

g
s AL,
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The structure sheaf of Xp is
Ox; = R &cpy (Ov, ®c Op).
The special fibre of Xp is the s-scheme
Xps=f5'(s) = f5'(0) = {(z,£) € VA x B | (x| ) = 0}
We obtain the vanishing cycles functor
R®x,: D(Xg) — D(f5(0) x5 5).

As an s-scheme, H) acts on V) x B. Its base change along S — s gives an action of Hy x4 .S
on (V) x B) x4 5. Since ( | ) is Hy-invariant, this action preserves

{(z,€,t) € (VA x B) x5 5| (#[§) = g(t)}-
This is precisely Xp = (Vi x B) Xpl S. Hence Hy) X3S acts on Xp in the category of
S-schemes.

We denote the Hy-equivariant derived category on V) by Dg, (V)). For any Hjy-orbit
C C V), we define a functor

Eve: DHA(V)\) — DH,\ (Té«(v)\)reg Xs S)
by the diagram

Eve

DH)\(VA) DHA (TE(VA)reg Xs S)

X1 o= \L TRes
Rq)XC*

D, (Va x C*) % Dy 5(Xev) D, (f51(0) x4 S),

where
(1) -X1c=: Dy, (Va) = Da, (Va x C*) is the pullback along the projection Vy x C* — Vy;
(2) BC: Dy, (Va x C*) — Dg, x,5(Xc+) is the base change functor, which is an exact
functor;
(3) R®x,.: Dyyx,5(Xc+) — Du, (f51(0) x5 S) is the vanishing cycles functor;
(4) Res: Dy, (fo1(0) x5 S) — Dy (TE(Va)reg X5 S) is given by the pullback along the
inclusion TE(V)reg < fc_l (0) induced by Proposition 3.3.
For & € 'Vy, define f¢,: X¢, — S by the base change of Vy 2 x — (z|¢)) € AL, i.e., we
have a cartesian diagram

Xey —=V)\

f&ol l( 1€0)

5 —2- Al
The structure sheaf of X¢; is
Ox,, = R®cp) Oy,
where Oy, (A) = Ax] for any C-algebra A, on which A[t] acts by ¢t — (x|&y). The special fibre

of X¢, is the s-scheme

Xeos = fe, (8) = [, (0) = {z € Vi | (2]&0) = O}
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Define
Rq)f&o: DHA(V)‘) - DZHA(EO)(fg_Ol(O) X5 S)
by
Ry B
D, (Va) Dz, (60)(fgy (0) X5 5)
BC

Dz, (60 (VA)

where BC: DZHA(&))(V)\) — DZH/\ (€0)xs5(Xgy) 1s the pullback along X¢, — V).
The following is a summary of properties of Evg ([CFMMX, Propositions 6.4.1, 6.5.1, 6.6.2,
6.8.1, 6.9.1]).

Theorem 4.2. Let C C V) be an Hy-orbit.
(a) The functor

D2, (60) %5 (Xeo)

Eve: Du, (Vi) = Da, (TG (Va)reg X5 S)

18 exact.
(b) For every F € Dy, (Vy) and every (zo,&0) € TE(Va)reg, there is a canonical isomor-
phism
(EVC]:)(wo,EO) = (R(I)fgo]:)x()'

(c) If F € D, (Vi), then
EveF =0 wunless C CsuppF = Usupp HY(F).

7

(d) For any H-equivariant local system L on C,
EveZC(C, L) = EveZIC(C,10) @ (LK 10+)

TE(VA)ng’

where 1¢ is the constant sheaf on C.

(e) If P € Pery, (Vy), then
EveP[dim C* — 1] € Perg, (T¢:(Va)reg)-
We set
PEve == Eve[dim C* — 1]: Pery, (Vy) — Perpg, (T5(V)reg)-
(f) Suppose that TE(V)sreg is non-empty. If P € Perg, (V)), then the restriction of PEvcP
to TE(Va)seeg 5 a local system concentrated in degree dim Vy. We set
Evsc := PEve[—dim V)]: Perg, (Vi) = Loca, (T5(Va)sreg)-

