Low degree cohomologies of congruence groups

Binyong Sun (joint with Jian-Shu Li)

Academy of Mathematics and Systems Science,

Chinese Academy of Sciences

Institute for Mathematical Sciences National University of Singapore 2019.1.2

- 1. Cohomologies of arithmetic manifolds
- 2. Continuous cohomologies
- 3. Smooth cohomologies
- 4. A key local result
- 5. A result of Franke
- 6. Franke's filtration
- 7. Proof of the global theorem

1. Cohomologies of arithmetic manifolds

- G: real reductive group;
- $K \subset G$: a maximal compact subgroup;
- $\Gamma \subset G$: a lattice.

Problem :

$$\mathrm{H}^{i}(\Gamma;\mathbb{C}) = \mathrm{H}^{i}(\Gamma \setminus G/K;\underline{\mathbb{C}}) =?$$

Here

 $\underline{\mathbb{C}}(U) := \{ \Gamma \text{-invariant locally constant function } f : \tilde{U} \to \mathbb{C} \},$

and \tilde{U} is the pre-image of U under the map $G/K \to \Gamma \backslash G/K$.

• *F*: an irreducible finite dimensional representation of *G*; More generally,

$$\mathrm{H}^{i}(\Gamma; F) = \mathrm{H}^{i}(\Gamma \setminus G/K; \underline{F}) = ?$$

where

 $\underline{F}(U) := \{ \Gamma \text{-equivariant locally constant function } f : \tilde{U} \to F \},$ and \tilde{U} is the pre-image of U under the map $G/K \to \Gamma \backslash G/K$.

- Interesting in topology.
- Important in arithmetic.

There is a linear map

$$F^{\Gamma} \otimes H^{i}_{\mathrm{ct}}(G; \mathbb{C}) = H^{i}_{\mathrm{ct}}(G; F^{\Gamma}) \to H^{i}_{\mathrm{ct}}(\Gamma; F^{\Gamma}) \to H^{i}(\Gamma; F).$$

Remark: We have

$$\mathsf{H}^{i}_{\mathrm{ct}}(G;\mathbb{C}) = \mathrm{Hom}_{\mathcal{K}}(\wedge^{i}(\mathfrak{g}_{\mathbb{C}}/\mathfrak{k}_{\mathbb{C}}),\mathbb{C}).$$

< E

э

Problem

Is this an isomorphism?

Some earlier results:

 $\Gamma \backslash G$ is compact: Matsushima, Raghunathan, Venkataramana, Millson-Raghunathan, \cdots

 $\Gamma \setminus G$ is noncompact : Borel, Franke, Yang, \cdots

G: connected reductive linear algebraic group over Q;
Γ ⊂ G(Q) : a congruence subgroup;
G = ⋂_{χ:G→GL(1)/0} ker(|χ| : G(R) → R[×]₊).

Global Theorem (Li-Sun, 2018, preprint): The above linear map is an isomorphism if $i < r_G$.

Here r_G is the smallest integer, if it exists, such that the continuous group cohomology

$$\mathsf{H}^{r_G}_{\mathrm{ct}}(G; F \otimes \pi) \neq \{0\}$$

for some finite dimensional irreducible representations F of G, and some infinite-dimensional irreducible unitary representations π of G. Otherwise $r_G = \infty$.

Remark:

- In many cases, r_G is the optimal bound.
- The quantity *r_G* is calculated in all cases (Enright, Kumaresan, Vogan-Zuckerman, Li-Schwermer).

Example 1

• G = SU(m, n).

Matsushima: Suppose $\Gamma \setminus G$ is compact, and $i < \frac{\min\{m,n\}}{2}$. Then

$$\mathsf{H}^{i}(\Gamma;\mathbb{C})\cong\mathsf{H}^{i}_{\mathrm{ct}}(G;\mathbb{C}).$$

Our theorem: Suppose Γ is a congruence subgroup and $i < \min\{m, n\}$. Then

$$H^{i}(\Gamma; F) \cong F^{\Gamma} \otimes H^{i}_{ct}(G; \mathbb{C}).$$

- A 🗄 🕨

Example 2

G = SL_n(ℝ).
 Borel : Suppose Γ is a congruence subgroup, n ≥ 4 and i ≤ n+2/4. Then
 Hⁱ(Γ; ℂ) ≅ Hⁱ_{ct}(G; ℂ).

