On unipotent representations of real classical groups (joint with Binyong Sun and Chengbo Zhu)

Ma, Jia-jun

School of Mathematical Sciences Shanghai Jiao Tong University

January 8, 2019

- 1. Motivation
- 2. Unipotent representations of real classical groups
- 3. Key ingredients of the proof

Unipotent Arthur packet

- Arthur parameter: ψ: W_ℝ × SL₂(ℂ) → G[∨] × Gal(ℂ/ℝ).
 W_ℝ = ℂ[×] ∪ jℂ[×].
- Arthur packet $\Pi_{\psi}(G)$ whose size is controlled by the component group of $Z_{G^{\vee}}(\psi)$.
- Unipotent Arthur parameter: $\psi|_{\mathbb{C}^{\times}}$ is trivial
- Question: How to construct elements in $\Pi_{\psi}(G)$ for a unipotent Arthur parameter?
- Unipotent Arthur parameter ψ
 ~ nilpotent orbits ^LO in g[∨] := Lie(G[∨]) (Jacobson-Morozov).
 ~ special nilpotent orbits O in g := Lie(G) ⊗_ℝ C (Lusztig-Spaltenstein-Barbasch-Vogan)
- ▶ ~ Barbasch-Vogan's definition of *special unipotent reprensentation*.

Orbit method

Let G be a Lie group, with Lie algebra \mathfrak{g} .

Philosophical of the orbit method (Kirillov theory):

$$\widehat{G}_u \nleftrightarrow \mathfrak{g}^*/G.$$

- Analogy between
 - ▶ classical mechanical systems → quantum mechanical systems
 - ▶ coadjoint orbits → unitary representations
- Both processes are called quantization.

Motivation

Vogan: The orbit method should also serve as a unifying principle for the unitary dual problem of reductive Lie groups.

For different types of coadjoint orbits.

- Hyperbolic orbits: parabolic induction
 - Method of real analysis (Mackey, Gelfand-Naimark, Bruhat, ..., beginning from the 1950's)
- Elliptic orbits: cohomological induction
 - Method of complex analysis (Harish-Chandra, Schmid, Zuckerman, Vogan, beginning from the 1970's)
- Nilpotent orbits: ???
 - Terminology: unipotent representations

Special unipotent representations

O: a special nilpotent orbit in g
 → infinitesimal character χ_O.

Special unipotent representation with integral infinitesimal character Assume $\chi_{\mathcal{O}}$ is integral. An irreducible representation π of G is called a *special unipotent* representation attached to \mathcal{O} , if

- π has infinitesimal character $\chi_{\mathcal{O}}$ and
- $AV(\pi) \subset \overline{\mathcal{O}}$.

Let $\operatorname{Unip}_{\mathcal{O}}(G)$ be the set of \mathcal{O} -unipotent representations.

- Expectation : $\operatorname{Unip}_{\mathcal{O}}(G)$ and $\Pi_{\psi}(G)$ coincide
- Conjecture : Unip_O(G) consists of unitary representations. (Proved by Barbasch-Vogan for complex groups ...)

Classical groups and its dual

G_V^J	G_V	$G_{\check{V}}$
real form of	$\mathrm{O}(2n,\mathbb{C})$	$O(2n,\mathbb{C})$
real form of	$\operatorname{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$
real form of	$O(2n+1,\mathbb{C})$	$\operatorname{Sp}(2n,\mathbb{C})$
$Mp(2n,\mathbb{R})$	$\operatorname{Sp}(2n,\mathbb{C})$	$\operatorname{Sp}(2n,\mathbb{C})$

 $\epsilon = 1$ (resp. -1) if G_V is an orthogonal group (resp. a symplectic group) $\check{\epsilon} = 1$ (resp. -1) if $G_{\check{V}}$ is an orthogonal group (resp. a symplectic group) Here V and \check{V} are the formed spaces over \mathbb{C} .

J is a conjugate linear automorphism of V such that $J^2 = \pm 1$.

Infinitesimal characters

• $\check{\mathcal{O}} \in \operatorname{Nil}(\mathfrak{g}_{\check{V}})$

- Young diagram of $\check{\mathcal{O}}$ has row $\{a_1 \ge a_2 \ge \cdots \ge a_s > 0\}$
- \Rightarrow a character $\chi_{\check{\mathcal{O}}} : \mathcal{U}(\mathfrak{g}_V)^{G_V} \to \mathbb{C}$:

$$\chi_{\check{\mathcal{O}}} \coloneqq (\rho(a_1), \rho(a_2), \cdots, \rho(a_s), 0, 0, \cdots, 0)$$

where

$$\rho(a) \coloneqq \begin{cases} (1, 2, \cdots, \frac{a-1}{2}), & \text{if } a \text{ is odd;} \\ (\frac{1}{2}, \frac{3}{2}, \cdots, \frac{a-1}{2}), & \text{if } a \text{ is even;} \end{cases}$$