For a description of the stalk of EveZC(C,1¢) at (x,§) € TE(Va)reg, see [CEMMX, Theorem
6.7.5]. In particular, we note that

rankEvcZC(C,1¢) = 1.
If we put 7o = EvscZC(C, 1¢) € Locy, (T4 (V) )sreg), by Theorem 4.2 (d), we have EvscZC(C, L) =

To @ (L1 )75,V )areg fOT every L € Locy, (C).
Now we normalize Evg as follows.
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Definition 4.3. We define a functor NEvg: Dy, (Va) = D, (TE(V)reg) by
NEve = (EveZC(C, 10))\/ ® Eve,

where we put (EveZC(C,1¢))Y = Hom(EveZC(C, 10), 175 (Vy)ree ), Gnd we use the left de-
rived tensor product. We refer to NEve as the normalized microlocal vanishing cycles
functor.

When T (V) )sreg is non-empty, we set
NEvscF = (NEveF[dim C* — 1 — dim VA]) |7 (13 ) ares
for F € Dy, (Vy). Then
NEvsc = T/ ® Evsc,
where 77 is the dual local system of T¢.

Theorem 4.4 ([CFMMX, Theorem 6.10.1]). Suppose that T} (V) )sreg s non-empty.

(a) The functor NEvsc: Per, (Vi) — Locy, (TE(Va)seeg) is exact.
(b) If P € Perg, (Vy), then NEvscP = 0 unless C C supp P.
(c) If P € Pery, (Vy), then

rank(NEvscP) = rank(R®, P),

for every (z,&) € TE(VA)sreg-
(d) For every L € Locy, (C),

NEVSCIC(C, ﬁ) - (E X 10* ) |TE(V)\)srcg'
In particular,

rank(NEvscZC(C, L)) = rankL.

5. A-PACKETS V.S. ABV PACKETS
In this section, we define the ABV packets, and state a conjecture.

5.1. Definition of ABV packets and the main conjecture. Now we can define the
Adams-Barbasch—Vogan packets. Let ¢ € V(G /F) and set A = \y. Consider the Hy-orbit
Cy = Cp, in V) corresponding to the L-parameter ¢y, for ¢ via Proposition 2.2. Recall in
Proposition 4.1 that there is a canonical injection

M= || = Pery, (V)5 mm P().
€D (G/F)
On the other hand, 9 gives a strongly regular point (z,&y) € Tap(V,\)Sreg (Proposition 3.5).
It determines an equivalence

Loc, (T, (Va)sreg) — Rep(Ary, . (Va)eres) = REP(Ay).

Define
EV¢: PerHX (VA) — Rep(Aw)

by the composition of Evs¢,, and this equivalence, and set
NEVQZJ = 7;2/ X EVw,
where Ty = EvyZC(Cy, 1¢,,) is the representation of Ay corresponding to 7¢,, .
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Definition 5.1. Fory € ¥(G/F), we define the Adams—Barbasch—Vogan packet (shortly,
the ABV packet) HfZBV of G(F) associated with 1 by

EVCw’P(T&') 75 O} .

Recall that there is Arthur’s A-packet IT,, C II(G(F)). The following is the main conjecture
in [CFMMX].

PV = {r eI,

Conjecture 5.2. Let G be split SO2y,41 01 Spy,,. For an A-parameter i € V(G/F'), we would
have

IT, = )PV,
Moreover, the map
Iy — Irr(Ay), 7™ (-, )y
would be given by
(p3,7),, = (~1) 4 Codmsuee PO (NEy, () 4
for any as € Ay, where ay is the image of (1,12, —12) in Ay.
Let KII and KPerg, (V) be the Grothendieck groups of I and Perg, (V)), i.e., the free

abelian groups for which IT, and PerHA(V)\)jiil:;ple are bases, respectively. Define a bilinear
pairing

<', > : KIIy x KPerHA(VA) — 7
by

0 otherwise.

P = {(_1)dimswp<7’> if P = P(n),

If we set

N5 = Z <a¢as,7r>w T,
TI'EHdJ

then Conjecture 5.2 is equivalent that
(N5, P) = (—1)3™ @ty (NEvyP)(as)

for any as, € Ay and any P € KPerg, (V).
In [CFMMX, PART II], several examples were given.

