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Abstract. This note is a proceeding of the IMS program “On the Langlands Program:
Endoscopy and Beyond” held in National University of Singapore from 17 Dec. 2018 to 18
Jan. 2019. The purpose is to explain p-adic Adams–Barbasch–Vogan packets constructed in
[CFMMX].
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1. Overview

In this section, we recall Arthur’s results and we explain a motivation for this lecture note.

1.1. L-parameters and A-parameters. Let F be a non-archimedean local field of charac-
teristic zero. We denote the Weil group of F by WF . We consider a connected reductive split
algebraic group G over F as in the following cases:

(Bn): G = SO2n+1 is the split special orthogonal group of size 2n+ 1.
(Cn): G = Sp2n is the split symplectic group of size 2n.

We denote by Π(G(F )) the set of equivalence classes of irreducible smooth representations of
G(F ), and by Πtemp(G(F )) its subset consisting of equivalence classes of tempered represen-
tations.

Let Ĝ be the complex dual group of G, i.e., Ĝ = Sp2n(C) in the case (Bn); and Ĝ =
SO2n+1(C) in the case (Cn).

Definition 1.1. Let G be in the case (Bn) or (Cn).

(1) An infinitesimal character for G is a homomorphism λ : WF → Ĝ such that
(a) λ is smooth, i.e., λ has an open kernel;

(b) the image of λ consists of semisimple elements in Ĝ.

(2) An L-parameter for G is a homomorphism ϕ : WF × SL2(C) → Ĝ such that

(a) ϕ|WF×{1} : WF → Ĝ is an infinitesimal character for G;
1
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(b) ϕ|{1}×SL2(C) : SL2(C) → Ĝ is algebraic.

(3) An A-parameter for G is a homomorphism ψ : WF × SL2(C) × SL2(C) → Ĝ such
that
(a) ψ|WF×{1}×{1} : WF → Ĝ is an infinitesimal character for G;
(b) ψ(WF ) is bounded;

(c) ψ|{1}×SL2(C)×SL2(C) : SL2(C)× SL2(C) → Ĝ is algebraic.

Two infinitesimal characters (resp. L-parameters, A-parameters) for G are equivalent if

they are conjugate under Ĝ. The set of equivalence classes of infinitesimal characters (resp. L-
parameters, A-parameters) for G is denoted by Λ(G/F ) (resp. Φ(G/F ), Ψ(G/F )).

We call an L-parameter ϕ (resp. an A-parameter ψ) tempered if ϕ(WF ) ⊂ Ĝ is bounded
(resp. ψ|{1}×{1}×SL2(C) = 1). Namely, the notion of tempered L-parameters are the same
as the one of tempered A-parameters. We denote by Φtemp(G/F ) (resp. Ψtemp(G/F )) the
subset of Φ(G/F ) (resp. Ψ(G/F )) consisting of tempered L-parameters (resp. tempered A-
parameters) for G. Namely,

Φ(G/F ) ⊃ Φtemp(G/F ) = Ψtemp(G/F ) ⊂ Ψ(G/F ).

For λ ∈ Λ(G/F ), ϕ ∈ Φ(G/F ), and ψ ∈ Ψ(G/F ), we define their component groups by

Aλ = Z
Ĝ
(Im(λ))/Z

Ĝ
(Im(λ))0,

Aϕ = Z
Ĝ
(Im(ϕ))/Z

Ĝ
(Im(ϕ))0,

Aψ = Z
Ĝ
(Im(ψ))/Z

Ĝ
(Im(ψ))0,

respectively. They are elementary 2-groups. When G = SO2n+1, i,e, in the case (Bn), the

image of −1 ∈ Ĝ in Aλ (resp. Aϕ, Aψ) is also denoted by −1.
Let IF be the inertia subgroup ofWF , and FrobF ∈WF be an arithmetic Frobenius element,

i.e., a lift of [x 7→ xq] ∈ Gal(kF /kF ), where kF is the residue field of F and q is its cardinality.
We normalize the norm map | · | : WF → R× so that |FrobF | = q. For w ∈WF , we put

dw =

(
|w|

1
2 0

0 |w|−
1
2

)
∈ SL2(C).

For ψ ∈ Ψ(G/F ) and ϕ ∈ Φ(G/F ), we define ϕψ ∈ Φ(G/F ), λψ ∈ Λ(G/F ) and λϕ ∈ Λ(G/F )
by

ϕψ(w, a) = ψ(w, a, dw), λψ(w) = ψ(w, dw, dw), λϕ(w) = ϕ(w, dw).

We call ϕψ the L-parameter for ψ, and λψ (resp. λϕ) the infinitesimal character for ψ (resp. ϕ).

1.2. L-packets and A-packets. Set G = SO2n+1 in the case (Bn), and G = Sp2n in the
case (Cn). The local main theorem in Arthur’s book is stated as follows.

Theorem 1.2 ([Ar13, Theorem 2.2.1]). (1) For each ψ ∈ Ψ(G/F ), there is a finite mul-
tiset Πψ over Π(G(F )) with a map

Πψ → Irr(Aψ), π 7→ ⟨·, π⟩ψ
enjoying certain endoscopic character identities. When G = SO2n+1, i,e, in the case
(Bn), the pairing satisfies ⟨−1, π⟩ψ = 1. We call Πψ the A-packet of G(F ) associated
with ψ.
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(2) When ψ = ϕ ∈ Φtemp(G/F ), the A-packet Πϕ is in fact a subset of Πtemp(G(F )).
Moreover the map π 7→ ⟨·, π⟩ϕ is injective, and the image is{

Irr(Aψ/{±1}) in the case (Bn),

Irr(Aψ) in the case (Cn).

In addition, Πϕ ∩Πϕ′ = ∅ for ϕ ̸= ϕ′, and

Πtemp(G(F )) =
⊔

ϕ∈Φtemp(G/F )

Πϕ.

By the Langlands classification, one can extend Theorem 1.2 (2) to any L-parameter ϕ ∈
Φ(G/F ). Namely, there is a finite subset Πϕ of Π(G(F )) with an injection

Πϕ → Irr(Aϕ), π 7→ ⟨·, π⟩ϕ
such that Πϕ ∩Πϕ′ = ∅ for ϕ ̸= ϕ′, and

Π(G(F )) =
⊔

ϕ∈Φ(G/F )

Πϕ.

We call Πϕ the L-packet of G(F ) associated with ϕ. When π ∈ Πϕ, we say that ϕ is the
L-parameter of π. The map π 7→ (ϕ, η), where ϕ ∈ Φ(G/F ) is the L-parameter of π and
η = ⟨·, π⟩ϕ ∈ Irr(Aϕ), is called the local Langlands correspondence.

The A-packets Πψ were constructed explicitly by Mœglin. See also Xu’s paper [X17] and
its references. As a consequence, Mœglin showed the following deep result.

Theorem 1.3 (Mœglin [Mœ11], Xu [X17, Theorem 8.12]). The A-packet Πψ is multiplicity-
free, i.e., Πψ is a subset of Π(G(F )).

1.3. The main conjecture. The L-packets give a classification of Π(G(F )) but the endo-
scopic character identities fail for non-tempered L-packets in general. On the other hand, the
A-packets are “local factors” of global A-packets which classify the discrete spectrum of auto-
morphic representations, so that the local meaning of the A-packets is unclear. Furthermore,
Mœglin’s construction of L-packets might not be so hard (up to constructing supercuspidal
representations), but the one of A-packets should be quite difficult (see also [X17]).

One may desire to understand A-packets more directly. Since a classification of Π(G(F ))
is given by L-packets, it may be desirable that A-packets are described in terms of L-packets.

After Arthur formulated conjectures about A-packets in 1980’s, in [ABV92], Adams, Bar-
basch and Vogan constructed A-packets ΠABV

ψ for real reductive groups purely locally. These

packets are called the Adams–Barbasch–Vogan packets (or shortly, the ABV packets).
Vogan [V93] had also given a similar definition of A-packets ΠABV

ψ for p-adic reductive groups
using the microlocal Euler characteristic derived from the microlocalisation functor.

In [CFMMX], the authors constructed p-adic ABV packets ΠABV
ψ using vanishing cycles

functors (instead of the microlocal analysis). It is conjectured (and might be known to ex-
perts) that the ABV packets coincide with Vogan’s ones, but the definition using vanishing
cycles functors is more amenable than Vogan’s one. For the detail for the comparison of two
definitions, see [CFMMX, §7.6].

The main conjecture in [CFMMX] is roughly stated as follows:
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Conjecture 1.4. For ψ ∈ Ψ(G/F ),

Πψ = ΠABV
ψ .

1.4. Outline of the definition of p-adic ABV packets. The p-adic ABV packets ΠABV
ψ

will be defined using the vanishing cycles functors of equivariant perverse sheaves on Vogan
varieties. Now we explain these terminologies roughly.

(1) The Vogan variety is a moduli space of L-parameters. Let λ ∈ Λ(G/F ) be an
infinitesimal character. This gives a complex variety Vλ (Definition 2.1) with an action
of a complex reductive group Hλ = Z

Ĝ
(Im(λ)). There is a canonical bijection

Φλ(G/F ) := {ϕ ∈ Φ(G/F ) | λϕ = λ} → {Hλ-orbits in Vλ}, ϕ 7→ Cϕ.

See Proposition 2.2.
(2) When there is a group action H × V → V in the category of algebraic varieties (over

C), one can define a category PerH(V ) of H-equivariant perverse sheaves on V . Every
simple object in PerH(V ) is (isomorphic to) an intersection complex IC(C,L), where
C is an H-orbit in V and L is a simple H-equivariant local system on C. Hence the
simple objects in PerH(V ) are parametrized by pairs (C, ρ), where C is anH-orbit in V
and ρ is an isomorphism class of irreducible representations of equivariant fundamental
group AC of C. Moreover, if (V,H) = (Vλ,Hλ) and C = Cϕ, then AC ∼= Aϕ (Lemma
2.3).

