## Generalizing Gödel's Constructible Universe:

The Ultimate-*L* Conjecture

W. Hugh Woodin

Harvard University

IMS Graduate Summer School in Logic June 2018

### Generalizing L

#### Relativizing L to an arbitrary predicate P

Suppose *P* is a set. Define  $L_{\alpha}[P]$  by induction on  $\alpha$  by:

- 1.  $L_0[P] = \emptyset$ ,
- 2. (Successor case)  $L_{\alpha+1}[P] = \mathcal{P}_{\mathrm{Def}}(L_{\alpha}[P]) \cup \{P \cap L_{\alpha}[P]\},\$
- 3. (Limit case)  $L_{\alpha}[P] = \bigcup_{\beta < \alpha} L_{\beta}[P]$ .
- L[P] is the class of all sets X such that X ∈ L<sub>α</sub>[P] for some ordinal α.
- ▶ If  $P \cap L \in L$  then L[P] = L.
- ▶  $L[\mathbb{R}] = L$  versus  $L(\mathbb{R})$  which is **not** L unless  $\mathbb{R} \subset L$ .

#### Lemma

For every set X, there exists a set P such that  $X \in L[P]$ .

► This is equivalent to the Axiom of Choice.

### Normal ultrafilters and L[U]

### Definition

Suppose that U is a uniform ultrafilter on  $\delta$ . Then U is a **normal ultrafilter** if for all functions,  $f : \delta \to \delta$ , if

$$\blacktriangleright \{\alpha < \delta \mid f(\alpha) < \alpha\} \in U,$$

then for some  $\beta < \delta$ ,

• 
$$\{\alpha < \delta \mid f(\alpha) = \beta\} \in U.$$

• A normal ultrafilter on  $\delta$  is necessarily  $\delta$ -complete.

### Theorem (Kunen)

Suppose that  $\delta_1 \leq \delta_2$ ,  $U_1$  is a normal ultrafilter on  $\delta_1$ , and  $U_2$  is a normal ultrafilter on  $\delta_2$ . Then:

 $\blacktriangleright \ L[U_2] \subseteq L[U_1]$ 

• If 
$$\delta_1 = \delta_2$$
 then

•  $L[U_1] = L[U_2]$  and  $U_1 \cap L[U_1] = U_2 \cap L[U_2]$ .

• If  $\delta_1 < \delta_2$  there is an elementary embedding  $j : L[U_1] \rightarrow L[U_2]$ .

### L[U] is a generalization of L

### Theorem (Silver)

Suppose that U is a normal ultrafilter on  $\delta$ . Then in L[U]:

- $2^{\lambda} = \lambda^+$  for infinite cardinals  $\lambda$ .
- There is a projective wellordering of the reals.

### Theorem (Kunen)

Suppose that U is a normal ultrafilter on  $\delta$ .

Then δ is the only measurable cardinal in L[U].

## This generalizes Scott's Theorem to L[U] and so: V ≠ L[U].

### Weak Extender Models

#### Theorem

Suppose N is a transitive class, N contains the ordinals, and that N is a model of ZFC. Then for each cardinal  $\delta$  the following are equivalent.

- N is a weak extender model of  $\delta$  is supercompact.
- For every γ > δ there exists a δ-complete normal fine ultrafilter U on P<sub>δ</sub>(γ) such that
  - $\blacktriangleright \ \mathsf{N} \cap \mathcal{P}_{\delta}(\gamma) \in U,$
  - $\blacktriangleright U \cap N \in N.$
- If δ is a supercompact cardinal then V is a weak extender model of δ is supercompact.

### Why weak extender models?

#### The Basic Thesis

If there is a generalization of L at the level of a supercompact cardinal then it should exist in a version which is a weak extender model of  $\delta$  is supercompact for some  $\delta$ .

- Suppose U is  $\delta$ -complete normal fine ultrafilter on  $\mathcal{P}_{\delta}(\gamma)$ , such that  $\delta^+ \leq \gamma$ , and such that  $\gamma$  is a regular cardinal. Then:
  - $\blacktriangleright L[U] = L.$
- Let W be the induced uniform ultrafilter on γ by restricting U to a set Z on which the "sup function" is 1-to-1. Then:
  - L[W] is a Kunen inner model for 1 measurable cardinal.