Proposition 5.3. Conjecture 5.2 holds for the following cases:

(1) q is odd, G = SLy = Spy and ¢ € U(G/F) with Ay = x1 ® x2 ® X3, where x1, X2, X3
are the three distinct non-trivial quadratic characters of F*;

(2) G =S03 and ¢ € U(G/F) with Ay = |- |2 @ ||

(3) G =505 and ¢ € U(G/F) with Ay =|-|2 @ |- 2@ |- | 2| 2;

(4) G =805 and ) € UW(G/F) with \y = |-z & | [ a@| [ 2@ |73;

(5) G =SO7 and ¢ € U(G/F) with \y = |- |2 & |- 2@ |- 26 |- | 2a| 26| | .

APPENDIX A. SUPPLEMENTS

In this appendix, we explain several supplementary topics.
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A.1. Algebraic representations of SLy(C). For each positive integer k, there is a unique
(up to isomorphism) irreducible algebraic representation Si of SLa(C) of dimension k. Note
that the representation w — S (dy) of W is isomorphic to

k-3 k-1
2

k—1 _k—1
|.‘2@|.| @...@|.| 2 .,

The representation Sy is realized as the (k — 1)-th symmetric power Sym*~'C? of the
standard representation Sy = C2. It has a non-degenerate SLy(C)-invariant bilinear form

[,]: Sym*~*C? x Sym*~'C% = C,

ary) [ Gk-1 1) [ Ck-1 a;  Co(i)
() Gi)- () (i)~ I0 e ).

0€CL_1

In particular, Sy, is self-dual of sign (—1)*1.

If we put
k—p—1 p
_1n 0 k12
ep = H <0> . <1> € Sym" C

for 0 < p <k —1, then we have

SN (C U PR S
P otherwise.

We identify Sym*~1C? with C* by eq,...,ep_1. Since

p 1 k—1
1t tP 10y Nk—-p-1!
(0 1)‘9”‘12;@—5)!‘*“ (t 1>ep‘§p!<z—p>!<k—1—1>!t o

the actions of <8 (1)> , <(1) 8) € 5l5(C) on Sym*~1C? = C* are given by

respectively, where they are in so(k, C) or sp(k,C) with respect to

1
-1

(-

according to k =1 mod 2 or £k = 0 mod 2.
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A.2. Equivariant fundamental groups and local systems. Here, we define equivariant
fundamental groups and equivariant local systems.

Let C' and X be topological spaces equipped with continuous actions of a topological group
H. A subset U of X is stable if h-u € U for any w € U and h € H. We call X H-
equivariantly connected if only () and X are the open and closed stable subsets of X.
A map f: X — C is said to be H-equivariant if f(h-z) = h- f(x) for any x € X and
h € H. Moreover, it is called an H-equivariant covering of C' if f is a covering in the
usual sense, i.e., f is surjective and for any p € C, there exists an open neighborhood U
of p in C such that f~1(U) is a disjoint union of open subsets V; of X satisfying that the
restriction f|V; is a homeomorphism V; = U. An H-equivariant base point of X is an
H-equivariant map b: H — X. Fix an H-equivariant base point ¢: H — C of C. We say that
an H-equivariant map f: X — C' is base point-preserving if f(b(h)) = c¢(h) for any h € H.
Such a map is denoted by f: (X,b) — (C,c). A universal H-equivariant covering of C
is an H-equivariant covering map : (6’ ,¢) = (C,c) with C being H-equivariantly connected
such that for any H-equivariant covering f: (X,b) — (C,c) with X being H-equivariantly
connected, there exists a unique H-equivariant continuous map f : (5,?:) — (X, b) such that
the diagram

! X

C
commutes. We define the H-equivariant fundamental group m1(C)gy by the group of
H-equivariant homeomorphisms f: C' — C such that the diagram

~

commutes. By the universality, 71 (C) g is uniquely determined by C, up to a unique isomor-
phism.

