Generalizing Gödel's Constructible Universe: The HOD Dichotomy

W. Hugh Woodin

Harvard University

IMS Graduate Summer School in Logic June 2018

Definition

Suppose λ is an uncountable cardinal.

- λ is a singular cardinal if there exists a cofinal set X ⊂ λ such that |X| < λ.</p>
- λ is a regular cardinal if there does not exist a cofinal set X ⊂ λ such that |X| < λ.</p>

Lemma (Axiom of Choice)

Every (infinite) successor cardinal is a regular cardinal.

Definition

Suppose λ is an uncountable cardinal. Then $cof(\lambda)$ is the minimum possible |X| where $X \subset \lambda$ is cofinal in λ .

- $cof(\lambda)$ is always a regular cardinal.
- If λ is regular then $cof(\lambda) = \lambda$.
- If λ is singular then $cof(\lambda) < \lambda$.

The Jensen Dichotomy Theorem

Theorem (Jensen)

Exactly one of the following holds.

(1) For all singular cardinals γ , γ is a singular cardinal in L and $\gamma^+ = (\gamma^+)^L$.

L is close to V.

(2) Every uncountable cardinal is a regular limit cardinal in L.
 ▶ L is far from V.

A strong version of Scott's Theorem:

Theorem (Silver)

Assume that there is a measurable cardinal.

► Then L is far from V.

Tarski's Theorem and Gödel's Response

Theorem (Tarski)

Suppose $M \models \text{ZF}$ and let X be the set of all $a \in M$ such that a is definable in M without parameters.

Then X is not a definable in M without parameters.

Theorem (Gödel)

Suppose that $M \models ZF$ and let X be the set of all $a \in M$ such that a is definable in M from b for some ordinal b of M.

Gödel's transitive class HOD

Recall that a set *M* is transitive if every element of *M* is a subset of *M*.

Definition

HOD is the class of all sets X such that there exist $\alpha \in \text{Ord}$ and $M \subset V_{\alpha}$ such that

- 1. $X \in M$ and M is transitive.
- 2. Every element of M is definable in V_{α} from ordinal parameters.
- ▶ (ZF) The Axiom of Choice holds in HOD.
- ▶ $L \subseteq HOD.$
- ▶ HOD is the union of all transitive sets *M* such that every element of *M* is definable in *V* from ordinal parameters.
 - By Gödel's Response.

Stationary sets

Definition

Suppose λ is an uncountable regular cardinal.

1. A set $C \subset \lambda$ is **closed and unbounded** if C is cofinal in λ and C contains all of its limit points below λ :

For all limit ordinals $\eta < \lambda$, if $C \cap \eta$ is cofinal in η then $\eta \in C$.

2. A set $S \subset \lambda$ is **stationary** if $S \cap C \neq \emptyset$ for all closed unbounded sets $C \subset \lambda$.

Example:

• Let $S \subset \omega_2$ be the set all ordinals α such that $cof(\alpha) = \omega$.

• S is a stationary subset of ω_2 ,

• $\omega_2 \setminus S$ is a stationary subset of ω_2 .

The Solovay Splitting Theorem

Theorem (Solovay)

Suppose that λ is an uncountable regular cardinal and that $S \subset \lambda$ is stationary.

Then there is a partition

$$\langle S_{\alpha} : \alpha < \lambda \rangle$$

of S into λ -many pairwise disjoint stationary subsets of λ .

But suppose $S \in HOD$.

Can one require

 $S_{\alpha} \in \mathrm{HOD}$

for all $\alpha < \lambda$?

Or just find a partition of S into 2 stationary sets, each in HOD?

Lemma

Suppose that λ is an uncountable regular cardinal and that:

- $S \subset \lambda$ is stationary.
- ▶ $S \in HOD$.

•
$$\kappa < \lambda$$
 and $(2^{\kappa})^{\text{HOD}} \ge \lambda$.

Then there is a partition

$$\langle S_{\alpha} : \alpha < \kappa \rangle$$

of S into κ -many pairwise disjoint stationary subsets of λ such that

$$\langle S_{\alpha} : \alpha < \kappa \rangle \in \text{HOD}.$$

But what if:

•
$$S = \{ \alpha < \lambda \mid cof(\alpha) = \omega \}$$
 and $(2^{\kappa})^{HOD} < \lambda ?$

Definition

Let λ be an uncountable regular cardinal and let

$$S = \{ \alpha < \lambda \mid \operatorname{cof}(\alpha) = \omega \}.$$

Then λ is ω -strongly measurable in HOD if there exists $\kappa < \lambda$ such that:

- 1. $(2^{\kappa})^{\mathrm{HOD}} < \lambda$,
- 2. there is no partition $\langle S_\alpha \mid \alpha < \kappa \rangle$ of S into stationary sets such that

 $S_{\alpha} \in \mathrm{HOD}$

for all $\alpha < \lambda$.

A simple lemma

Suppose $\mathbb B$ is a complete Boolean algebra and γ is a cardinal. \blacktriangleright $\mathbb B$ is $\gamma\text{-cc}$ if

 $|\mathcal{A}| < \gamma$

for all $\mathcal{A} \subset \mathbb{B}$ such that \mathcal{A} is an antichain:

▶ $a \land b = 0$ for all $a, b \in A$ such that $a \neq b$.