#### Theorem

#### Suppose N is a weak extender model of $\delta$ is supercompact.

Then:

- N has the  $\delta$ -approximation property.
- N has the  $\delta$ -covering property.

### Corollary

Suppose N is a weak extender model of  $\delta$  is supercompact and let  $A = N \cap H(\delta^+)$ . Then:

- N ∩ H(γ) is (uniformly) definable in H(γ) from A, for all strong limit cardinals γ > δ.
- $\triangleright$  N is  $\Sigma_2$ -definable from A.
- The theory of weak extender models for supercompactness is part of the first order theory of V.

There is no need to work in a theory with classes.

## Weak extender models of $\delta$ is supercompact are close to V above $\delta$

#### Theorem

Suppose N is a weak extender model of  $\delta$  is supercompact and that  $\gamma > \delta$  is a singular cardinal. Then:

• 
$$\gamma$$
 is a singular cardinal in N.

$$\succ \gamma^+ = (\gamma^+)^N.$$

This theorem strongly suggests:

- There can be no generalization of Scott's Theorem to any axiom which holds in some weak extender model of δ is supercompact, for any δ.
  - Since a weak extender model of  $\delta$  is supercompact cannot be *far* from *V*.

### The Universality Theorem

The following theorem is a special case of the Universality Theorem for weak extender models.

#### Theorem

Suppose that N is a weak extender model of  $\delta$  is supercompact,  $\alpha > \delta$  is an ordinal, and that

$$j: \mathsf{N} \cap \mathsf{V}_{\alpha+1} \to \mathsf{N} \cap \mathsf{V}_{j(\alpha)+1}$$

is an elementary embedding such that  $\delta \leq \operatorname{CRT}(j)$ .

• Then 
$$j \in N$$
.

Conclusion: There can be no generalization of Scott's Theorem to any axiom which holds in some weak extender model of δ is supercompact, for any δ.

# Large cardinals above $\delta$ are downward absolute to weak extender models of $\delta$ is supercompact

#### Theorem

Suppose that N is a weak extender model of  $\delta$  is supercompact.

 $\kappa > \delta$ ,

and that  $\kappa$  is an extendible cardinal.

• Then  $\kappa$  is an extendible cardinal in N.

(sketch) Let  $A = N \cap H(\delta^+)$  and fix an elementary embedding

$$j: V_{\alpha+\omega} \to V_{j(\alpha)+\omega}$$

such that  $\kappa < \alpha$  and such that  $\operatorname{CRT}(j) = \kappa > \delta$ .

N ∩ H(γ) is uniformly definable in H(γ) from A for all strong limit cardinals γ > δ<sup>+</sup>.

• This implies that  $j(N \cap V_{\alpha+\omega}) = N \cap V_{j(\alpha)+\omega}$  since j(A) = A.

▶ Therefore by the Universality Theorem,  $j|(N \cap V_{\alpha+1}) \in N$ .

### Magidor's characterization of supercompactness

### Lemma (Magidor)

Suppose that  $\delta$  is strongly inaccessible. Then the following are equivalent.

- (1)  $\delta$  is supercompact.
- (2) For all  $\lambda > \delta$  there exist  $\bar{\delta} < \bar{\lambda} < \delta$  and an elementary embedding

$$\pi: V_{\bar{\lambda}+1} \to V_{\lambda+1}$$

such that  $CRT(\pi) = \overline{\delta}$  and such that  $\pi(\overline{\delta}) = \delta$ .

#### Theorem

Suppose that N is a weak extender model of  $\delta$  is supercompact,  $\kappa > \delta$ , and that  $\kappa$  is supercompact.

• Then N is a weak extender model of  $\kappa$  is supercompact.

### Too close to be useful?

Are weak extender models for supercompactness simply too close to V to be of any use in the search for generalizations of L?

#### Theorem (Kunen)

There is no nontrivial elementary embedding

$$\pi: V_{\lambda+2} \to V_{\lambda+2}.$$

#### Theorem

Suppose that N is a weak extender model of  $\delta$  is supercompact and  $\lambda > \delta$ .

• Then there is no nontrivial elementary embedding  $\pi: N \cap V_{\lambda+2} \rightarrow N \cap V_{\lambda+2}$ such that  $CRT(\pi) \ge \delta$ .