C

C

Example A.1. Let C = {0} be the set of a point, equipped with the trivial action of the
orthogonal group H = O(m,C). Then the covering map is a map from a discrete topological
space X equipped with a continuous action of O(m,C). Hence this action factors through the
quotient O(m,C)/SO(m,C) = {£1}. The discrete space X is O(m, C)-equivariantly connected
if and only if the action of O(m,C) is transitive. In particular, an O(m,C)-equivariant
universal cover of C is given by the set C = {p+,p—} of two points with the action o - p. =
Pedeta for a € O(m,C) and € € {+1}. Therefore,

({0} o(m,c) = {£1}.
More generally, when C' is a quotient H/Z for some subgroup Z of H with the canonical
base point ¢: H — C, for any H-equivariant covering f: (X, z) — (C,¢) of C, we have hx = x
for h € Z°. In particular, a universal H-equivariant covering of C' is given by C = H/Z°, and
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the H-equivariant fundamental group is given by
m(X)y = no(Z2) = 2/2°.

Let m: H x X — X be an group action in the category of algebraic varieties (over C). We
also consider the projection p: H x X — X. An H-equivariant sheaf on X is a sheaf F on
X equipped with an isomorphism of sheaves on H x X

o:m'FSpTlF
such that ¢ satisfies the usual cocycle condition on H x H x X. On the stalk level, ¢ implies
an isomorphism Fp, = F, for h € H and x € X. The cocycle condition says that the
isomorphism Fgp, = F, is the same as the composition Fyp, = Fp, = F, for g,h € H and
rzeX.
Recall that a local system on X is a locally constant sheaf on X. We denote the category

of H-equivariant local systems on X by Locy(X). There is a relation between Locy(X) and
representations of m(X)y. Recall that 71(X )y is the group of H-equivariant homeomor-
phisms on the universal H-equivariant cover X of X which commute with the projection
7: X — X. Given a representation p: 7 (X)g — GL(V), we consider the sections of the
bundle (X x V) /71 (X)y — X. More precisely, for an open set U of X, we set L,(U) to be
the space of locally constant functions f: 77 1(U) — V satisfying

f(yz) = p(7)f(x)
for v € m1(X)g. Then £, is an H-equivariant local system on X. The map p — L, gives an
identification Rep(m1(X)m) — Locy(X).

A.3. Kazhdan—Lusztig conjecture. Let A € A(G/F). Recall that KII, and KPerg, (V)
are the free abelian groups with the canonical bases

{m(p,n) | ¢ € PA(G/F), n € ;1;, n(—=1) = 1if G = SOgp 41},
{IC(C, L) ‘ H-orbit C C Vi, L € LOCHA(C)Si.nlple} 7

/iso
respectively. They also have other bases, consisting of standard modules and standard sheaves.
For given ¢ € ®,(G/F), one can obtain a parabolic subgroup P = M N of G such that ¢
factors through the embedding M<G S0 1 that ¢ can be regarded as an L-parameter for M,
which is essentially tempered. Then n € A¢ (with n(—1) = 1) gives an irreducible essentially
tempered representation wys(¢p,n) of M(F). Moreover, one can assume that the exponents

of mar(¢,m) are in the positive Weyl chamber with respect to P. In this case, the parabolic
induction

G(F
M (1) = Indip() (mar (@, )
is called a standard module. The representation 7(¢,n) of G(F) is the unique irreducible
quotient of the standard module M (¢, n). Moreover,

{(M(¢,n) | ¢ € ®5(G/F), n € Ag, n(—1) =1 if G = SO241}

forms a basis of KITy. In particular, for two pairs (¢, ) and (¢’,n’), there exists a non-negative
integer myep((0, 1), (¢, ’)) such that

Z mrep QZ)» ) ¢ 7 ,)) ’ 7T(¢>7])
(&,m)
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in KITy. We call (myep((#,1), (9,7)))(6m),(¢/y) the multiplicity matrix. It is known that

this matrix is an “upper-triangular unipotent matrix” in a certain sense (see e.g., [Ar13, §2.2]).
simple
/iso

Similarly, for an Hy-orbit C' C V) and a simple equivariant local system £ € Locy, (C)
we consider the shifted standard sheaf

where jo: C' < V) is the inclusion. Then

{S(C, L) | Hoorbit C c Wi, L € LocHA(C)S%mple}

/iso

forms a basis of KPerg, (V). In particular, for two pairs (C, £) and (C’, £'), there exists an
integer mgeo((C', L"), (C, L)) such that