(3) The local Langalnds correspondence together with the bijection

{(ϕ, η) | ϕ ∈ Φλ(G/F ), η ∈ Irr(Aϕ)}

��

(ϕ, η)
_

��
{(C, ρ) | Hλ-orbit C ⊂ Vλ, ρ ∈ Irr(AC)} (Cϕ, η)

gives an injection ⊔
ϕ∈Φλ(G/F )

Πϕ → PerHλ(Vλ)
simple
/iso , π 7→ P(π).

See Proposition 4.1.
(4) For an Hλ-orbit C in Vλ, define a subvariety T ∗

C(Vλ)reg of the conormal bundle T ∗
C(Vλ)

by

T ∗
C(Vλ)reg = T ∗

C(Vλ) \
∪

C⊊C1

T ∗
C1
(Vλ),

where C1 runs over all Hλ-orbits in Vλ such that C ⊊ C1. Then the vanishing cycles
functor gives an exact functor

pEvC : PerHλ(Vλ) → PerHλ(T
∗
C(Vλ)reg).

See Theorem 4.2.
(5) We say that (x, ξ) ∈ T ∗

C(Vλ) is strongly regular if its Hλ-orbit is open and dense
in T ∗

C(Vλ). We denote by T ∗
C(Vλ)sreg the strongly regular part of T ∗

C(Vλ). Then
T ∗
C(Vλ)sreg ⊂ T ∗

C(Vλ)reg is an Hλ-orbit if it is non-empty (Proposition 3.4). One can
define a functor

EvsC : PerHλ(Vλ) → LocHλ(T
∗
C(Vλ)sreg),
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where LocHλ(T
∗
C(Vλ)sreg) is the category ofHλ-equivariant local systems on T ∗

C(Vλ)sreg,
by

EvsCP = pEvCP[−dimVλ]|T ∗
C(Vλ)sreg

.

Finally, we define a normalization NEvsC : PerHλ(Vλ) → LocHλ(T
∗
C(Vλ)sreg) of EvsC .

Its properties are stated in Theorem 4.4.

(6) For an A-parameter ψ : WF × SL2(C)× SL2(C) → Ĝ, set

ψ1 = ψ|{1}×SL2(C)×{1} : SL2(C) → Ĝ,

ψ2 = ψ|{1}×{1}×SL2(C) : SL2(C) → Ĝ,

and put

xψ = dψ1

(
0 1
0 0

)
, ξψ = dψ2

(
0 0
1 0

)
∈ ĝ = Lie(Ĝ).

Then

(xψ, ξψ) ∈ T ∗
Cψ

(Vλ)sreg

where λ = λψ is the infinitesimal character for ψ, and Cψ = Cϕψ is the Hλ-orbit
corresponding to the L-parameter ϕψ for ψ. Moreover, the equivariant fundamental
group AT ∗

Cψ
(Vλ)sreg of T ∗

Cψ
(Vλ)sreg is isomorphic to Aψ (Proposition 3.5). In particular,

T ∗
Cψ

(Vλ)sreg is non-empty when λ = λψ, and there is an equivalence map

LocHλ(T
∗
Cψ

(Vλ)sreg) → Rep(AT ∗
Cψ

(Vλ)sreg)
∼= Rep(Aψ).

(7) Consequently, ψ ∈ Ψ(G/F ) with λψ = λ determines a functor

Evψ : PerHλ(Vλ)
EvsCψ−−−−→ LocHλ(T

∗
Cψ

(Vλ)sreg) → Rep(Aψ),

and its normalization NEvψ. See §5.1.
(8) Note that there is the zero representation in Rep(Aψ). For ψ ∈ Ψ(G/F ), the ABV

packet ΠABV
ψ is defined in Definition 5.1 by

ΠABV
ψ =

π ∈
⊔

ϕ∈Φλψ (G/F )

Πϕ

∣∣∣∣∣∣∣ Evψ(P(π)) ̸= 0

 .

In the rest of this paper, we explain the terminologies appearing in the definition of the
ABV packets. The proofs of several facts are devolved to the original paper [CFMMX]. The
main conjecture is stated in Conjecture 5.2.

In Appendix A, we summarize supplements: Algebraic representations of SL2(C); equivari-
ant fundamental groups and local systems; and the Kazhdan–Lusztig conjecture. In Appendix
B, we recall relations between representations of semisimple Lie groups, D-modules and per-
verse sheaves in the archimedean case.

2. Vogan varieties and several groups associated to infinitesimal characters

In this section, we define Vogan varieties Vλ together with several reductive groups Hλ ⊂
Jλ ⊂ Kλ ⊂ Ĝ associated to infinitesimal characters λ ∈ Λ(G/F ), and give some examples.
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2.1. Infinitesimal characters for A-parameters. Let ψ : WF × SL2(C)× SL2(C) → Ĝ be

an A-parameter for G. Recall that Ĝ is Sp2n(C) or SO2n+1(C) so that one can regard ψ as
a self-dual representation of WF × SL2(C) × SL2(C). We decompose ψ into a direct sum of
representations as follows:

ψ =

(⊕
i∈I

ρi ⊠ Vi

)
⊕

⊕
j∈J

ρj ⊠Wj

⊕

(⊕
k∈K

(ρk ⊕ ρ∨k )⊠ Ui

)
,

where

• for i ∈ I ∪ J ∪K, ρi is irreducible bounded representation of WF such that ρi ̸∼= ρi′
and ρi ̸∼= ρ∨i′ for i ̸= i′;

• if i ∈ I, then ρi is self-dual of the same type as ψ;
• if j ∈ J , then ρj is self-dual of the opposite type to ψ;
• if k ∈ K, then ρk is not self-dual;
• Vi, Wj , and Uk are representations of SL2(C)× SL2(C).

For i ∈ I (resp. j ∈ J), the structure of Ĝ gives a non-degenerate symmetric (resp. alternating)
bilinear form on Vi (resp. Wj). The centralizer ZĜ(ψ(WF )) of ψ(WF ) is the kernel of the map∏

i∈I
O(Vi)×

∏
j∈J

Sp(Wj)×
∏
k∈K

GL(Uk) → {±1},

((αi)i, (βj)j , (γk)k) 7→
∏
i∈I

det(αi)
dim ρi .

2.2. Several groups associated to infinitesimal characters. Let λ : WF → Ĝ be an
infinitesimal character for G. Recall that we fix a Frobenius element FrobF ∈ WF , and we
normalize the norm map | · | : WF → R× so that |FrobF | = q. We may assume that λ(FrobF )
is diagonal, say diag(α1, . . . , αN ) for some α1, . . . , αN ∈ C×. Write αi = riui with ri > 0 and

|ui| = 1. We define fλ, sλ, tλ ∈ Ĝ by

fλ = λ(FrobF ) = diag(α1, . . . , αN ),

sλ = diag(r1, . . . , rN ),

tλ = diag(u1, . . . , uN ).

Note that sλtλ = tλsλ = fλ. We call sλ (resp. tλ) the hyperbolic part (resp. elliptic part)
of fλ. Since αi = αj =⇒ ui = uj , we have Z

Ĝ
(fλ) ⊂ Z

Ĝ
(tλ).

Now we define Hλ ⊂ Jλ ⊂ Kλ ⊂ Ĝ by

Hλ = Z
Ĝ
(λ(WF )),

Jλ = Z
Ĝ
(λ(IF )) ∩ ZĜ(tλ),

Kλ = Z
Ĝ
(λ(IF )).

Remark that Hλ = Z
Ĝ
(λ(IF )) ∩ZĜ(fλ). These are complex reductive groups, but not neces-

sarily connected. We note that fλ stabilizes Kλ and that sλ ∈ Jλ.
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2.3. Vogan varieties. Let hλ ⊂ jλ ⊂ kλ ⊂ ĝ be the Lie algebras of Hλ ⊂ Jλ ⊂ Kλ ⊂ Ĝ,

respectively. The adjoint action of Ĝ on ĝ is denoted by Ad.

Definition 2.1. For λ ∈ Λ(G/F ), we define

Vλ = {x ∈ kλ | Ad(fλ)x = qx},
tVλ = {x ∈ kλ | Ad(fλ)x = q−1x}.

Then Hλ acts on Vλ and tVλ by Ad. We call Vλ the Vogan variety for λ.

We note that

Vλ = {x ∈ jλ | Ad(sλ)x = qx},
tVλ = {x ∈ jλ | Ad(sλ)x = q−1x}

since fλ = sλtλ = tλsλ and any eigenvalue of tλ has complex norm 1.
There is a concrete description of Vλ ([CFMMX, §4.6]). Notice that sλ ∈ Jλ by definition.

Let S be a maximal torus of Jλ such that sλ ∈ S. We denote the set of roots of S in Jλ by
R(S, Jλ). Then

Vλ ∼= Ad, for d = |{α ∈ R(S, Jλ) | α(sλ) = q}|.
The Lie algebra jλ has a decomposition

jλ = Z(jλ)⊕ [jλ, jλ],

where Z(jλ) is the center of jλ, and [jλ, jλ] is a semisimple Lie algebra. They are given explicitly
by

[jλ, jλ] =
⊕
i∈I

so(Vi)⊕
⊕
j∈J

sp(Wj)⊕
⊕
k∈K

sl(Uk), Z(jλ) ∼= C⊕|K|.

We choose any non-degenerate symmetric bilinear form on Z(jλ). Using it, we extend the
Killing form on [jλ, jλ] to jλ so that [jλ, jλ] and Z(jλ) are orthogonal to each other. Then we
obtain a non-degenerate symmetric Jλ-invariant bilinear pairing

( | ) : jλ × jλ → C.