Nilpotent orbits in $\mathfrak{g}_{\check{V}}$

Definition

 $\check{\mathcal{O}} = \{ a_1 \ge a_2 \ge \dots \ge a_k > 0 \} \in \operatorname{Nil}(\mathfrak{g}_{\check{V}}) \text{ is called } purely even \text{ if all } a_i \text{ are } a_i \ge a_i \text{ or } a_i \text{$

- odd when $\check{\epsilon} = 1$;
- even when $\check{\epsilon} = -1$.

Let $\operatorname{Nil}^{pe}(\mathfrak{g}_{\check{V}})$ be the set of purely even orbits.

 $\check{\mathcal{O}} \in \mathbf{Nil}^{pe}(\mathfrak{g}_{\check{V}})$ is called *quasi-distinguished* if

 $\begin{cases} a_{2i} > a_{2i+1} & \text{whenever } 1 \leq i \text{ and } 2i+1 \leq k, & \text{ if } \epsilon = 1; \\ a_{2i-1} > a_{2i} & \text{whenever } 1 \leq i \text{ and } 2i \leq k, & \text{ if } \epsilon = -1. \end{cases}$

Let $\operatorname{Nil}^{qd}(\mathfrak{g}_{\check{V}})$ be the set of quasi-distinguished orbits.

{ purely even orbit } \supset { qusi-distinguished orbit } \supset { distinguished orbit } $d_{BV}(\mathbf{Nil}^{qd}(\mathfrak{g}_{\check{V}})) \supset$ { rigid special nilpotent orbits }

Special Unipotent representation

Definition

An irreducible representation π of G_V^J is called a *(weakly) special unipotent* representation attached to $\check{\mathcal{O}} \in \mathbf{Nil}^{pe}(\mathfrak{g}_{\check{V}})$, if

- π has infinitesimal character $\chi_{\check{\mathcal{O}}}$ and
- $\operatorname{AV}(\pi) \subset \overline{\mathcal{O}}$ where $\mathcal{O} \coloneqq d_{BV}(\check{\mathcal{O}})$.
- π is genuine if G_V^J is a metaplectic group.

Let $\operatorname{Unip}_{\check{\mathcal{O}}}(G_V^J)$ be the set of $\check{\mathcal{O}}$ -unipotent representations.

The definition is equivalent to Ann (π) = the maximal primitive ideal in $\mathcal{U}(\mathfrak{g})$ with infinitesimal character $\chi_{\check{\mathcal{O}}}$.

Conjecture

Unip_{\check{O}}(G_V^J) consists of unitary representations.

Descent of nilpotent orbits

Take $\check{\mathcal{O}} \in \mathbf{Nil}^{pe}(\mathfrak{g}_{\check{V}})$. Descent sequence in the dual side is:

$$(\check{V}_0,\check{\mathcal{O}}_0),(\check{V}_1,\check{\mathcal{O}}_1),\cdots,(\check{V}_k,\check{\mathcal{O}}_k)$$

such that \check{V}_i is $\check{\epsilon}$ -symmetric, and $\check{\mathcal{O}}_i$ = removing the first i-rows of $\check{\mathcal{O}}$.

Definition

A descent sequence for
$$(\mathcal{O}, G_V^J)$$
 is a sequence
 $\mathcal{J}: (\epsilon_0, V_0, J_0), (\epsilon_1, V_1, J_1), \cdots, (\epsilon_k, V_k, J_k)$

•
$$(\epsilon_0, V_0, J_0) = (\epsilon, V, J);$$

•
$$\epsilon_i = (-1)^i \epsilon$$
, and $G_{\check{V}_i}$ is the dual of G_{V_i} ;

• $J_i^2 = J^2$, i.e. $G_{\tilde{V}_i}^J$ is real or quaternion, if G_V^J is respectively real or quaternionic.

Construction of elements in $\operatorname{Unip}_{\check{\mathcal{O}}}(G_V^J)$

Definition

Let $\chi = \chi_0 \otimes \chi_1 \otimes \cdots \otimes \chi_k$ be a finite order character of $G_{V_0}^{J_0} \times G_{V_1}^{J_1} \times \cdots \times G_{V_k}^{J_k}$, Define a smooth representation of G_V^J .

$$\pi_{\mathcal{J},\chi} \coloneqq \left(\omega_{V_0,V_1}\widehat{\otimes}\omega_{V_1,V_2}\widehat{\otimes}\cdots\widehat{\otimes}\omega_{V_{k-1},V_k}\otimes\chi\right)_{G_{V_1}^{J_1}\times G_{V_2}^{J_2}\times\cdots\times G_{V_k}^{J_k}}$$

Theorem

If $\pi_{\mathcal{J},\chi}$ is nonzero, then it is irreducible, unitarizable, and $\check{\mathcal{O}}$ -unipotent.