IC(C,L) = Y mgeo((C, L)), (C, L)) S(C, L)
(L")

in KPerg, (V). We call (mgeo((C', L), (C, £)))(cr 2),(c.c) the geometric multiplicity ma-

trix. It is known that mgeo((C, £), (C, L)) =1 and mgeo((C” L£,(C, L)) =0 unless C' C C.
Moreover, if we set

Migeo(C", L), (C, £)) = (=1) ™ = Py (€7, L), (C, L)),

then it is a non-negative integer. We call (my,((C', L), (C, £))) (¢ c1),(c,c) the normalized
geometric multiplicity matrix.
Recall that a pair (¢,n) gives a pair (Cy, £,), and there exists a bilinear form
<-, > : KIIy x KPerHA(VA) — 7
given by
if (C,L) = (Cy, Ly),
otherwise.

_1\dimC
(n(¢,n), ZC(C, L)) = {(() 1)

The Kazhdan—Lusztig conjecture predicts that
(=) (C, L) = (Cg, Ly),

0 otherwise.

(M(¢,n),5(C, L)) = {

When G and A = Ay are in the cases in Proposition 5.3, this conjecture is proven by showing

mrep((¢, ) (¢ 77)) geo((c¢"c¢) (C¢"‘c7]/))
for every pairs (¢,n) and (¢, 7).

APPENDIX B. REPRESENTATIONS, D-MODULES, AND PERVERSE SHEAVES

To define p-adic ABV packets, one uses a relation between irreducible representations of
G(F') with simple objects of equivariant perverse sheaves (Proposition 2.2). For real reductive
groups, this relation is a conclusion of a deep story. In this appendix, we try to explain this
story. Note that it is hard to say that this appendix is mathematically accurate. The readers
should refer to relevant references for details.

Let G be a quasi-split connected semisimple group over R, and K be a maximal compact
subgroup of G(R). Assume that G(R) is connected. Fix a rational Borel subgroup B = TU of
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G. We denote the Lie algebras of G(R), T(R) and K by g, t and £, and their complexifications
by gc, tc and £, respectively. The Weyl group is denoted by W = W (gc, tc).

B.1. Casselman—Wallach globalization. Let Rep(G(R)) be the category of smooth ad-
missible Fréchet representations of moderate growth, and Mod.qm (gc, K) be the category
of admissible Harish-Chandra (gc, K)-modules. The isomorphism classes of irreducible ob-
jects in these categories are denoted by Irr(G(R)) and Irr(gc, K), respectively. The category
Rep(G(R)) seems to be difficult for topological reasons, whereas Modagm(gc, K) seems to be
easier because it is purely algebraic.

Taking K-finite vectors, we obtain a functor

HC: Rep(G(R)) — Modaam (9c, K).

Theorem B.1 (Casselman—Wallach [C89], [W92], [BK14]). There exists a quasi-inverse func-
tor Modadm(gc, K) — Rep(G(R)) of HC, called the Casselman—Wallach globalization
functor. Hence the functor HC: Rep(G(R)) — Modaam(gc, K) is an equivalence of cate-
gories.

By the Casselman-Wallach globalization, one can consider Irr(gc, K) instead of Irr(G(R)).

B.2. Casselman’s subrepresentation theorem. A character y of T'(R) gives a principal

G(R) (x)- Let I(x)x be the K-finite part of I(x).

series representation I(x) = Ind B(R)

Theorem B.2 (Casselman’s subrepresentation theorem [C78]). For any m € Modaam(gc, K),
there exists a character x of T(R) such that

W‘—)I(X)K.

There is a p-adic analogue of this theorem, but it asserts that any irreducible smooth
representation of G(F'), where F' is p-adic, is a subrepresentation of the parabolic induction
from a supercuspidal representation. One may understand that Casselman’s subrepresentation
theorem says that real reductive Lie groups have few supercuspidal representations.

B.3. Beilinson—Bernstein correspondence. Recall that the principal series representa-
tion I(x) is a space of sections of the G(R)-equivariant vector bundle G(R) xgmw) x —
G(R)/B(R). Now let us consider the D-modules on the complete flag variety B = G(C)/B(C).
For a reference, see [HTTO0S8, §11].