This pairing allows us to identify tVλ with the linear dual of Vλ. It is known that the Killing
forms on so(Vi), sp(Wj), and sl(Uk) are given as follows.

so(Vi)× so(Vi) → C, (X,Y ) 7→ (dimVi − 2) · tr(XY ),

sp(Wj)× sp(Wj) → C, (X,Y ) 7→ (dimWj + 2) · tr(XY ),

sl(Uk)× sl(Uk) → C, (X,Y ) 7→ 2 dimUk · tr(XY ).

2.4. L-parameters and Hλ-orbits in Vλ. Let Φλ(G/F ) be the subset of Φ(G/F ) consisting

of L-parameters ϕ : WF × SL2(C) → Ĝ such that λϕ = λ. For ϕ ∈ Φλ(G/F ), set

φ = ϕ|{1}×SL2(C) : SL2(C) → Ĝ,

and put

xϕ = dφ

(
0 1
0 0

)
∈ ĝ.

Then xϕ ∈ Vλ. The Hλ-orbit of xϕ is denoted by Cϕ.
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Proposition 2.2 ([CFMMX, Proposition 3.2.2]). The map ϕ 7→ Cϕ gives a bijection

Φλ(G/F ) → Hλ\Vλ.

For an Hλ-orbit C in Vλ, let AC = π1(C)Hλ be the Hλ-equivariant fundamental group of
C. For equivariant fundamental groups, see Appendix A.2.

Lemma 2.3 ([CFMMX, Lemma 3.6.1]). For any ϕ ∈ Φλ(G/F ), we have

ACϕ
∼= Aϕ.

Now we set

Πλ =
⊔

ϕ∈Φλ(G/F )

Πϕ

to be the union of the L-packets associated with ϕ ∈ Φλ(G/F ). The LLC together with
Proposition 2.2 and Lemma 2.3 gives the following:

Proposition 2.4. There is a canonical injection

Πλ → {(C, ρ) | Hλ-orbit C ⊂ Vλ, ρ ∈ Irr(AC)}.

2.5. Examples of Φλ(G/F ) and Vλ. In this subsection, we describe Vλ,
tVλ and Φλ(G/F )

more explicitly.
Let λ = λψ be the infinitesimal character for the A-parameter

ψ =

(⊕
i∈I

ρi ⊠ Vi

)
⊕

⊕
j∈J

ρj ⊠Wj


as in §2.1 (with K = ∅). Suppose that ψ is of good parity, i.e., each irreducible constituent of
ψ is self-dual of the same type as ψ. Then for each i ∈ I and j ∈ J , there are decompositions

Vi = (Vi,ti ⊕ · · · ⊕ Vi,1)⊕ Vi,0 ⊕ (V ∗
i,1 ⊕ · · · ⊕ V ∗

i,ti),

Wj = (Wj,tj ⊕ · · · ⊕Wj,1)⊕ (W ∗
j,1 ⊕ · · · ⊕W ∗

j,tj ),

where

• Vi,k (resp. Wj,k) is a totally isotropic subspace of Vi (resp. Wj) for i = 1, . . . , ti
(resp. j = 1, . . . , tj);

• Vi,k ⊕ V ∗
i,k (resp. Wj,k ⊕W ∗

j,k) is non-degenerate for i = 1, . . . , ti (resp. j = 1, . . . , tj);

• Vi,k′ ⊕ V ∗
i,k′ (resp. Wj,k′ ⊕W ∗

j,k′) is orthogonal to Vi,k ⊕ V ∗
i,k (resp. Wj,k ⊕W ∗

j,k) for

k′ ̸= k;
• V0 is the orthogonal complement of (Vi,ti ⊕ · · · ⊕ Vi,1)⊕ (V ∗

i,1 ⊕ · · · ⊕ V ∗
i,ti

)

such that sλ stabilizes Vi,k (resp. Wj,k) and acts on it by the scalar qk (resp. qk−
1
2 ). Moreover,

dim(Vi,k+1) ≤ dim(Vi,k) and dim(Wj,k+1) ≤ dim(Wj,k) for k ≥ 1.
We have

Jλ ⊂
∏
i∈I

O(Vi)×
∏
j∈J

Sp(Wj), jλ =
⊕
i∈I

so(Vi)⊕
⊕
j∈J

sp(Wj),

and

Hλ ⊂
∏
i∈I

(
O(Vi,0)×

ti∏
k=1

GL(Vi,k)

)
×
∏
j∈J

tj∏
k=1

GL(Wj,k).
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More explicitly, Jλ is the kernel of∏
i∈I

O(Vi)×
∏
j∈J

Sp(Wj) → {±1}, ((αi)i, (βj)j) 7→
∏
i∈I

det(αi)
dim ρi ,

and Hλ is the kernel of

∏
i∈I

(
O(Vi,0)×

ti∏
k=1

GL(Vi,k)

)
×
∏
j∈J

tj∏
k=1

GL(Wj,k) → {±1},

((αi, (ai,k)k)i, (bj,k)j,k) 7→
∏
i∈I

det(αi)
dim ρi .

The Vogan variety Vλ is the subspace of jλ given by

⊕
i∈I

ti⊕
k=1

Hom(Vi,k−1, Vi,k)⊕
⊕
j∈J

Sym(W ∗
j,1,Wj,1)⊕

tj⊕
k=2

Hom(Wj,k−1,Wj,k)

 ,

where Sym(W ∗
j,1,Wj,1) = {c ∈ Hom(W ∗

j,1,Wj,1) | c∗ = −c} with c∗ ∈ Hom(W ∗
j,1,Wj,1) being

defined so that

⟨cw1, w2⟩Wj
= ⟨w1, c

∗w2⟩Wj

for w1, w2 ∈W ∗
j,1. More precisely, ⊕ti

k=1Hom(Vi,k−1, Vi,k) and Sym(W ∗
j,1,Wj,1)⊕(⊕tj

k=2Hom(Wj,k−1,Wj,k))

are regarded as subspaces in so(Vi) and sp(Wj) by

(Ai,k)k 7→



0Vi,ti Ai,ti
. . .

. . .

0Vi,1 Ai,1
0Vi,0 A∗

i,1

0V ∗
i,1

. . .

. . . A∗
i,ti

0V ∗
i,ti


∈ so(Vi),

(Bj,k)k 7→



0Wj,tj
Bj,tj
. . .

. . .

0Wj,2 Bj,2
0Wj,1 Bj,1

0W ∗
j,1

B∗
j,2

0W ∗
j,2

. . .

. . . B∗
j,tj

0W ∗
j,tj


∈ sp(Wj),
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where A∗
i,k ∈ Hom(V ∗

i,k, V
∗
i,k−1) (with V ∗

i,0 := Vi,0) and B∗
j,k ∈ Hom(W ∗

j,k,W
∗
j,k−1) are defined

so that

⟨Ai,kv, v∗⟩Vi +
⟨
v,A∗

i,kv
∗⟩
Vi

= 0,

⟨Bj,kw,w∗⟩Wj
+
⟨
w,B∗

j,kw
∗⟩
Wj

= 0

for v ∈ Vi,k−1, v
∗ ∈ V ∗

i,k and w ∈ Wj,k−1, w
∗ ∈ W ∗

j,k, respectively. Choosing bases of Vi,k and
Wj,k, we have an identification

Vλ =
⊕
i∈I

ti⊕
k=1

Matdi,k,di,k−1
(C)⊕

⊕
j∈J

Symdj,1(C)⊕
tj⊕
k=2

Matdj,k,dj,k−1
(C)

 ,

where we set di,k = dim(Vi,k), dj,k = dim(Wj,k), and Symdj,1(C) is the subspace of Matdj,1(C)
consisting of symmetric matrices. Therefore, as an algebraic variety, Vλ is the affine space Ad
with

d =
∑
i∈I

ti∑
k=1

di,kdi,k−1 +
∑
j∈J

dj,1(dj,1 + 1)

2
+

tj∑
k=2

dj,kdj,k−1

 .

Similarly, tVλ is the subspace of jλ given by

⊕
i∈I

ti⊕
k=1

Hom(Vi,k, Vi,k−1)⊕
⊕
j∈J

Sym(Wj,1,W
∗
j,1)⊕

tj⊕
k=2

Hom(Wj,k,Wj,k−1)

 ,

which is isomorphic to

⊕
i∈I

ti⊕
k=1

Matdi,k−1,di,k(C)⊕
⊕
j∈J

Symdj,1(C)⊕
tj⊕
k=2

Matdj,k−1,dj,k(C)

 .

Since Jλ is semisimple, the bilinear pairing ( | ) : jλ× jλ → C is defined by the Killing form.
The restriction ( | ) : Vλ × tVλ → C is given explicitly by(

((Ai,k)i,k, (Bj,k)j,k) | ((A′
i,k)i,k, (B

′
j,k)j,k)

)
=
∑
i∈I

2(dimVi − 2)

ti∑
k=1

tr(Ai,kA
′
i,k) +

∑
j∈J

(dimWj + 2)

tr(Bj,1B
′
j,1) + 2

tj∑
k=2

tr(Bj,kB
′
j,k)

 .

The sets Φλ(G/F ) and Vλ/Hλ can be complicated. For a positive integer k, we denote by Sk
the unique irreducible algebraic representation of SL2(C) of dimension k. For its realization,
see Appendix A.1 below.