### Perhaps not

Weak extender models for supercompactness can be nontrivially far from V in one key sense.

Theorem (Kunen)

The following are equivalent.

- 1. L is far from V (as in the Jensen Dichotomy Theorem).
- 2. There is a nontrivial elementary embedding  $j : L \rightarrow L$ .

#### Theorem

Suppose that  $\delta$  is a supercompact cardinal.



 $\blacktriangleright N^{\omega} \subset N.$ 

► There is a nontrivial elementary embedding j : N → N.

This theorem shows that the restriction in the Universality Theorem on CRT(j) is necessary.

### The HOD Dichotomy (full version)

### Theorem (HOD Dichotomy Theorem)

Suppose that  $\delta$  is an extendible cardinal. Then one of the following holds.

- (1) No regular cardinal  $\kappa \geq \delta$  is  $\omega$ -strongly measurable in HOD. Further:
  - HOD is a weak extender model of  $\delta$  is supercompact.
- (2) Every regular cardinal  $\kappa \geq \delta$  is  $\omega$ -strongly measurable in HOD. Further:
  - HOD is not a weak extender model of λ is supercompact, for any λ.
  - There is no weak extender model N of λ is supercompact such that N ⊆ HOD, for any λ.

### A unconditional corollary

#### Theorem

Suppose that  $\delta$  is an extendible cardinal,  $\kappa \geq \delta$ , and that  $\kappa$  is a measurable cardinal.

• Then  $\kappa$  is a measurable cardinal in HOD.

Two cases by appealing to the HOD Dichotomy Theorem:

Case 1: HOD is close to V. Then HOD is a weak extender model of δ is supercompact.

Apply (a simpler variation of) the Universality Theorem.

Case 2: HOD is far from V. Then every regular cardinal κ ≥ δ is a measurable cardinal in HOD;

• since  $\kappa$  is  $\omega$ -strongly measurable in HOD.

### The axiom V = Ultimate-L

#### The axiom for V = Ultimate-L

► There is a proper class of Woodin cardinals.

For each Σ<sub>2</sub>-sentence φ, if φ holds in V then there is a universally Baire set A ⊆ ℝ such that

 $\operatorname{HOD}^{L(A,\mathbb{R})}\models\varphi.$ 

### Scott's Theorem and the rejection of V = L

### Theorem (Scott)

Assume V = L. Then there are no measurable cardinals.

### The key question

Is there a generalization of Scott's theorem to the axiom V = Ultimate-L?

• If so then we must reject the axiom V = Ultimate-L.

### V = Ultimate-L and the structure of $\Gamma^{\infty}$

#### Theorem (V = Ultimate-L)

For each  $x \in \mathbb{R}$ , there exists a universally Baire set  $A \subseteq \mathbb{R}$  such that

 $x \in \mathrm{HOD}^{L(A,\mathbb{R})}.$ 

- Assume there is a proper class of Woodin cardinals and that for each x ∈ ℝ there exists a universally Baire set A ⊆ ℝ such that x ∈ HOD<sup>L(A,ℝ)</sup>.
  - This is in general yields the simplest possible wellordering of the reals.
    - It implies  $\mathbb{R} \subset HOD$ .

### Question

Does some large cardinal hypothesis imply that there must exist  $x \in \mathbb{R}$  such that

 $x\notin \mathrm{HOD}^{L(A,\mathbb{R})}$ 

for any universally Baire set?

### V = Ultimate-L and the structure of $\Gamma^{\infty}$

#### Lemma

Suppose that there is a proper class of Woodin cardinals and that  $A, B \in \mathcal{P}(\mathbb{R})$  are each universally Baire. Then the following are equivalent.

(1)  $L(A, \mathbb{R}) \subseteq L(B, \mathbb{R}).$ (2)  $\Theta^{L(A,\mathbb{R})} \leq \Theta^{L(B,\mathbb{R})}.$ 

### Corollary

Suppose that there is a proper class of Woodin cardinals and that  $A\subseteq \mathbb{R}$  is universally Baire. Then

 $\mathrm{HOD}^{\mathcal{L}(\mathcal{A},\mathbb{R})} \subset \mathrm{HOD}.$ 

#### Corollary (V = Ultimate-L)

Let  $\Gamma^{\infty}$  be the set of all universally Baire sets  $A \subseteq \mathbb{R}$ .