Our theorem: Suppose Γ is a congruence subgroup and $i \leq n-2.$ Then

$$H^{i}(\Gamma; F) \cong F^{\Gamma} \otimes H^{i}_{ct}(G; \mathbb{C}).$$

- A 3 N

• G : a locally compact Hausdorff topological group.

Definition A representation of *G* is a quasi-complete Hausdorff locally convex topological vector space *V* over \mathbb{C} , together with a continuous linear action

$$G \times V \rightarrow V.$$

All representations of G form a category : Rep_{G} .

- Want: $H^i_{ct}(G; V)$.
- Defined by : Hochschild-Mostow.

Definition A homomorphism $\phi: V_1 \to V_2$ in Rep_G is strong if, as topological vector spaces,

 $\ker \phi \subset V_1 \text{ is a direct summand}$

and

 $\operatorname{Im}\phi \subset V_2$ is a direct summand.

F 4 3 F 4

Definition A representation V of G is relatively injective if for all injective strong homomorphisms

 $V_1 \hookrightarrow V_2$

in Rep_{G} , every homomorphism in $\operatorname{Hom}_{G}(V_{1}, V)$ extends to a homomorphism in $\operatorname{Hom}_{G}(V_{2}, V)$.

Definition A strong injective resolution of a representation V of G is an exact sequence

$$0 \to V \to J_0 \to J_1 \to J_2 \to \cdots$$

in Rep_G such that all J_i 's are relatively injective, all the arrows are strong homomorphisms.

Definition

$$\mathrm{H}^{i}_{\mathrm{ct}}(G; V) := \mathrm{H}^{i}(J_{\bullet}).$$

This is a locally convex topological vector space.

• G : a Lie group.

Definition A representation V of G is said to be smooth if for every $X \in \mathfrak{g}$, the map

$$V o V, \quad v \mapsto X.v := rac{\mathsf{d}}{\mathsf{d}t}|_{t=0} \exp(tX).v$$

is well-defined and continuous.

All smooth representations of G form a category : $\operatorname{Rep}_{G}^{\infty}$.

All smooth representations of G are representations of $\mathfrak{g}_{\mathbb{C}}$.

Definition A homomorphism $\phi: V_1 \to V_2$ in $\operatorname{Rep}_G^{\infty}$ is strong if, as topological vector spaces,

 $\ker \phi \subset V_1 \text{ is a direct summand}$

and

 $\operatorname{Im}\phi \subset V_2$ is a direct summand.

F 4 3 F 4

Definition A representation V in $\operatorname{Rep}_{G}^{\infty}$ is relatively injective if for all injective strong homomorphisms

 $V_1 \hookrightarrow V_2$

in $\operatorname{Rep}_{G}^{\infty}$, every homomorphism in $\operatorname{Hom}_{G}(V_{1}, V)$ extends to a homomorphism in $\operatorname{Hom}_{G}(V_{2}, V)$.

Definition A strong injective resolution of a representation V in $\operatorname{Rep}_{G}^{\infty}$ is an exact sequence

$$0 \to V \to J_0 \to J_1 \to J_2 \to \cdots$$

in $\operatorname{Rep}_G^\infty$ such that all J_i 's are relatively injective, all the arrows are strong homomorphisms.

Definition

$$\mathrm{H}^{i}_{\mathrm{sm}}(G; V) := \mathrm{H}^{i}(J_{\bullet}).$$

This is a locally convex topological vector space.

Facts

• (Hochschild-Mostow) For every V in $\operatorname{Rep}_{\mathcal{G}}^\infty$,

$$\mathsf{H}^{i}_{\mathrm{ct}}(G; V) = \mathsf{H}^{i}_{\mathrm{sm}}(G; V).$$

• (Hochschild-Mostow) Suppose G has only finitely many connected components. Then for every V in $\operatorname{Rep}_{G}^{\infty}$,

$$\mathsf{H}^{i}_{\mathrm{sm}}(G;V)=\mathsf{H}^{i}(\mathfrak{g}_{\mathbb{C}},K;V).$$

• (Blanc) For every representation V of G,

$$\mathsf{H}^{i}_{\mathrm{ct}}(G;V)=\mathsf{H}^{i}_{\mathrm{sm}}(G;V^{\infty})$$

at least when V is Fréchet.