Example 2.5. Suppose that λ = λϕ with

ϕ = ρ⊠ (S3 ⊕ S5),

where ρ is irreducible and self-dual of the same type as ϕ. Then d0 = 2, d1 = 2 and d2 = 1 so
that

Hλ =

{
O(2,C)×GL2(C)×GL1(C) if dim(ρ) ≡ 0 mod 2,

SO(2,C)×GL2(C)×GL1(C) if dim(ρ) ≡ 1 mod 2,
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and

Vλ = Mat2,2(C)⊕Mat1,2(C).
The action of Hλ on Vλ is given by

(α, γ1, γ2) · (X1, X2) = (γ1X1α
−1, γ2X2γ

−1
1 )

for (α, γ1, γ2) ∈ Hλ and (X1, X2) ∈ Vλ.
For simplicity, we assume that dim ρ is even. Then the elements ϕ in Φλ(G/F ) and the

associated groups Aϕ, the vectors xϕ ∈ Vλ, the Hλ-orbits Cϕ are listed as follows:

• ϕ1 = ρ⊗ (| · |2 ⊕ | · |1 ⊕ | · |1 ⊕ 1⊕ 1⊕ | · |−1 ⊕ | · |−1 ⊕ | · |−2), Aϕ1
∼= Z/2Z, and

xϕ1 =

((
0 0
0 0

)
, (0, 0)

)
∈ Cϕ1 =

{(
0 0
0 0

)}
× {(0, 0)};

• ϕ2 = ρ⊗ (| · |2 ⊕ | · |1 ⊕ | · |
1
2S2 ⊕ | · |−

1
2S2 ⊕ | · |−1 ⊕ | · |−2), Aϕ2

∼= 1, and

xϕ2 =

(
1√
2

(
1 −

√
−1

0 0

)
, (0, 0)

)
∈ Cϕ2 =

{(
x y
z w

) ∣∣∣∣ (x,y,z,w)̸=(0,0,0,0),
xw−yz=x2+y2=z2+w2=0

}
× {(0, 0)};

• ϕ3 = ρ⊗ (| · |2 ⊕ | · |1 ⊕ 1⊕ S3 ⊕ | · |−1 ⊕ | · |−2), Aϕ3
∼= (Z/2Z)⊕2, and

xϕ3 =

((
0 0
0 1

)
, (0, 0)

)
∈ Cϕ3 =

{(
x y
z w

) ∣∣∣∣ xw−yz=0,
x2+y2 ̸=0 or z2+w2 ̸=0

}
× {(0, 0)};

• ϕ4 = ρ⊗ (| · |2 ⊕ S3 ⊕ S3 ⊕ | · |−2), Aϕ4
∼= Z/2Z, and

xϕ4 =

((
1 0
0 1

)
, (0, 0)

)
∈ Cϕ4 = GL2(C)× {(0, 0)};

• ϕ5 = ρ⊗ (| · |
3
2S2 ⊕ | · |1 ⊕ 1⊕ 1⊕ | · |−1 ⊕ | · |−

3
2S2), Aϕ5

∼= Z/2Z, and

xϕ5 =

((
0 0
0 0

)
, (1, 0)

)
∈ Cϕ5 =

{(
0 0
0 0

)}
× {(a, b) | (a, b) ̸= (0, 0)};

• ϕ6 = ρ⊗ (| · |
3
2S2 ⊕ | · |

1
2S2 ⊕ | · |−

1
2S2 ⊕ | · |−

3
2S2), Aϕ6

∼= 1, and

xϕ6 =

(
1

2

(
1 −

√
−1

−
√
−1 −1

)
,
1√
2
(1,−

√
−1)

)
∈ Cϕ6 =

{
(

(
x y
z w

)
, (a, b))

∣∣∣∣ (x,y,z,w)̸=(0,0,0,0), (a,b) ̸=(0,0), xw−yz=0,

(ax+bz,ay+bw)=(0,0), (az−bx)2+(aw−by)2=0

}
;

• ϕ7 = ρ⊗ (| · |
3
2S2 ⊕ 1⊕ S3 ⊕ | · |−

3
2S2), Aϕ7

∼= (Z/2Z)⊕2, and

xϕ7 =

((
0 0
1 0

)
, (1, 0)

)
∈ Cϕ7 =

{
(

(
x y
z w

)
, (a, b))

∣∣∣∣ (a,b) ̸=(0,0), xw−yz=0,

(ax+bz,ay+bw)=(0,0), (az−bx)2+(aw−by)2 ̸=0

}
;
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• ϕ8 = ρ⊗ (| · |1S3 ⊕ | · |1 ⊕ | · |−1 ⊕ | · |−1S3), Aϕ8
∼= 1, and

xϕ8 =

(
1√
2

(
1 −

√
−1

0 0

)
, (1, 0)

)
∈ Cϕ8 =

{
(

(
x y
z w

)
, (a, b))

∣∣∣∣ (a,b) ̸=(0,0), xw−yz=0,
ax+bz ̸=0, (ax+bz)2+(ay+bw)2=0

}
;

• ϕ9 = ρ⊗ (| · |1 ⊕ 1⊕ S5 ⊕ | · |−1), Aϕ9
∼= (Z/2Z)⊕2, and

xϕ9 =

((
1 0
0 0

)
, (1, 0)

)
∈ Cϕ9 =

{
(

(
x y
z w

)
, (a, b))

∣∣∣∣ (a,b) ̸=(0,0), xw−yz=0,

(ax+bz)2+(ay+bw)2 ̸=0 or (az−bx)2+(aw−by)2 ̸=0

}
;

• ϕ10 = ρ⊗ (| · |
1
2S4 ⊕ | · |−

1
2S4), Aϕ10

∼= 1, and

xϕ10 =

((
1 0
0 1

)
,
1√
2
(1,

√
−1)

)
∈ Cϕ10 =

{
(

(
x y
z w

)
, (a, b))

∣∣∣∣ (a,b)̸=(0,0), xw−yz ̸=0,
(ax+bz)2+(ay+bw)2=0

}
;

• ϕ11 = ρ⊗ (S3 ⊕ S5), Aϕ11
∼= (Z/2Z)⊕2, and

xϕ11 =

((
1 0
0 1

)
, (1, 0)

)
∈ Cϕ11 =

{
(

(
x y
z w

)
, (a, b))

∣∣∣∣ (a,b)̸=(0,0), xw−yz ̸=0,
(ax+bz)2+(ay+bw)2 ̸=0

}
.

Note that Cϕ1 is a unique closed orbit and Cϕ11 is a unique open dense orbit. The closure
relations of Hλ-orbits are given as follows:

Cϕ1 = Cϕ1 ⊂
∩

Cϕ2 ⊂ Cϕ3 ⊂
∩

Cϕ4 ⊂ Cϕ10 ⊂
∪

Cϕ11∪
Cϕ5 ⊂ Cϕ6 ⊂ Cϕ7 ⊂ Cϕ8 ⊂ Cϕ9 .

3. A-parameters and strongly regular elements in the conormal bundle

In this section, we define the regular part of the conormal bundle T ∗
C(Vλ), and we introduce

the notion of strongly regular elements.

3.1. Cotangent space and conormal bundle to the Vogan variety. Let T ∗(Vλ) be the
cotangent space to the Vogan variety Vλ. For an Hλ-orbit C in Vλ, we denote the conormal
bundle by T ∗

C(Vλ). Recall that Vλ is an affine space.

Proposition 3.1 ([CFMMX, Propositions 5.2.1, 5.3.1]). There is an Hλ-equivariant isomor-
phism

T ∗(Vλ) ∼= Vλ × tVλ.

Similarly,
T ∗
C(Vλ) = {(x, ξ) ∈ T ∗(Vλ) | x ∈ C, [x, ξ] = 0},
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where [·, ·] denotes the Lie bracket on jλ, and we identity Vλ and tVλ with subspaces of jλ.

Since V ∗
λ
∼= tVλ, we can define an Hλ-equivariant isomorphism

T ∗(Vλ) → T ∗(tVλ), (x, ξ) 7→ (ξ, x),

which we call transposition. As in Proposition 3.1, for an Hλ-orbit B in tVλ, we have

T ∗
B(

tVλ) = {(ξ, x) ∈ T ∗(tVλ) | ξ ∈ B, [ξ, x] = 0}.

Lemma 3.2. For any Hλ-orbit C in Vλ, there is a unique Hλ-orbit C
∗ in tVλ such that the

restriction of the transposition gives an isomorphism

T ∗
C(Vλ)

∼= T ∗
C∗(tVλ).

The map C 7→ C∗ is a bijection

Hλ\Vλ → Hλ\tVλ.

Define T ∗
C(Vλ)reg ⊂ T ∗

C(Vλ) by

T ∗
C(Vλ)reg = T ∗

C(Vλ) \
∪
C1

C1 ̸=C⊊C1

T ∗
C1
(Vλ),

where C1 runs over all Hλ-orbits in Vλ such that C ⊊ C1 and C1 ̸= C.

Proposition 3.3 ([CFMMX, Proposition 5.4.3]). If (x, ξ) ∈ T ∗
C(Vλ)reg, then (x, ξ) ∈ C ×C∗,

[x, ξ] = 0, and (x | ξ) = 0.

We say that (x, ξ) ∈ T ∗
C(Vλ) is strongly regular if its Hλ-orbit is open and dense in

T ∗
C(Vλ). We write T ∗

C(Vλ)sreg for the strongly regular part of T ∗
C(Vλ).

Proposition 3.4 ([CFMMX, Proposition 5.5.1]). We have

T ∗
C(Vλ)sreg ⊂ T ∗

C(Vλ)reg.

Moreover, T ∗
C(Vλ)sreg is an Hλ-orbit if it is non-empty.

Let ψ be an A-parameter for G such that λ = λψ. We set

ψ1 = ψ|{1}×SL2(C)×{1} : SL2(C) → Ĝ,

ψ2 = ψ|{1}×{1}×SL2(C) : SL2(C) → Ĝ,

and we put

xψ = dψ1

(
0 1
0 0

)
, ξψ = dψ2

(
0 0
1 0

)
∈ ĝ = Lie(Ĝ).