• Then 
$$\Gamma^{\infty} \neq \mathcal{P}(\mathbb{R}) \cap L(\Gamma^{\infty}, \mathbb{R})$$
.

### Projective Sealing Theorems

### Theorem (Unconditional Projective Sealing)

Suppose that there is a proper class of Woodin cardinals and that V[G] is a generic extension of V.

• Then  $V_{\omega+1} \prec V[G]_{\omega+1}$ .

Suppose  $V_{\omega+1} \prec V[G]_{\omega+1}$  for generic extensions of V. Then there is no projective wellordering of the reals.

#### Theorem (Martin-Steel)

Suppose there are infinitely many Woodin cardinals. Then for each  $n < \omega$  there exists a model M such that:

(1) 
$$M \models \text{ZFC} + \text{``There exist n-many Woodin cardinals''}.$$

(2)  $M \models \text{ZFC} + \text{``There is a projective wellordering of the reals''}.$ 

Strong cardinals and conditional projective sealing

Suppose  $\delta$  is a Woodin cardinal. Then:

•  $V_{\delta} \models \text{ZFC} +$  "There is a proper class of strong cardinals" Thus:

 ZFC + "There is a proper class of strong cardinals" cannot prove projective sealing.

### Theorem (Conditional Projective Sealing)

Suppose that  $\delta$  is a limit of strong cardinals and V[G] is a generic extension of V in which  $\delta$  is countable.

Suppose V[H] is a generic extension of V[G].

• Then 
$$V[G]_{\omega+1} \prec V[H]_{\omega+1}$$
.

Thus after collapsing a limit of strong cardinals to be countable, one obtains projective sealing.

► Can Γ<sup>∞</sup> be sealed?

### A Sealing Theorem for $\Gamma^\infty$

#### Notation

Suppose V[H] is a generic extension of V. Then

$$\Gamma^{\infty}_{H} = (\Gamma^{\infty})^{V[H]}$$

$$\blacktriangleright \mathbb{R}_H = (\mathbb{R})^{V[H]}.$$

### Theorem (Conditional $\Gamma^{\infty}$ Sealing)

Suppose that  $\delta$  is a supercompact cardinal and that there is a proper class of Woodin cardinals.

Suppose that V[G] is a generic extension of V in which  $(2^{\delta})^{V}$  is countable.

Suppose that V[H] is a generic extension of V[G].

► Then:

$$\Gamma_{G}^{\infty} = \mathcal{P}(\mathbb{R}_{G}) \cap L(\Gamma_{G}^{\infty}, \mathbb{R}_{G}).$$

There is an elementary embedding

 $j: L(\Gamma_G^{\infty}, \mathbb{R}_G) \to L(\Gamma_H^{\infty}, \mathbb{R}_H).$ 

### What about an Unconditional $\Gamma^{\infty}$ Sealing Theorem?

### A natural conjecture

By analogy with the Projective Sealing Theorems, there should be some large cardinal hypothesis which suffices to prove:

• Unconditional  $\Gamma^{\infty}$  Sealing.

### But:

If some large cardinal hypothesis proves that

 $\blacktriangleright \Gamma^{\infty} = \mathcal{P}(\mathbb{R}) \cap L(\Gamma^{\infty}, \mathbb{R})$ 

then the axiom V = Ultimate-L is false.

- So there are potential paths to generalizing Scott's Theorem to the axiom V = Ultimate-L.
- Is there a potential path to showing that there is no generalization of Scott's Theorem to the axiom V = Ultimate-L?

### The Ultimate-L Conjecture

#### Ultimate-*L* Conjecture

(ZFC) Suppose that  $\delta$  is an extendible cardinal. Then (provably) there is a transitive class N such that:

- 1. N is a weak extender model of  $\delta$  is supercompact.
- 2.  $N \models "V = \text{Ultimate-}L"$ .
- The Ultimate-*L* Conjecture implies there is no generalization of Scott's Theorem to the case of V = Ultimate-L.
  - By the Universality Theorem.
- ► The Ultimate-*L* Conjecture is a number theoretic statement
  - It is an existential statement, so if it is undecidable it must be false. Therefore:
    - It must be either true or false (it cannot be meaningless).
    - Just like the HOD Conjecture.
- The Ultimate-L Conjecture implies a slightly weaker version of the HOD Conjecture.