Expectation: Unip_{\mathcal{O}} (G_V^J) = { $\pi_{\mathcal{J},\chi} \neq 0$ }.

• Quasi-distinguished nilpotent orbit $\check{\mathcal{O}} \in \mathbf{Nil}^{qd}(G_{\check{V}})$:

J.-J. Ma, B. Sun and C.-B. Zhu, "Unipotent representations of real classical group", arXiv:1712.05552.

- ▶ General purely even orbit Õ ∈ Nil^{pe}(G_V): work in progress with Barbasch, Sun and Zhu.
- A lot of people have contributed to the problem

Barbasch, Vogan, Mœglin, He, Adams, Przebinda, Trapa,,....

Associated characters

- Let \mathcal{O} be an nilpotent coadjoint orbit in \mathfrak{g}^* . (Here $\mathfrak{g} = \operatorname{Lie}(G)_{\mathbb{C}}$).
- Fix a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.
- $\mathfrak{g}_{\mathbb{R}}^* \cap \mathcal{O}/G \leftrightarrow \mathfrak{p}^* \cap \mathcal{O}/\mathbf{K}$ (Kostant-Sekiguchi)
- $\{ G\text{-equiv. sheaves on } \mathfrak{g}^*_{\mathbb{R}} \cap \mathcal{O} \}$ $\leftrightarrow \{ \mathbf{K}\text{-equiv. sheaves on } \mathfrak{p}^* \cap \mathcal{O} \}.$
- $\mathcal{K}_{\mathcal{O}}$: Grothendieck group of K-equiv. coherent sheaves supp. on $\mathfrak{p}^* \cap \mathcal{O}$.
- $\mathcal{K}^{aod}_{\mathscr{O}} \subset \mathcal{K}_{\mathcal{O}}$: the set of <u>admissible orbit data</u> on a **K**-orbit $\mathscr{O} \subset \mathfrak{p}^* \cap \mathcal{O}$
- Associated character map:

Ch:
$$\{\pi \in \operatorname{Irr}(G) \mid \operatorname{AV}(\pi) \subset \overline{\mathcal{O}}\} \longrightarrow \mathcal{K}_{\mathcal{O}}.$$

Main theorem

Theorem

- For $\check{\mathcal{O}} \in \mathbf{Nil}^{qd}$,
 - the following is a bijection:

$$\operatorname{Ch}_{\mathcal{O}}:\operatorname{Unip}_{\check{\mathcal{O}}}(G)\longrightarrow\bigsqcup_{\mathscr{O}\subseteq\mathfrak{p}^*\cap\mathcal{O}}\mathcal{K}^{\operatorname{aod}}_{\mathscr{O}}$$

• Unip_{\check{O}}(G) = { $\pi_{\mathcal{J},\chi} \neq 0$ } consists of unitary representations

Conjecture (Vogan):

 $\pi|_{\mathbf{K}} \cong$ Global section of the vector bundle given by $Ch_{\mathcal{O}}(\pi)$.

The conjecture is verified in many cases ..., [Barbasch], [Loke-Ma], ...

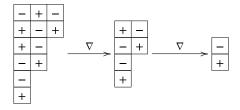
Local Theta correspondence

- $(G, G') = (O(p, q), Sp(2n, \mathbb{R}))$ is a dual pair in $Sp(2(p+q)n, \mathbb{R})$.
- Theta correspondence. $\mathcal{R}(\widetilde{G}, \omega) \stackrel{\theta}{\longleftrightarrow} \mathcal{R}(\widetilde{G}', \omega)$
- 1. ω: the Weil repn. of the metaplectic group Mp(2(p + q)n, ℝ)
 2. Fix π ∈ Irr_{gen}(G̃), ω_π ≅ π ⊗ Θ(π).
 - 3. Θ(π) ≠ 0 ⇔ π in the domain R(G̃,ω) of theta correspondence.
 ⇒ Θ(π) has a unique irr. quotient θ(π) ← the *theta lift* of π.
 [Howe 89] [Waldspurger 90] [Gan-Takeda 14] [Gan-Sun 15]
 - 4. π unitary $\longrightarrow \theta(\pi)$ unitary, in stable range [Li 89], semi-stable range [He]
 - 5. Describe the correspondence in terms of parameters: Archimedean place (mainly eq. rank): Adams, Barbasch, Mœglin, Paul, ...