It is easy to see that

(xψ, ξψ) ∈ T ∗
Cψ

(Vλ),

where Cψ = Cϕψ is the Hλ-orbit corresponding to the L-parameter ϕψ for ψ.

Proposition 3.5 ([CFMMX, Propositions 5.6.1, 5.7.1]). We have

(xψ, ξψ) ∈ T ∗
Cψ

(Vλ)sreg.

Moreover, the equivariant fundamental group AT ∗
Cψ

(Vλ)sreg of T ∗
Cψ

(Vλ)sreg is isomorphic to Aψ.
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Example 3.6. Consider

λ = ρ⊗ (| · |2 ⊕ | · |1 ⊕ | · |1 ⊕ 1⊕ 1⊕ | · |−1 ⊕ | · |−1 ⊕ | · |−2),

which is the same as in Example 2.5. Then the A-parameters ψ ∈ Ψ(G/F ) such that λ = λψ
and the associated vectors (xψ, ξψ) are listed as follows:

• ψ1 = ρ⊠ 1⊠ (S3 ⊕ S5) and

xψ1 =

((
0 0
0 0

)
, (0, 0)

)
∈ Cϕ1 , ξψ1 =

((
6 0
0 2

)
,

(
4
0

))
∈ tVλ;

• ψ3 = ρ⊠ (S3 ⊠ 1⊕ 1⊠ S5) and

xψ3 =

((
0 0
0 1

)
, (0, 0)

)
∈ Cϕ3 , ξψ3 =

((
6 0
0 0

)
,

(
4
0

))
∈ tVλ;

• ψ6 = ρ⊠ S2 ⊠ S4 and

xψ6 =

(
1

2

(
1 −

√
−1

−
√
−1 −1

)
,
1√
2
(1,−

√
−1)

)
∈ Cϕ6 ,

ξψ6 =

(
1

2

(
7

√
−1

−
√
−1 7

)
,
1√
2

(
3

−3
√
−1

))
∈ tVλ;

• ψ9 = ρ⊠ (S5 ⊠ 1⊕ 1⊠ S3) and

xψ9 =

((
1 0
0 0

)
, (1, 0)

)
∈ Cϕ9 , ξψ9 =

((
0 0
0 2

)
,

(
0
0

))
∈ tVλ;

• ψ10 = ρ⊠ S4 ⊠ S2 and

xψ10 =

((
1 0
0 1

)
,
1√
2
(1,

√
−1)

)
∈ Cϕ10 ,

ξψ10 =

(
1

2

(
1

√
−1√

−1 −1

)
,
1√
2

(
1√
−1

))
∈ tVλ;

• ψ11 = ρ⊠ (S3 ⊕ S5)⊠ 1 and

xψ11 =

((
1 0
0 1

)
, (1, 0)

)
∈ Cϕ11 , ξψ11 =

((
0 0
0 0

)
,

(
0
0

))
∈ tVλ.

For a realization of Sk, see Appendix A.1.

Let LocHλ(T
∗
Cψ

(Vλ)sreg) be the category of Hλ-equivariant local systems on T ∗
Cψ

(Vλ)sreg.

Then (xψ, ξψ) ∈ T ∗
Cψ

(Vλ)sreg determines an equivalence

LocHλ(T
∗
Cψ

(Vλ)sreg) → Rep(AT ∗
Cψ

(Vλ)sreg)
∼= Rep(Aψ).

4. Vanishing cycles functor of perverse sheaves on Vogan varieties

In this section, we define microlocal vanishing cycles functors, which we will use to define
the ABV packets.
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4.1. L-packets and equivariant perverse sheaves on Vλ. For an algebraic variety V , one
can consider the category Per(V ) of perverse sheaves, which is a subcategory of the derived
category D(V ) = Dbc(V ) of bounded (constructible) Qℓ-sheaves on V . See [BBD82].

When H×V → V is a group action in the category of algebraic varieties, one can define the
category PerH(V ) of H-equivariant perverse sheaves on V , equipped with a forgetful functor

PerH(V ) → Per(V ).

For more precision, see [CFMMX, §3.4–3.6]. Every simple object in PerH(V ) is the intersection
complex IC(C,L), where C is an H-orbit in V , and L is a simple H-equivariant local system
of C. It is defined by

IC(C,L) = Im
(
pH0(j!L) → pH0(Rj∗L)

)
,

where j is the embedding C ↪→ V . Let LocH(C) denote the category of H-equivariant local
systems of C. Hence there exists a canonical bijection:

PerH(V )simple
/iso ↔ {(C,L) | H-orbit C ⊂ V , L ∈ LocH(C)

simple
/iso }

↔ {(C, η) | H-orbit C ⊂ V , η ∈ Irr(AC)},
where AC is the H-equivariant fundamental group of C.

Now we consider the Vogan variety V = Vλ equipped with the action of the reductive group
H = Hλ. Proposition 2.4 gives the following:

Proposition 4.1 ([CFMMX, Proposition 3.6.2]). There is a canonical injection

Πλ → PerHλ(Vλ)
simple
/iso , π 7→ P(π).

4.2. Vanishing cycles functors. In this subsection, we fix the notation for vanishing cycles
functors. Let

• R = C[[t]], K = C((t));
• K be a separable closure of K, and R be the integral closure of R in K;
• S = Spec(R), η = Spec(K), s = Spec(C), and S = Spec(R).

Note that S is a trait, i.e., the spectrum of a henselian discrete valuation ring with generic
point η and special point s. The morphism s → S has a canonical section corresponding to
C → C[[t]]. Hence we have

η // j // S
((
s.oo

i
oo

Let η be a geometric point of S localized at η, i.e., η : Spec(K) → η → S. Note that

Gal(η/η) ∼= Ẑ. For any morphism X → S, we have the cartesian diagram:

Xη
bXη

zzuuu
uu
u

//
jX //

��

X
bX

{{ww
ww
ww

��

Xs
bXs

zzuu
uu
uu
oo

iXoo

��

Xη
// jX //

��

X

��

Xs
ooiXoo

��

η
bη

zzttt
tt
tt
t

//
jS // S

bS

{{vv
vv
vv
v

s

tt
tt
tt
tt

tt
tt
tt
tt
oo

iSoo

η // j // S soo
ioo
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where X = X ×S S, Xη = X ×S η, and Xs = X ×S s.
Recall that

• “a sheaf on Xs ×s η” means a sheaf on Xs equipped with a Gal(η/η)-action;
• D(Xs×s η) = Dbc(Xs×s η) is the bounded derived category of constructible Qℓ-sheaves
on Xs ×s η;

• “a sheaf on Xs ×s S” means a triple (Fη,Fs,Fs → Fη), where Fη and Fs are sheaves
on Xs×s η and on Xs, respectively, and Fs → Fη is a Gal(η/η)-equivariant morphism,
with the action on Fs being trivial;

• D(Xs×sS) = Dbc(Xs×sS) is the bounded derived category of constructible Qℓ-sheaves
on Xs ×s S.

There exists a functor

RΨXη : D(Xη) → D(Xs ×s η)

called the nearby cycles functor [DK73]. This is defined by

RΨXηF = (iXs)
∗(jXη)∗(bXη)

∗F

for F ∈ D(Xη), which is a sheaf on Xs equipped with an action of Gal(η/η) obtained from
the canonical action on (bXη)

∗F . Finally, there exists a functor

RΦX : D(X) → D(Xs ×s S)

called the vanishing cycles functor. The triangle

RΦX
(1)

{{xx
xx
xx
xx
x

i∗
X
b∗X

// RΨXηj
∗
Xη

eeJJJJJJJJJJ

is a distinguished triangle in D(Xs×sS). Thus, for F ∈ D(X), we obtain a long exact sequence

· · · // Hq(i∗
X
b∗XF) // Hq(RΨXηj

∗
Xη

F) // Hq(RΦXF) // Hq+1(i∗
X
b∗XF) // · · · .

4.3. Definition of functors. Now fix an infinitesimal character λ ∈ Λ(G/F ), and consider
the Vogan variety Vλ with an action of a reductive group Hλ. Recall in §2.3 that we fixed a
non-degenerate symmetric Jλ-invariant bilinear pairing ( | ) : jλ × jλ → C. By restriction, we
obtain an s-morphism

( | ) : T ∗(Vλ) → A1
C = Spec(C[t]).

For an Hλ-orbit B ⊂ tVλ, we denote by

XB = (Vλ ×B)×A1
C
S

fB−−→ S

the base change of the restriction of ( | ) to Vλ × B along the canonical map g : S → A1
C .

Namely, we have a cartesian diagram

XB

fB
��

// Vλ ×B

( | )
��

S
g // A1

C.
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The structure sheaf of XB is

OXB = R⊗C[t] (OVλ ⊗C OB) .

The special fibre of XB is the s-scheme

XB,s = f−1
B (s) = f−1

B (0) = {(x, ξ) ∈ Vλ ×B | (x | ξ) = 0}.

We obtain the vanishing cycles functor

RΦXB : D(XB) → D(f−1
B (0)×s S).

As an s-scheme, Hλ acts on Vλ ×B. Its base change along S → s gives an action of Hλ ×s S
on (Vλ ×B)×s S. Since ( | ) is Hλ-invariant, this action preserves

{(x, ξ, t) ∈ (Vλ ×B)×s S | (x|ξ) = g(t)}.