### The summary from Tuesday's lecture

There is a progression of theorems from large cardinal hypotheses that suggest:

Further:

The theorems become much stronger as the large cardinal hypothesis is increased.

### Large cardinals are amplifiers of the structure of V.

V = L is true.

### A natural conjecture building on this theme

One should be able to augment large cardinal axioms with some simple consequences of V = Ultimate-L and actually

• recover that V = Ultimate-L,

laying the foundation for an argument that the axiom V = Ultimate-L is true.

### Close embeddings and finitely generated models

### Definition

Suppose that M, N are transitive sets,  $M \models \text{ZFC}$ , and that

$$\pi: M \to N$$

is an elementary embedding. Then  $\pi$  is **close** to M if for each  $X \in M$  and each  $a \in \pi(X)$ ,

$$\{Z \in \mathcal{P}(X) \cap M \mid a \in \pi(Z)\} \in M.$$

#### Definition

Suppose that N is a transitive set such that

$$N \models \text{ZFC} + "V = \text{HOD}".$$

Then *N* is **finitely generated** if there exists  $a \in N$  such that every element of *N* is definable from *a*.

### Why close embeddings?

#### Lemma

Suppose that M, N are transitive sets,

```
M \models \text{ZFC} + "V = \text{HOD}",
```

and that M is finitely generated.

- Suppose that
  - $\blacktriangleright \pi_0: M \to N$
  - $\blacktriangleright \ \pi_1: M \to N$

are elementary embeddings each of which is close to M.

• Then 
$$\pi_0 = \pi_1$$
.

• Without the requirement of closeness, the conclusion that  $\pi_0 = \pi_1$  can fail.

### Weak Comparison

#### Definition

Suppose that V = HOD. Then **Weak Comparison** holds if for all  $X, Y \prec_{\Sigma_2} V$  the following hold where  $M_X$  is the transitive collapse of X and  $M_Y$  is the transitive collapse of Y.

- Suppose that  $M_X$  and  $M_Y$  are finitely generated models of ZFC,  $M_X \neq M_Y$ , and
  - $\blacktriangleright M_X \cap \mathbb{R} = M_Y \cap \mathbb{R}.$
- Then there exist a transitive set M\*, and elementary embeddings

$$\pi_X : M_X \to M^*$$
$$\pi_Y : M_Y \to M^*$$

such that  $\pi_X$  is close to  $M_X$  and  $\pi_Y$  is close to  $M_Y$ .

### Why weak comparison?

- By Shoenfield's Absoluteness Theorem, the conclusion of Weak Comparison is absolute.
- Weak Comparison holds in the current generation of generalizations of L.
- Weak Comparison looks difficult to force.

### Summary:

Weak Comparison provides a good test question for generalizing L to levels of the large cardinal hierarchy.

### Question

Assume there is a supercompact cardinal and that V = HOD.

Can Weak Comparison hold?

• (conjecture) V = Ultimate-L implies Weak Comparison.

### Goldberg's Ultrapower Axiom

#### Notation

Suppose that  $N \models \text{ZFC}$  is an inner model of ZFC,  $U \in N$  and  $N \models "U$  is a countably complete ultrafilter"

- ▶  $N_U$  denotes the transitive collapse of  $Ult_0(N, U)$
- ▶  $j_U^N : N \to N_U$  denotes the associated ultrapower embedding.

### Definition (The Ultrapower Axiom)

Suppose that U and W are countably complete ultrafilters. Then there exist  $W^* \in V_U$  and  $U^* \in V_W$  such that the following hold.

- (1)  $V_U \models "W^*$  is a countably complete ultrafilter".
- (2)  $V_W \models "U^*$  is a countably complete ultrafilter".
- (3)  $(V_U)_{W^*} = (V_W)_{U^*}$ .

(4) 
$$j_{W^*}^{V_U} \circ j_U^V = j_{U^*}^{V_W} \circ j_W^V$$
.

• If 
$$V = HOD$$
 then (3) implies (4).

### Weak Comparison and the Ultrapower Axiom

- The Ultrapower Axiom simply asserts that amalgamation holds for the ultrapowers of V by countably complete ultrafilters.
- If there are no measurable cardinals then the Ultrapower Axiom holds trivially
  - since every countably complete ultrafilter is principal.