 $\mathit{p}\text{-}\mathsf{adic}$ place:..., Gan, Ichino, Atobe (tempered), Loke-Ma (supercuspidal repn.), \cdots

Lift/Descent of nilpotent orbits

 \blacktriangleright $\mathbf{Nil}_{\mathbf{K}}(\mathfrak{p}^{*})$ are parameterized by signed young diagrams



 $\operatorname{Sp}(12,\mathbb{R})$ $\operatorname{O}(3,3)$ $\operatorname{Sp}(2,\mathbb{R})$

Kraft-Procesi, Ohta,

resolution of singularities of nilpotent orbit closure

- Define a sequence $\mathscr{O} = \mathscr{O}_0 \xrightarrow{\nabla} \mathscr{O}_1 \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \mathscr{O}_r$ so that $\mathscr{O}_r = \{0\}$. \mathscr{O}_i is a K_i -orbit in \mathfrak{p}_i^* .
- Let χ_i be a character of G_i .
- Define, $\pi_r = \chi_r$ and $\pi_i = \chi_i \otimes \overline{\Theta}(\pi_{i+1})$.
- → ⊕(_) is the "theta lift" given by matrix coefficient integrals (a variation of the theta lift) Inductively, WTS:
- *π_i* ≠ 0,
- $\operatorname{Ch}_{\mathcal{O}_i}(\pi_i)$ is in $\mathcal{K}_{\mathcal{O}_i}^{\operatorname{aod}}$.
- $\{\pi_i \mid \chi \text{ vary }\} \xrightarrow{\operatorname{Ch}_{\mathcal{O}_i}} \mathcal{K}^{\operatorname{aod}}_{\mathcal{O}_i} \text{ is surjective.}$
- π_i has infinitesimal character $\chi_{\check{\mathcal{O}}_i}$ (use the correspondence of infinitesimal characters by **Prezbinda**).
- As a consequence, $\pi_i \in \operatorname{Unip}_{\check{\mathcal{O}}_i}(G_{V_i}^{J_i})$.

• Unitarity:

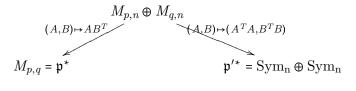
 Estimate of matrix coefficients using the explicit realization of the Weil representations.

Work of Li, He, and an idea of Harris-Li-Sun showing the nonnegativity of a matrix coefficient integral.

- The non-vanishing, and compute associated character:
 - **Geometry**: moment maps provide the upper bound.
 - Analysis: degenerate principal series force the lower bound.
 - Geometry meets Analysis: the equality.

Geometry of the moment maps

• The $(G, G') = (O(p, q), Sp(2n, \mathbb{R}))$ setting:



Upper bound of associated character: Suppose ∇(O) = O', there is a natural map (defined geometrically)

$$\vartheta:\mathcal{K}_{\mathcal{O}'}\to\mathcal{K}_{\mathcal{O}}.$$

so that

$$\operatorname{Ch}_{\mathcal{O}}(\Theta(\pi')) \leq \vartheta(\operatorname{Ch}_{\mathcal{O}'}(\pi')),$$

for any π' with $AV(\pi') \subset \overline{\mathcal{O}'}$

Analysis

- We still need a lower bound for $\overline{\Theta}(\pi_i)$.
- A idea of He: perform another theta lift!

$$\overline{\Theta}'(\overline{\Theta}(\pi_i))$$

where $\overline{\Theta}'$ is the theta lift for a certain pair.

This is an doubling method!

► The upshot: Θ'(Θ(π_i)) is (close to) a parabolic induction representation (using structure of degenerate principle series by Lee-Zhu and Yamana).

A formula for associated characters

Theorem

Let $\mathcal{O} = [c_0, c_1, \dots, c_k]$ and $\mathcal{O}' = \nabla(\mathcal{O})$. Assume that $c_0 > c_1$ when G_V^J is a real symplectic group or metaplectic group. Then for every \mathcal{O}' -bounded Casselman-Wallach representation π' in the convergent range,

• $\overline{\Theta}_{V',V}(\pi')$ is O-bounded and

 $\operatorname{Ch}_{\mathcal{O}}(\overline{\Theta}_{V',V}(\pi')) = \vartheta_{\mathcal{O}',\mathcal{O}}(\operatorname{Ch}_{\mathcal{O}}(\pi')).$

Exhaustion

Counting method:

- lower bound = $\# \mathcal{K}^{aod}_{\mathscr{O}}$.
- Count # unipotent representations for split classical groups, developed by Barabasch, Vogan, McGovern ...
- Stable range theta lifts (injective, unipotent → unipotent) to split classical group

 \rightsquigarrow upper bound of # unipotent representation.

The bound is sharp!

So, we got all!

Thank you!