This is precisely XB = (Vλ × B) ×A1
C
S. Hence Hλ ×s S acts on XB in the category of

S-schemes.
We denote the Hλ-equivariant derived category on Vλ by DHλ(Vλ). For any Hλ-orbit

C ⊂ Vλ, we define a functor

EvC : DHλ(Vλ) → DHλ(T
∗
C(Vλ)reg ×s S)

by the diagram

DHλ(Vλ)
EvC //

·⊠1C∗

��

DHλ(T
∗
C(Vλ)reg ×s S)

DHλ(Vλ × C∗)
BC // DHλ×sS(XC∗)

RΦXC∗ // DHλ(f
−1
C∗ (0)×s S),

Res

OO

where

(1) ·⊠1C∗ : DHλ(Vλ) → DHλ(Vλ×C∗) is the pullback along the projection Vλ×C∗ → Vλ;
(2) BC: DHλ(Vλ × C∗) → DHλ×sS(XC∗) is the base change functor, which is an exact

functor;
(3) RΦXC∗ : DHλ×sS(XC∗) → DHλ(f

−1
C∗ (0)×s S) is the vanishing cycles functor;

(4) Res : DHλ(f
−1
C∗ (0) ×s S) → DHλ(T

∗
C(Vλ)reg ×s S) is given by the pullback along the

inclusion T ∗
C(Vλ)reg ↪→ f−1

C∗ (0) induced by Proposition 3.3.

For ξ0 ∈ tVλ, define fξ0 : Xξ0 → S by the base change of Vλ ∋ x 7→ (x|ξ0) ∈ A1
C, i.e., we

have a cartesian diagram

Xξ0

fξ0
��

// Vλ

( |ξ0)
��

S
g // A1

C.

The structure sheaf of Xξ0 is

OXξ0
= R⊗C[t] OVλ ,

where OVλ(A) = A[x] for any C-algebra A, on which A[t] acts by t 7→ (x|ξ0). The special fibre
of Xξ0 is the s-scheme

Xξ0,s = f−1
ξ0

(s) = f−1
ξ0

(0) = {x ∈ Vλ | (x|ξ0) = 0}.
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Define

RΦfξ0 : DHλ(Vλ) → DZHλ (ξ0)
(f−1
ξ0

(0)×s S)

by

DHλ(Vλ)

forget

��

RΦfξ0 // DZHλ (ξ0)
(f−1
ξ0

(0)×s S)

DZHλ (ξ0)
(Vλ)

BC // DZHλ (ξ0)×sS
(Xξ0)

RΦXξ0

OO

where BC: DZHλ (ξ0)
(Vλ) → DZHλ (ξ0)×sS

(Xξ0) is the pullback along Xξ0 → Vλ.

The following is a summary of properties of EvC ([CFMMX, Propositions 6.4.1, 6.5.1, 6.6.2,
6.8.1, 6.9.1]).

Theorem 4.2. Let C ⊂ Vλ be an Hλ-orbit.

(a) The functor

EvC : DHλ(Vλ) → DHλ(T
∗
C(Vλ)reg ×s S)

is exact.
(b) For every F ∈ DHλ(Vλ) and every (x0, ξ0) ∈ T ∗

C(Vλ)reg, there is a canonical isomor-
phism

(EvCF)(x0,ξ0)
∼= (RΦfξ0F)x0 .

(c) If F ∈ DHλ(Vλ), then

EvCF = 0 unless C ⊂ suppF =
∪
i

suppH i(F).

(d) For any H-equivariant local system L on C,

EvCIC(C,L) = EvCIC(C,1C)⊗ (L⊠ 1C∗)|T ∗
C(Vλ)reg

,

where 1C is the constant sheaf on C.
(e) If P ∈ PerHλ(Vλ), then

EvCP[dimC∗ − 1] ∈ PerHλ(T
∗
C(Vλ)reg).

We set

pEvC := EvC [dimC∗ − 1] : PerHλ(Vλ) → PerHλ(T
∗
C(Vλ)reg).

(f) Suppose that T ∗
C(Vλ)sreg is non-empty. If P ∈ PerHλ(Vλ), then the restriction of pEvCP

to T ∗
C(Vλ)sreg is a local system concentrated in degree dimVλ. We set

EvsC := pEvC [−dimVλ] : PerHλ(Vλ) → LocHλ(T
∗
C(Vλ)sreg).

For a description of the stalk of EvCIC(C,1C) at (x, ξ) ∈ T ∗
C(Vλ)reg, see [CFMMX, Theorem

6.7.5]. In particular, we note that

rankEvCIC(C,1C) = 1.

If we put TC = EvsCIC(C,1C) ∈ LocHλ(T
∗
C(Vλ)sreg), by Theorem 4.2 (d), we have EvsCIC(C,L) =

TC ⊗ (L⊠ 1C∗)|T ∗
C(Vλ)sreg

for every L ∈ LocHλ(C).
Now we normalize EvC as follows.
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Definition 4.3. We define a functor NEvC : DHλ(Vλ) → DHλ(T
∗
C(Vλ)reg) by

NEvC = (EvCIC(C,1C))∨ ⊗ EvC ,

where we put (EvCIC(C,1C))∨ = Hom(EvCIC(C,1C),1T ∗
C(Vλ)reg

), and we use the left de-
rived tensor product. We refer to NEvC as the normalized microlocal vanishing cycles
functor.

When T ∗
C(Vλ)sreg is non-empty, we set

NEvsCF = (NEvCF [dimC∗ − 1− dimVλ])|T ∗
C(Vλ)sreg

for F ∈ DHλ(Vλ). Then
NEvsC = T ∨

C ⊗ EvsC ,

where T ∨
C is the dual local system of TC .

Theorem 4.4 ([CFMMX, Theorem 6.10.1]). Suppose that T ∗
C(Vλ)sreg is non-empty.

(a) The functor NEvsC : PerHλ(Vλ) → LocHλ(T
∗
C(Vλ)sreg) is exact.

(b) If P ∈ PerHλ(Vλ), then NEvsCP = 0 unless C ⊂ suppP.
(c) If P ∈ PerHλ(Vλ), then

rank(NEvsCP) = rank(RΦfξP)x

for every (x, ξ) ∈ T ∗
C(Vλ)sreg.

(d) For every L ∈ LocHλ(C),

NEvsCIC(C,L) = (L⊠ 1C∗)|T ∗
C(Vλ)sreg

.

In particular,
rank(NEvsCIC(C,L)) = rankL.

5. A-packets v.s. ABV packets

In this section, we define the ABV packets, and state a conjecture.

5.1. Definition of ABV packets and the main conjecture. Now we can define the
Adams–Barbasch–Vogan packets. Let ψ ∈ Ψ(G/F ) and set λ = λψ. Consider the Hλ-orbit
Cψ = Cϕψ in Vλ corresponding to the L-parameter ϕψ for ψ via Proposition 2.2. Recall in
Proposition 4.1 that there is a canonical injection

Πλ =
⊔

ϕ∈Φλ(G/F )

Πϕ → PerHλ(Vλ)
simple
/iso , π 7→ P(π).

On the other hand, ψ gives a strongly regular point (xψ, ξψ) ∈ T ∗
Cψ

(Vλ)sreg (Proposition 3.5).

It determines an equivalence

LocHλ(T
∗
Cψ

(Vλ)sreg) → Rep(AT ∗
Cψ

(Vλ)sreg)
∼= Rep(Aψ).

Define
Evψ : PerHλ(Vλ) → Rep(Aψ)

by the composition of EvsCψ and this equivalence, and set

NEvψ = T ∨
ψ ⊗ Evψ,

where Tψ = EvψIC(Cψ,1Cψ) is the representation of Aψ corresponding to TCψ .



20 HIRAKU ATOBE

Definition 5.1. For ψ ∈ Ψ(G/F ), we define the Adams–Barbasch–Vogan packet (shortly,
the ABV packet) ΠABV

ψ of G(F ) associated with ψ by

ΠABV
ψ =

{
π ∈ Πλψ

∣∣ EvCψP(π) ̸= 0
}
.

Recall that there is Arthur’s A-packet Πψ ⊂ Π(G(F )). The following is the main conjecture
in [CFMMX].

Conjecture 5.2. Let G be split SO2n+1 or Sp2n. For an A-parameter ψ ∈ Ψ(G/F ), we would
have

Πψ = ΠABV
ψ .

Moreover, the map

Πψ → Irr(Aψ), π 7→ ⟨·, π⟩ψ
would be given by

⟨aψas, π⟩ψ = (−1)dimCψ−dim suppP(π)tr(NEvψP(π))(as)

for any as ∈ Aψ, where aψ is the image of ψ(1,12,−12) in Aψ.

Let KΠλ and KPerHλ(Vλ) be the Grothendieck groups of Πλ and PerHλ(Vλ), i.e., the free

abelian groups for which Πλ and PerHλ(Vλ)
simple
/iso are bases, respectively. Define a bilinear

pairing

⟨·, ·⟩ : KΠλ × KPerHλ(Vλ) → Z
by

⟨π,P⟩ =

{
(−1)dim supp (P) if P = P(π),

0 otherwise.

If we set

ηψ,s =
∑
π∈Πψ

⟨aψas, π⟩ψ π,

then Conjecture 5.2 is equivalent that

⟨ηψ,s,P⟩ = (−1)dimCψtr(NEvψP)(as)

for any as ∈ Aψ and any P ∈ KPerHλ(Vλ).
In [CFMMX, PART II], several examples were given.

Proposition 5.3. Conjecture 5.2 holds for the following cases:

(1) q is odd, G = SL2 = Sp2 and ψ ∈ Ψ(G/F ) with λψ = χ1 ⊕ χ2 ⊕ χ3, where χ1, χ2, χ3

are the three distinct non-trivial quadratic characters of F×;

(2) G = SO3 and ψ ∈ Ψ(G/F ) with λψ = | · |
1
2 ⊕ | · |−

1
2 ;

(3) G = SO5 and ψ ∈ Ψ(G/F ) with λψ = | · |
3
2 ⊕ | · |

1
2 ⊕ | · |−

1
2 ⊕ | · |−

3
2 ;

(4) G = SO5 and ψ ∈ Ψ(G/F ) with λψ = | · |
1
2 ⊕ | · |

1
2 ⊕ | · |−

1
2 ⊕ | · |−

1
2 ;

(5) G = SO7 and ψ ∈ Ψ(G/F ) with λψ = | · |
3
2 ⊕ | · |

1
2 ⊕ | · |

1
2 ⊕ | · |−

1
2 ⊕ | · |−

1
2 ⊕ | · |−

3
2 .