Remarks.

• $H^i_{\mathrm{ct}}(\mathfrak{g}_{\mathbb{C}}, K; V)$ is calculated by the cochain complex

 $\operatorname{Hom}_{\mathcal{K}}(\wedge^{\bullet}\mathfrak{g}_{\mathbb{C}}/\mathfrak{k}_{\mathbb{C}}, V).$

• The smoothing V^∞ of V is defined by the Cartesian diagram

- G: real reductive group;
- F: an irreducible finite dimensional representation of G;
- $P \subset G$: a proper parabolic subgroup of G;
- N : the unipotent radical of P;
- L := P/N.

Local Theorem (Li-Sun, 2018, preprint) For every irreducible unitarizable Casselman-Wallach representation σ of L, and every dominant positive character $\nu : L \to \mathbb{R}^{\times}_{+}$,

$$\mathsf{H}^i_{\mathrm{ct}}(G; F \otimes \mathrm{Ind}_P^G(\nu \otimes \sigma)) = \{0\} \quad \text{for all } i < r_G.$$

- Take a splitting of $P \rightarrow L$ and write P = LN.
- $\mathfrak{h}\subset\mathfrak{l}$: a maximally split Cartan subalgebra of $\mathfrak{l}.$

Definition A positive character $\nu : L \to \mathbb{R}^{\times}_+$ is said to be dominant if

 $\langle \nu|_{\mathfrak{h}_{\mathbb{C}}}, \alpha^{\vee} \rangle \geq 0 \quad \text{for all } \alpha \in \Delta(\mathfrak{h}_{\mathbb{C}}, \mathfrak{n}_{\mathbb{C}}).$

Here the compleix fied differential of $\nu : L \to \mathbb{R}_+^{\times}$ is denoted by $\nu : \mathfrak{l}_{\mathbb{C}} \to \mathbb{C}$. Proof: Case by case analysis of the root systems.

- G: real reductive group;
- $K \subset G$: a maximal compact subgroup;
- $\Gamma \subset G$: a lattice;
- F : an irreducible finite dimensional representation of G.

Shapiro's Lemma :

$$\mathrm{H}^{i}(\Gamma; F) = \mathrm{H}^{i}_{\mathrm{sm}}(G; \mathrm{Ind}_{\Gamma}^{G}F) = \mathrm{H}^{i}_{\mathrm{sm}}(G; C^{\infty}(\Gamma \backslash G) \otimes F)$$

Suppose

۲

- G: connected reductive linear algebraic group over Q;
- $\Gamma \subset G(\mathbb{Q})$: a congruence subgroup;

$$\mathcal{G} = igcap_{\chi: \mathbf{G} o \operatorname{GL}(1)/_{\mathbb{Q}}} \operatorname{\mathsf{ker}}(|\chi|: \mathbf{G}(\mathbb{R}) o \mathbb{R}_+^{ imes}).$$

 A(Γ\G) : the space of smooth automorphic forms. Then

$$\mathcal{A}(\Gamma \setminus G) = \varinjlim_{\text{I is a finite codimensional ideal of $\mathsf{Z}(\mathfrak{g}_{\mathbb{C}})$}} \mathcal{A}(\Gamma \setminus G)^{I},$$

where

 $\mathcal{A}(\Gamma \setminus G)^{I} := \{ f \in \mathcal{A}(\Gamma \setminus G) : f \text{ is annihilated by } I \}$

is a Casselman-Wallach representation of G.

Theorem: (Franke)

$$\mathrm{H}^{i}_{\mathrm{sm}}(\mathsf{G};\mathsf{C}^{\infty}(\Gamma\backslash \mathsf{G})\otimes\mathsf{F})=\mathrm{H}^{i}_{\mathrm{sm}}(\mathsf{G};\mathcal{A}(\Gamma\backslash \mathsf{G})\otimes\mathsf{F}).$$

Remark.