### Theorem (Goldberg)

Suppose that V = HOD and that there exists

 $X \prec_{\Sigma_2} V$ 

such that  $M_X \models \text{ZFC}$  where  $M_X$  is the transitive collapse of X. Suppose that Weak Comparison holds.

- ► Then the Ultrapower Axiom holds.
- ▶ If X does not exist then Weak Comparison holds vacuously.
- If there is a supercompact cardinal, or even just a strong cardinal, then X must exist.

### Strongly compact cardinals

### Definition

Suppose that  $\kappa$  is an uncountable regular cardinal. Then  $\kappa$  is a **strongly compact cardinal** if for each  $\lambda > \kappa$  there exists an ultrafilter U on  $\mathcal{P}_{\kappa}(\lambda)$  such that:

- 1. U is a  $\kappa$ -complete ultrafilter,
- 2. U is a fine ultrafilter.
- Every supercompact cardinal is a strongly compact cardinal.

A natural question immediately arises:

#### Question

Suppose  $\kappa$  is a strongly compact cardinal. Must  $\kappa$  be a supercompact cardinal?

### Menas' Theorem

#### Theorem (Menas)

Suppose  $\kappa$  is a measurable cardinal and that  $\kappa$  is a limit of strongly compact cardinals.

Then κ is a strongly compact cardinal.

#### Lemma

Suppose  $\kappa$  is a supercompact cardinal and let S be the set of  $\gamma < \kappa$  such that  $\gamma$  is a measurable cardinal.

• Then S is a stationary subset of  $\kappa$ .

### Corollary (Menas)

Suppose that  $\kappa$  is the least measurable cardinal which is a limit of supercompact cardinals.

Then κ is a strongly compact cardinal and κ is not a supercompact cardinal.

### The Ultrapower Axiom and strongly compact cardinals

The Identity Crisis Theorem of Magidor:

### Theorem (Magidor)

Suppose  $\kappa$  is a supercompact cardinal. Then there is a (class) generic extension of V in which:

- κ is a strongly compact cardinal.
- $\blacktriangleright$   $\kappa$  is the **only** measurable cardinal.

### Theorem (Goldberg)

Assume the Ultrapower Axiom and that for some  $\kappa$ :

- $\blacktriangleright$   $\kappa$  is a strongly compact cardinal.
- κ is not a supercompact cardinal.

Then  $\kappa$  is a limit of supercompact cardinals.

The Ultrapower Axiom resolves the "identity crisis".
 By Menas' Theorem, this is best possible.

### The Ultrapower Axiom and the GCH

### Theorem (Goldberg)

Asume the Ultrapower Axiom and that  $\kappa$  is a supercompact cardinal.

• Then 
$$2^{\lambda} = \lambda^+$$
 for all  $\lambda \ge \kappa$ .

- The Ultrapower Axiom is absolute between V and V[G] for all generic extensions whose associated Boolean algebra is of cardinality below the least strongly inaccessible cardinal of V.
- Therefore the Ultrapower Axiom even augmented by large cardinal assumptions cannot imply either of:
  - ► The Continuum Hypothesis.
  - $\blacktriangleright V = HOD.$

### Supercompact cardinals and $\operatorname{HOD}$

#### Lemma

Suppose  $\kappa$  is a supercompact cardinal and that V = HOD. Then

$$V_{\kappa} \models "V = HOD"$$

• The converse is not true: if  $\kappa$  is supercompact and

$$V_{\kappa} \models "V = HOD"$$

then  $V \neq \text{HOD}$  can hold.

• However, if in addition  $\kappa$  is an extendible cardinal then necessarily

$$V = HOD.$$

### The Ultrapower Axiom and $\operatorname{HOD}$

#### Theorem (Goldberg)

Assume the Ultrapower Axiom ,  $\kappa$  is a supercompact cardinal, and  $V_{\kappa} \models "V = \text{HOD"}$ .

Then:

For all regular cardinals 
$$\gamma \geq \kappa$$
,  
 $H(\gamma^{++}) = HOD^{H(\gamma^{++})}$ 

More precisely,

• Every set  $x \in H(\gamma^{++})$  is definable in  $H(\gamma^{++})$  from some  $\alpha < \gamma^{++}$ .