Appendix A. Supplements

In this appendix, we explain several supplementary topics.



CONSTRUCTION OF p-ADIC ADAMS–BARBASCH–VOGAN PACKETS 21

A.1. Algebraic representations of SL2(C). For each positive integer k, there is a unique
(up to isomorphism) irreducible algebraic representation Sk of SL2(C) of dimension k. Note
that the representation w 7→ Sk(dw) of WF is isomorphic to

| · |
k−1
2 ⊕ | · |

k−3
2 ⊕ · · · ⊕ | · |−

k−1
2 .

The representation Sk is realized as the (k − 1)-th symmetric power Symk−1C2 of the
standard representation S2 = C2. It has a non-degenerate SL2(C)-invariant bilinear form

[·, ·] : Symk−1C2 × Symk−1C2 → C,((
a1
b1

)
· · ·
(
ak−1

bk−1

)
,

(
c1
d1

)
· · ·
(
ck−1

dk−1

))
7→

∏
σ∈Sk−1

det

(
ai cσ(i)
bi dσ(i)

)
.

In particular, Sk is self-dual of sign (−1)k−1.
If we put

ep =
1

p!

(
1
0

)k−p−1

·
(
0
1

)p
∈ Symk−1C2

for 0 ≤ p ≤ k − 1, then we have

[ep, eq] =

{
(−1)p if q = k − p− 1,

0 otherwise.

We identify Symk−1C2 with Ck by e0, . . . , ek−1. Since(
1 t
0 1

)
ep =

p∑
l=0

tp−l

(p− l)!
el,

(
1 0
t 1

)
ep =

k−1∑
l=p

l!(k − p− 1)!

p!(l − p)!(k − l − 1)!
tl−pel,

the actions of

(
0 1
0 0

)
,

(
0 0
1 0

)
∈ sl2(C) on Symk−1C2 ∼= Ck are given by


0 1

0 1
. . .

. . .

0 1
0

 ,


0

1(k − 1) 0

2(k − 2)
. . .
. . . 0

(k − 1)1 0

 ,

respectively, where they are in so(k,C) or sp(k,C) with respect to
1

−1

. .
.

(−1)k−1


according to k ≡ 1 mod 2 or k ≡ 0 mod 2.
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A.2. Equivariant fundamental groups and local systems. Here, we define equivariant
fundamental groups and equivariant local systems.

Let C and X be topological spaces equipped with continuous actions of a topological group
H. A subset U of X is stable if h · u ∈ U for any u ∈ U and h ∈ H. We call X H-
equivariantly connected if only ∅ and X are the open and closed stable subsets of X.
A map f : X → C is said to be H-equivariant if f(h · x) = h · f(x) for any x ∈ X and
h ∈ H. Moreover, it is called an H-equivariant covering of C if f is a covering in the
usual sense, i.e., f is surjective and for any p ∈ C, there exists an open neighborhood U
of p in C such that f−1(U) is a disjoint union of open subsets Vi of X satisfying that the

restriction f |Vi is a homeomorphism Vi
∼−→ U . An H-equivariant base point of X is an

H-equivariant map b : H → X. Fix an H-equivariant base point c : H → C of C. We say that
an H-equivariant map f : X → C is base point-preserving if f(b(h)) = c(h) for any h ∈ H.
Such a map is denoted by f : (X, b) → (C, c). A universal H-equivariant covering of C

is an H-equivariant covering map π : (C̃, c̃) → (C, c) with C̃ being H-equivariantly connected
such that for any H-equivariant covering f : (X, b) → (C, c) with X being H-equivariantly

connected, there exists a unique H-equivariant continuous map f̂ : (C̃, c̃) → (X, b) such that
the diagram

C̃
f̂ //

π
��?

??
??

??
? X

f����
��
��
��

C

commutes. We define the H-equivariant fundamental group π1(C)H by the group of

H-equivariant homeomorphisms f̂ : C̃ → C̃ such that the diagram

C̃
f̂ //

π
��?

??
??

??
? C̃

π
����
��
��
��

C

commutes. By the universality, π1(C)H is uniquely determined by C, up to a unique isomor-
phism.

Example A.1. Let C = {0} be the set of a point, equipped with the trivial action of the
orthogonal group H = O(m,C). Then the covering map is a map from a discrete topological
space X equipped with a continuous action of O(m,C). Hence this action factors through the
quotient O(m,C)/SO(m,C) ∼= {±1}. The discrete space X is O(m,C)-equivariantly connected
if and only if the action of O(m,C) is transitive. In particular, an O(m,C)-equivariant
universal cover of C is given by the set C̃ = {p+, p−} of two points with the action α · pϵ =
pϵ detα for α ∈ O(m,C) and ϵ ∈ {±1}. Therefore,

π1({0})O(m,C) = {±1}.

More generally, when C is a quotient H/Z for some subgroup Z of H with the canonical
base point c : H → C, for any H-equivariant covering f : (X,x) → (C, c) of C, we have hx = x

for h ∈ Z0. In particular, a universal H-equivariant covering of C is given by C̃ = H/Z0, and
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the H-equivariant fundamental group is given by

π1(X)H ∼= π0(Z) = Z/Z0.

Let m : H ×X → X be an group action in the category of algebraic varieties (over C). We
also consider the projection p : H ×X → X. An H-equivariant sheaf on X is a sheaf F on
X equipped with an isomorphism of sheaves on H ×X

φ : m−1F ∼−→ p−1F
such that φ satisfies the usual cocycle condition on H ×H ×X. On the stalk level, φ implies
an isomorphism Fhx ∼= Fx for h ∈ H and x ∈ X. The cocycle condition says that the
isomorphism Fghx ∼= Fx is the same as the composition Fghx ∼= Fhx ∼= Fx for g, h ∈ H and
x ∈ X.

Recall that a local system on X is a locally constant sheaf on X. We denote the category
of H-equivariant local systems on X by LocH(X). There is a relation between LocH(X) and
representations of π1(X)H . Recall that π1(X)H is the group of H-equivariant homeomor-

phisms on the universal H-equivariant cover X̃ of X which commute with the projection

π : X̃ → X. Given a representation ρ : π1(X)H → GL(V ), we consider the sections of the

bundle (X̃ × V )/π1(X)H → X. More precisely, for an open set U of X, we set Lρ(U) to be
the space of locally constant functions f : π−1(U) → V satisfying

f(γx) = ρ(γ)f(x)

for γ ∈ π1(X)H . Then Lρ is an H-equivariant local system on X. The map ρ 7→ Lρ gives an
identification Rep(π1(X)H) → LocH(X).

A.3. Kazhdan–Lusztig conjecture. Let λ ∈ Λ(G/F ). Recall that KΠλ and KPerHλ(Vλ)
are the free abelian groups with the canonical bases

{π(ϕ, η) | ϕ ∈ Φλ(G/F ), η ∈ Âϕ, η(−1) = 1 if G = SO2n+1},{
IC(C,L)

∣∣∣ H-orbit C ⊂ Vλ, L ∈ LocHλ(C)
simple
/iso

}
,

respectively. They also have other bases, consisting of standard modules and standard sheaves.
For given ϕ ∈ Φλ(G/F ), one can obtain a parabolic subgroup P = MN of G such that ϕ

factors through the embedding M̂ ↪→ Ĝ so that ϕ can be regarded as an L-parameter for M ,

which is essentially tempered. Then η ∈ Âϕ (with η(−1) = 1) gives an irreducible essentially
tempered representation πM (ϕ, η) of M(F ). Moreover, one can assume that the exponents
of πM (ϕ, η) are in the positive Weyl chamber with respect to P . In this case, the parabolic
induction

M(ϕ, η) = Ind
G(F )
P (F )(πM (ϕ, η))

is called a standard module. The representation π(ϕ, η) of G(F ) is the unique irreducible
quotient of the standard module M(ϕ, η). Moreover,

{M(ϕ, η) | ϕ ∈ Φλ(G/F ), η ∈ Âϕ, η(−1) = 1 if G = SO2n+1}
forms a basis of KΠλ. In particular, for two pairs (ϕ, η) and (ϕ′, η′), there exists a non-negative
integer mrep((ϕ, η), (ϕ

′, η′)) such that

M(ϕ′, η′) =
∑
(ϕ,η)

mrep((ϕ, η), (ϕ
′, η′)) · π(ϕ, η)
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in KΠλ. We call (mrep((ϕ, η), (ϕ
′, η′)))(ϕ,η),(ϕ′,η′) the multiplicity matrix. It is known that

this matrix is an “upper-triangular unipotent matrix” in a certain sense (see e.g., [Ar13, §2.2]).
Similarly, for anHλ-orbit C ⊂ Vλ and a simple equivariant local system L ∈ LocHλ(C)

simple
/iso ,

we consider the shifted standard sheaf

S(C,L) = jC!
L[dimC],

where jC : C ↪→ Vλ is the inclusion. Then{
S(C,L)

∣∣∣ H-orbit C ⊂ Vλ, L ∈ LocHλ(C)
simple
/iso

}
forms a basis of KPerHλ(Vλ). In particular, for two pairs (C,L) and (C ′,L′), there exists an
integer mgeo((C

′,L′), (C,L)) such that

IC(C,L) =
∑

(C′,L′)

mgeo((C
′,L′), (C,L)) · S(C ′,L′)

in KPerHλ(Vλ). We call (mgeo((C
′,L′), (C,L)))(C′,L′),(C,L) the geometric multiplicity ma-

trix. It is known that mgeo((C,L), (C,L)) = 1 and mgeo((C
′,L′), (C,L)) = 0 unless C ′ ⊂ C.