• Extend F to a representation of $G(\mathbb{R})$. Then

 $\mathrm{H}^{i}_{\mathrm{sm}}(\mathsf{G};\mathcal{A}(\Gamma\backslash \mathsf{G})\otimes \mathsf{F})=\mathrm{H}^{i}_{\mathrm{sm}}(\mathsf{G}(\mathbb{R});\mathcal{A}(\Gamma\backslash \mathsf{G}(\mathbb{R}))\otimes \mathsf{F}).$

-

6. Franke's filtration

- P₀ : a minimal split torus in G;
- A₀ : a maximal split torus in P₀;
- $\mathbf{P} = \mathbf{L}_{\mathbf{P}} \ltimes \mathbf{N}_{\mathbf{P}}$: a standard parabolic;
- A_P : the largest split central torus in L;
- \mathfrak{a}_{P} : the Lie algebra of $A_{P}(\mathbb{R})$;
- $\mathfrak{a}_{\mathbf{P},\mathbb{C}}$: the complexificaton;
- $\check{\mathfrak{a}}_{\mathbf{P},\mathbb{C}}$ the dual space;
- $\mathcal{A}_{P}(G)$: the space of smooth automorphic forms on $(L_{P}(\mathbb{Q})N_{P}(\mathbb{A}))\setminus G(\mathbb{A})$. This is a representation of $G(\mathbb{A})$. It is smooth as a representation of $G(\mathbb{R})$.

•
$$\mathcal{A}(\mathbf{G}) := \mathcal{A}_{\mathbf{G}}(\mathbf{G}).$$

A smooth representation

$$\mathbf{A}_{\mathbf{P}}(\mathbb{R}) \frown \mathcal{A}_{\mathbf{P}}(\mathbf{G}), \quad (a.\phi)(x) := a^{-\rho_{\mathbf{P}}}\phi(ax),$$

where $\rho_{\mathbf{P}} \in \check{a}_{\mathbf{P}}$ denotes the half sum of the weights (with the multiplicities) associated to $\mathbf{N}_{\mathbf{P}}$.

Differential :

$$\mathfrak{a}_{\mathbf{P},\mathbb{C}} \curvearrowright \mathcal{A}_{\mathbf{P}}(\mathbf{G}).$$

The generalized eigenspace decomposition :

$$\mathcal{A}_{\mathsf{P}}(\mathsf{G}) = \bigoplus_{\lambda \in \check{\mathsf{a}}_{\mathsf{P},\mathbb{C}}} \mathcal{A}_{\mathsf{P}}(\mathsf{G})_{\lambda}. \tag{1}$$

A result of Langlands :

$$\breve{\mathfrak{a}}_{P_0} = \bigsqcup_{P \text{ is a standard parabolic}} \left(\breve{\mathfrak{a}}_{P}^{+} - \overline{\breve{+}\breve{\mathfrak{a}}_{P_0}^{P}} \right)$$

Since

$$\overline{\mathfrak{a}_{P_0}^+} = \bigsqcup_{\substack{\mathsf{P} \text{ is a standard parabolic}}} \breve{\mathfrak{a}}_{P}^+,$$

we get a map (the dominant part)

$$(\,\cdot\,)_+:\breve{\mathfrak{a}}_{\mathsf{P}_0}\to\overline{\breve{\mathfrak{a}}_{\mathsf{P}_0}^+}$$

Franke's filtration : for each $t \ge 0$, define

$$= \left\{ \phi \in \mathcal{A}(\mathsf{G})_{[\leq t]} \\ \left\{ \phi \in \mathcal{A}(\mathsf{G}) : \phi_{\mathsf{P}} \in \bigoplus_{\lambda \in \check{\mathsf{a}}_{\mathsf{P},\mathbb{C}}, \ \langle (\operatorname{Re}(\lambda))_{+}, \rho_{0}^{\vee} \rangle \leq t} \mathcal{A}_{\mathsf{P}}(\mathsf{G})_{\lambda}, \text{ for all } \mathsf{P} \right\}$$

,

where $\phi_{\mathbf{P}} \in \mathcal{A}_{\mathbf{P}}(\mathbf{G})$ denotes the constant term of ϕ along \mathbf{P} , and $\rho_{\mathbf{0}}^{\vee} \in \check{a}_{\mathbf{P}_{\mathbf{0}}}$ is the sum of the fundamental coweights.