 $\blacktriangleright V = HOD.$ 

- Thus in the context of the Ultrapower Axiom, the existence of a supercompact cardinal greatly amplifies the assumption that V = HOD by giving:
  - A uniform local version which must hold above the supercompact cardinal.
    - Just like with GCH, this is best possible.

### $\operatorname{HOD}_A$ and Vopěnka's Theorem

### Definition

Suppose A is a set.  $HOD_A$  is the class of all sets X such that there exist  $\alpha \in Ord$  and  $M \subset V_{\alpha}$  such that

- 1.  $A \in V_{\alpha}$ .
- 2.  $X \in M$  and M is transitive.
- 3. Every element of *M* is definable in  $V_{\alpha}$  from ordinal parameters and *A*.

### Theorem (Vopěnka)

For each set A,  $HOD_A$  is a set-generic extension of HOD.

- From the perspective of Set Theoretic Geology:
  - For each set A, HOD is a ground of HOD<sub>A</sub>.

The Ultrapower Axiom and the grounds of V

### Theorem (Goldberg)

Asume the Ultrapower Axiom and that  $\kappa$  is a supercompact cardinal. Suppose A is a wellordering of  $V_{\kappa}$ .

• Then  $V = HOD_A$ .

### Corollary (Goldberg)

Asume the Ultrapower Axiom and that there is a supercompact cardinal.

► Then HOD is a ground of V.

### The HOD of the mantle of V

Putting everything together:

#### Theorem

Asume the Ultrapower Axiom and that there is an extendible cardinal. Let  $\mathbb{M}$  be the mantle of V.

```
• Then \mathbb{M} \models "V = HOD".
```

(sketch)

- ▶ By Goldberg's Theorem,  $V = HOD_A$  for some set A.
- Therefore by Vopěnka's Theorem:
  - If N is a ground of V then  $HOD^N$  is a ground of N and so:
    - $HOD^N$  is a ground of V.
- By Usuba's Mantle Theorem,  $\mathbb{M}$  is a ground of V.
- Thus  $HOD^{\mathbb{M}}$  is a ground of V.
- Therefore  $\mathbb{M} \subseteq \mathrm{HOD}^{\mathbb{M}}$  and so  $\mathbb{M} = \mathrm{HOD}^{\mathbb{M}}$ .

### The mantle, V, HOD, and large cardinals

#### Theorem (after Hamkins et al)

Suppose V[G] is the **Easton** extension of V where for each limit cardinal  $\gamma$ , if  $V_{\gamma} \prec_{\Sigma_2} V$  then G adds a fast club at  $\gamma^+$ . Then:

- V is not a ground of V[G].
- V is the mantle of V[G] and  $HOD^V = HOD^{V[G]}$ .
- Many large cardinals are preserved, but:
  There are **no** extendible cardinals in V[G].

### Theorem (after Hamkins et al)

Suppose V[G] is the **Backward Easton** extension of V where for each strong limit cardinal  $\gamma$ , G adds a fast club at  $\gamma^+$ . Then:

- V[G] is the mantle of V[G].
- ▶  $\operatorname{HOD}^{V[G]} \subset \operatorname{HOD}^{V}$ .
- Every extendible cardinal of V is extendible in V[G].

• By changing G slightly one can arrange  $HOD^{V[G]} = V$ .

### The mantle of V and HOD when V = Ultimate-L

#### Theorem

### Assume V =Ultimate-L. Then:

- V has no nontrivial grounds.
- Suppose V[G] is a set-generic extension of V. Then
  - ▶ V is the mantle of V[G].

#### Theorem

Assume V =Ultimate-L. Then:

 $\blacktriangleright V = HOD.$ 

An obvious conjecture emerges.

### The Mantle Conjecture

### Mantle Conjecture

Asume the Ultrapower Axiom and that there is an extendible cardinal. Let  $\mathbb{M}$  be the mantle of V.

• Then 
$$\mathbb{M} \models "V = \text{Ultimate-}L"$$
.

- The conjunction of the Ultimate-L Conjecture and the Mantle Conjecture would provide the basis for a powerful argument that the axiom, V = Ultimate-L, is true, by citing as reasons:
  - **convergence** (of different approaches to the same axiom).
  - recovery (of axioms from their basic consequences).