Fix A € t/W. For a representative A € tf, the character xx;, of T(C) corresponding
to A + p gives a G(C)-equivariant line bundle £(\ + p) on B. We consider the sheaf D) of
twisted differential operators acting on L£(A + p). Let Modg.(Dy) be the abelian category
of Dy-modules which are quasi-coherent over O, and Mod(gc)x be the category of U(gc)-
modules with infinitesimal character A, where U(gc) is the universal enveloping algebra of gc.
The global section functor gives a functor

P(B, ) Moqu(D,\) — Mod(g@)A.

The set of roots of T and its positive system with respect to B are denoted by A and AT,
respectively. We put
P={ et | (Na')eZ (acA)}
It is called the weight lattice in t*.
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Theorem B.3 (Beilinson-Bernstein correspondence [HTT08, Corollary 11.2.6]). When A € P
satisfies that

<)\,av> <0, aeAT,
then the functor I'(B,-) induces equivalences
MOqu(D)\) = Mod(g@)A
of abelian categories. The inverse functor is given by Dy ®g(ge) (+)-

However, admissible representations of G(R) are related with not just gc-modules, but
(gc, K)-modules. Let Rep(G(R))x and Mod(gc, K)x be the subcategories of Rep(G(R)) and
Mod(gc, K) consisting of objects with infinitesimal character A, respectively. To relate the
category Mod(gc, K)x of (gc, K)-modules with D-modules, we need to consider the category
of K-equivariant D-modules Modg.(Dy, K). Then we have

MOqu(D)\, K) = MOd(g(c, K))V

For more precision, see, e.g., [HTT08, Theorem 11.5.3, Remark 11.5.4] and its references. We
notice that an object in Mod(gc, K), is not necessarily admissible.

B.4. Riemann—Hilbert correspondence. Next, we recall Hilbert’s twenty-first problem
or the Riemann—Hilbert problem. Before stating this problem, let us consider the following
example.

Fix a complex number a € C, and consider the differential equation

o _a
dz =z
on C\ {0}. This equation has regular singularities at 0 and oo in the projective line IP’(%:. The
local solutions of the equation are of the form f(z) = ¢-2® for constants ¢ € C. If a ¢ Z, then

the function z® cannot be made well-defined on all of C \ {0}. This means that the vector
bundle

f

E,={c-z%|ceC}>3c-2%— 2z C\ {0}

is a non-trivial line bundle (local system) on C\ {0}. In other words, the differential equation
has non-trivial monodromy. Explicitly, this monodromy is the 1-dimensional representation
of the fundamental group 71(C \ {0}) = Z in which a generator (a loop around the origin)
acts by multiplication by e2rv=la,

This is a typical example that local solutions of regular differential equations give local
systems

(df _ af) local solutions E, = {C- a | ce (C} c LOC(C\{O})
dz =z

The converse of this observation, namely, the existence of linear differential equations
having a prescribed monodromy is called Hilbert’s twenty-first problem, or more com-
monly, the Riemann—-Hilbert problem.

Now, roughly speaking, D-modules are “gluing of differential equations”, whereas perverse
sheaves are “gluing of local systems”. The above observation is generalized to a correspon-
dence between D-modules and perverse sheaves.
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Theorem B.4 (Riemann-Hilbert correspondence [HTT08, Theorem 7.2.5]). Let X be a com-
plex manifold or a smooth algebraic variety (over C). We denote by Mod,,(Dx) the category
of “regular holonomic” D-modules on X, and by Per(Cx) the category of perverse sheaves on
X. Then there exists an equivalence of categories

Din MOdrh(Dx) — Per(CX).
The functor DRx is called the de Rham functor.

In fact, one can define the category of equivariant perverse sheaves on X, and can relate it
with the one of equivariant D-modules. See also (the proof of) [HTTO08, Theorem 11.6.1].

B.5. Conclusion. We conclude that one can relate irreducible representations of G(R) with
equivariant perverse sheaves via the following correspondences in the following rough diagram:

’Irredueible representations of G(R) ‘

1 K-finite part, Casselman—Wallach globalization

’ Simple (gc, K )-modules ‘

1 the Beilinson-Bernstein correspondence

’Simple K-equivariant D-modules on the flag variety B‘

1 the Riemann—Hilbert correspondence

’Simple K-equivariant perverse sheaves on the flag variety B ‘
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