Remark. The spaces of almost square integrable automorphic forms:

$$\begin{split} & \mathcal{A}(\mathbf{G})_{[\leq 0]} \\ &= & \mathcal{A}^{\bar{2}}(\mathbf{G}) \\ &:= & \{\phi \in \mathcal{A}^{\bar{2}}(\mathbf{G}) \, : \, \phi(\cdot g) \in \mathsf{L}^{2+\epsilon}(\mathbf{G}(\mathbb{Q}) \backslash \mathbf{G}^{1}(\mathbb{A})) \text{ for all } g\}. \end{split}$$

Define

$$\begin{array}{ll} \mathcal{A}(\mathbf{G})_{[< t]} \\ := & \left\{ \phi \in \mathcal{A}(\mathbf{G}) \, : \, \phi_{\mathbf{P}} \in \bigoplus_{\lambda \in \breve{\mathfrak{u}}_{\mathbf{P},\mathbb{C}}, \, \langle (\operatorname{Re}(\lambda))_{+}, \rho_{0}^{\vee} \rangle < t} \mathcal{A}_{\mathbf{P}}(\mathbf{G})_{\lambda}, \, \, \text{for all } \mathbf{P} \right\}, \end{array}$$

and

$$\mathcal{A}(\mathsf{G})_{[t]} \mathrel{\mathop:}= rac{\mathcal{A}(\mathsf{G})_{[\leq t]}}{\mathcal{A}(\mathsf{G})_{[< t]}}.$$

<ロ> <同> <同> < 同> < 同>

æ

Theorem (Franke)

$$\mathcal{A}(\mathbf{G})_{[t]} = \bigoplus_{\mathbf{P}} \bigoplus_{\lambda \in \check{\mathbf{x}}_{\mathbf{P},\mathbb{C}}, \operatorname{Re}(\lambda) \in \check{\mathbf{x}}_{\mathbf{P}}^+, \langle \operatorname{Re}(\lambda), \rho_0^{\vee} \rangle = t} \mathcal{A}_{\mathbf{P}}^{\tilde{2}}(\mathbf{G})_{\lambda},$$

where

$$\begin{aligned} &\mathcal{A}_{\mathsf{P}}^{\bar{2}}(\mathsf{G}) \\ &:= \quad \{\phi \in \mathcal{A}_{\mathsf{P}}(\mathsf{G}) \, : \, \phi(\cdot g) \in \mathsf{L}^{2+\epsilon}(\mathsf{L}_{\mathsf{P}}(\mathbb{Q}) \setminus \mathsf{L}_{\mathsf{P}}^{1}(\mathbb{A})) \text{ for all } g\} \\ &= \quad \mathrm{Ind}_{\mathsf{P}(\mathbb{A})}^{\mathsf{G}(\mathbb{A})} \mathcal{A}^{\bar{2}}(\mathsf{L}_{\mathsf{P}}). \end{aligned}$$

æ

A ►

7. Proof of the global theorem

 $\bullet\,$ Franke's theorem + the local theorem implies that

$$\mathsf{H}^{i}_{\mathrm{sm}}(\mathbf{G}(\mathbb{R});\mathcal{A}(\mathbf{G})\otimes F)=\mathsf{H}^{i}_{\mathrm{sm}}(\mathbf{G}(\mathbb{R});\mathcal{A}^{\bar{2}}(\mathbf{G})\otimes F)$$

for $i < r_G$.

• The theory of Eisenstein series + the local theorem implies that

$$\mathsf{H}^{i}_{\mathrm{sm}}(\mathbf{G}(\mathbb{R});\mathcal{A}^{\bar{2}}(\mathbf{G})\otimes F)=\mathsf{H}^{i}_{\mathrm{sm}}(\mathbf{G}(\mathbb{R});\mathcal{A}^{2}(\mathbf{G})\otimes F)$$

for $i < r_G$.

This implies that

$$\mathrm{H}^{i}_{\mathrm{sm}}(G;\mathcal{A}(\Gamma\backslash G)\otimes F)=\mathrm{H}^{i}_{\mathrm{sm}}(G;\mathcal{A}^{2}(\Gamma\backslash G)\otimes F)$$

for $i < r_G$.

Finally,

$$\mathrm{H}^{i}_{\mathrm{sm}}(\mathsf{G};\mathcal{A}^{2}(\Gamma\backslash \mathsf{G})\otimes \mathsf{F})=\mathsf{F}^{\Gamma}\otimes\mathrm{H}^{i}_{\mathrm{sm}}(\mathsf{G};\mathbb{C}).$$

Thank you!

< /□> < 三

æ

э