Moreover, if we set

m′
geo((C

′,L′), (C,L)) = (−1)dimC−dimC′
mgeo((C

′,L′), (C,L)),

then it is a non-negative integer. We call (m′
geo((C

′,L′), (C,L)))(C′,L′),(C,L) the normalized
geometric multiplicity matrix.

Recall that a pair (ϕ, η) gives a pair (Cϕ,Lρ), and there exists a bilinear form

⟨·, ·⟩ : KΠλ × KPerHλ(Vλ) → Z

given by

⟨π(ϕ, η), IC(C,L)⟩ =

{
(−1)dimC if (C,L) = (Cϕ,Lρ),
0 otherwise.

The Kazhdan–Lusztig conjecture predicts that

⟨M(ϕ, η),S(C,L)⟩ =

{
(−1)dimC if (C,L) = (Cϕ,Lρ),
0 otherwise.

When G and λ = λψ are in the cases in Proposition 5.3, this conjecture is proven by showing

mrep((ϕ, η), (ϕ
′, η′)) = m′

geo((Cϕ,Lϕ), (Cϕ′ ,Lη′))

for every pairs (ϕ, η) and (ϕ′, η′).

Appendix B. Representations, D-modules, and perverse sheaves

To define p-adic ABV packets, one uses a relation between irreducible representations of
G(F ) with simple objects of equivariant perverse sheaves (Proposition 2.2). For real reductive
groups, this relation is a conclusion of a deep story. In this appendix, we try to explain this
story. Note that it is hard to say that this appendix is mathematically accurate. The readers
should refer to relevant references for details.

Let G be a quasi-split connected semisimple group over R, and K be a maximal compact
subgroup of G(R). Assume that G(R) is connected. Fix a rational Borel subgroup B = TU of
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G. We denote the Lie algebras of G(R), T (R) and K by g, t and k, and their complexifications
by gC, tC and kC, respectively. The Weyl group is denoted by W =W (gC, tC).

B.1. Casselman–Wallach globalization. Let Rep(G(R)) be the category of smooth ad-
missible Fréchet representations of moderate growth, and Modadm(gC,K) be the category
of admissible Harish-Chandra (gC,K)-modules. The isomorphism classes of irreducible ob-
jects in these categories are denoted by Irr(G(R)) and Irr(gC,K), respectively. The category
Rep(G(R)) seems to be difficult for topological reasons, whereas Modadm(gC,K) seems to be
easier because it is purely algebraic.

Taking K-finite vectors, we obtain a functor

HC: Rep(G(R)) → Modadm(gC,K).

Theorem B.1 (Casselman–Wallach [C89], [W92], [BK14]). There exists a quasi-inverse func-
tor Modadm(gC,K) → Rep(G(R)) of HC, called the Casselman–Wallach globalization
functor. Hence the functor HC: Rep(G(R)) → Modadm(gC,K) is an equivalence of cate-
gories.

By the Casselman–Wallach globalization, one can consider Irr(gC,K) instead of Irr(G(R)).

B.2. Casselman’s subrepresentation theorem. A character χ of T (R) gives a principal

series representation I(χ) = Ind
G(R)
B(R)(χ). Let I(χ)K be the K-finite part of I(χ).

Theorem B.2 (Casselman’s subrepresentation theorem [C78]). For any π ∈ Modadm(gC,K),
there exists a character χ of T (R) such that

π ↪→ I(χ)K .

There is a p-adic analogue of this theorem, but it asserts that any irreducible smooth
representation of G(F ), where F is p-adic, is a subrepresentation of the parabolic induction
from a supercuspidal representation. One may understand that Casselman’s subrepresentation
theorem says that real reductive Lie groups have few supercuspidal representations.

B.3. Beilinson–Bernstein correspondence. Recall that the principal series representa-
tion I(χ) is a space of sections of the G(R)-equivariant vector bundle G(R) ×B(R) χ →
G(R)/B(R). Now let us consider the D-modules on the complete flag variety B = G(C)/B(C).
For a reference, see [HTT08, §11].

Fix λ ∈ t∗C/W . For a representative λ ∈ t∗C, the character χλ+ρ of T (C) corresponding
to λ + ρ gives a G(C)-equivariant line bundle L(λ + ρ) on B. We consider the sheaf Dλ of
twisted differential operators acting on L(λ + ρ). Let Modqc(Dλ) be the abelian category
of Dλ-modules which are quasi-coherent over OB, and Mod(gC)λ be the category of U(gC)-
modules with infinitesimal character λ, where U(gC) is the universal enveloping algebra of gC.
The global section functor gives a functor

Γ(B, ·) : Modqc(Dλ) → Mod(gC)λ.

The set of roots of T and its positive system with respect to B are denoted by ∆ and ∆+,
respectively. We put

P = {λ ∈ t∗ |
⟨
λ, α∨⟩ ∈ Z (α ∈ ∆)}.

It is called the weight lattice in t∗.



26 HIRAKU ATOBE

Theorem B.3 (Beilinson–Bernstein correspondence [HTT08, Corollary 11.2.6]). When λ ∈ P
satisfies that ⟨

λ, α∨⟩ < 0, α ∈ ∆+,

then the functor Γ(B, ·) induces equivalences

Modqc(Dλ) ∼= Mod(gC)λ

of abelian categories. The inverse functor is given by Dλ ⊗U(gC) (·).

However, admissible representations of G(R) are related with not just gC-modules, but
(gC,K)-modules. Let Rep(G(R))λ and Mod(gC,K)λ be the subcategories of Rep(G(R)) and
Mod(gC,K) consisting of objects with infinitesimal character λ, respectively. To relate the
category Mod(gC,K)λ of (gC,K)-modules with D-modules, we need to consider the category
of K-equivariant D-modules Modqc(Dλ,K). Then we have

Modqc(Dλ,K) ∼= Mod(gC,K)λ.

For more precision, see, e.g., [HTT08, Theorem 11.5.3, Remark 11.5.4] and its references. We
notice that an object in Mod(gC,K)λ is not necessarily admissible.

B.4. Riemann–Hilbert correspondence. Next, we recall Hilbert’s twenty-first problem
or the Riemann–Hilbert problem. Before stating this problem, let us consider the following
example.

Fix a complex number a ∈ C, and consider the differential equation

df

dz
=
a

z
f

on C \ {0}. This equation has regular singularities at 0 and ∞ in the projective line P1
C. The

local solutions of the equation are of the form f(z) = c · za for constants c ∈ C. If a ̸∈ Z, then
the function za cannot be made well-defined on all of C \ {0}. This means that the vector
bundle

Ea = {c · za | c ∈ C} ∋ c · za 7→ z ∈ C \ {0}
is a non-trivial line bundle (local system) on C\{0}. In other words, the differential equation
has non-trivial monodromy. Explicitly, this monodromy is the 1-dimensional representation
of the fundamental group π1(C \ {0}) ∼= Z in which a generator (a loop around the origin)

acts by multiplication by e2π
√
−1a.

This is a typical example that local solutions of regular differential equations give local
systems (

df

dz
=
a

z
f

)
local solutions7−−−−−−−−→ Ea = {c · za | c ∈ C} ∈ Loc(C \ {0}).

The converse of this observation, namely, the existence of linear differential equations
having a prescribed monodromy is called Hilbert’s twenty-first problem, or more com-
monly, the Riemann–Hilbert problem.

Now, roughly speaking, D-modules are “gluing of differential equations”, whereas perverse
sheaves are “gluing of local systems”. The above observation is generalized to a correspon-
dence between D-modules and perverse sheaves.
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Theorem B.4 (Riemann–Hilbert correspondence [HTT08, Theorem 7.2.5]). Let X be a com-
plex manifold or a smooth algebraic variety (over C). We denote by Modrh(DX) the category
of “regular holonomic” D-modules on X, and by Per(CX) the category of perverse sheaves on
X. Then there exists an equivalence of categories

DRX : Modrh(DX) → Per(CX).
The functor DRX is called the de Rham functor.

In fact, one can define the category of equivariant perverse sheaves on X, and can relate it
with the one of equivariant D-modules. See also (the proof of) [HTT08, Theorem 11.6.1].

B.5. Conclusion. We conclude that one can relate irreducible representations of G(R) with
equivariant perverse sheaves via the following correspondences in the following rough diagram:

Irreducible representations of G(R)

↕ K-finite part, Casselman–Wallach globalization

Simple (gC,K)-modules

↕ the Beilinson–Bernstein correspondence

Simple K-equivariant D-modules on the flag variety B
↕ the Riemann–Hilbert correspondence

Simple K-equivariant perverse sheaves on the flag variety B .
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[BK14] J. Bernstein and B. Krötz, Smooth Fréchet globalizations of Harish-Chandra modules. Israel J. Math.
199 (2014), no. 1, 45–111.

[C78] W. Casselman, Jacquet modules for real reductive groups. Proceedings of the International Congress of
Mathematicians (Helsinki, 1978), pp. 557–563, Acad. Sci. Fennica, Helsinki, 1980.

[C89] W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G. Canad. J.
Math. 41 (1989), no. 3, 385–438.

[CFMMX] C. Cunningham, A. Fiori, J. Mracek, A. Moussaoui and B. Xu, Arthur packets for p-adic groups
by way of microlocal vanishing cycles of perverse sheaves, with examples. arXiv:1705.01885v3.

[DK73] P. Deligne and N. Katz, Groupes de monodromie en géométrie algébrique. II. Séminaire de Géométrie
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