Lemma

Suppose that λ is an uncountable regular cardinal and that \mathcal{F} is a λ -complete uniform filter on λ . Let

 $\mathbb{B} = \mathcal{P}(\lambda)/I$

where I is the ideal dual to \mathcal{F} . Suppose that \mathbb{B} is γ -cc for some γ such that $2^{\gamma} < \lambda$.

• Then
$$|\mathbb{B}| \leq 2^{\gamma}$$
 and \mathbb{B} is atomic.

Lemma

Assume λ is $\omega\text{-strongly}$ measurable in HOD. Then

HOD $\models \lambda$ is a measurable cardinal.

Proof.

Let
$$S = \{ \alpha < \lambda \mid (\operatorname{cof}(\alpha))^V = \omega \}$$
 and let

 $\mathcal{F} = \{A \in \mathcal{P}(\lambda) \cap \mathrm{HOD} \, | \, S \setminus A \text{ is not a stationary subset of } \lambda \text{ in } V \}.$

Thus $\mathcal{F} \in HOD$ and in HOD, \mathcal{F} is a λ -complete uniform filter on λ .

Since λ is ω-strongly measurable in HOD, there exists γ < λ such that in HOD:</p>

- \blacktriangleright 2^{γ} < λ ,
- $\mathcal{P}(\lambda)/I$ is γ -cc where I is the ideal dual to \mathcal{F} .

Therefore by the simple lemma (applied within $\operatorname{HOD}),$ the Boolean algebra

 $(\mathcal{P}(\lambda) \cap \mathrm{HOD})/I$

is atomic.

Extendible cardinals

Lemma

Suppose that

$$\pi: V_{\alpha+1} \to V_{\pi(\alpha)+1}$$

is an elementary embedding and π is not the identity.

- Then there exists an ordinal η that $\pi(\eta) \neq \eta$.
- CRT(π) denotes the least η such that $\pi(\eta) \neq \eta$.

Definition (Reinhardt)

Suppose that δ is a cardinal.

Then δ is an extendible cardinal if for each λ > δ there exists an elementary embedding

 $\pi: V_{\lambda+1} \to V_{\pi(\lambda)+1}$ such that $\operatorname{CRT}(\pi) = \delta$ and $\pi(\delta) > \lambda$.

Extendible cardinals and a dichotomy theorem

Theorem (HOD Dichotomy Theorem (weak version))

Suppose that δ is an extendible cardinal. Then one of the following holds.

(1) No regular cardinal $\kappa \geq \delta$ is ω -strongly measurable in HOD. Further, suppose γ is a singular cardinal and $\gamma > \delta$.

• Then γ is singular cardinal in HOD and $\gamma^+ = (\gamma^+)^{\text{HOD}}$.

- (2) **Every** regular cardinal $\kappa \geq \delta$ is ω -strongly measurable in HOD.
 - If there is an extendible cardinal then HOD must be either close to V or HOD must be far from V.
 - This is just like the Jensen Dichotomy Theorem but with HOD in place of L.

Supercompactness

Definition

Suppose that κ is an uncountable regular cardinal and that $\kappa < \lambda$.

1.
$$\mathcal{P}_{\kappa}(\lambda) = \{ \sigma \subset \lambda \mid |\sigma| < \kappa \}.$$

- 2. Suppose that $U \subseteq \mathcal{P}(\mathcal{P}_{\kappa}(\lambda))$ is an ultrafilter.
 - *U* is **fine** if for each $\alpha < \lambda$,

$$\{\sigma \in \mathcal{P}_{\kappa}(\lambda) \mid \alpha \in \sigma\} \in U.$$

U is normal if for each function

$$f: \mathcal{P}_{\kappa}(\lambda) \to \lambda$$

such that

$$\{\sigma \in \mathcal{P}_{\kappa}(\lambda) \mid f(\sigma) \in \sigma\} \in U,$$

here exists $\alpha < \lambda$ such that
 $\{\sigma \in \mathcal{P}_{\kappa}(\lambda) \mid f(\sigma) = \alpha\} \in U.$

The original definition of supercompact cardinals

Definition (Solovay, Reinhardt)

Suppose that κ is an uncountable regular cardinal.

- Then κ is a supercompact cardinal if for each λ > κ there exists an ultrafilter U on P_κ(λ) such that:
 - U is κ -complete, normal, fine ultrafilter.

Lemma (Magidor)

Suppose that δ is strongly inaccessible. Then the following are equivalent.

- (1) δ is supercompact.
- (2) For all $\lambda > \delta$ there exist $\bar{\delta} < \bar{\lambda} < \delta$ and an elementary embedding

$$\pi: V_{\overline{\lambda}+1} o V_{\lambda+1}$$

such that $\operatorname{CRT}(\pi) = \overline{\delta}$ and such that $\pi(\overline{\delta}) = \delta$.

Solovay's Lemma

Theorem (Solovay)

Suppose $\kappa < \lambda$ are uncountable regular cardinals and that U is a κ -complete normal fine ultrafilter on $\mathcal{P}_{\kappa}(\lambda)$.

• Then there exists $Z \in U$ such that the function

 $f(\sigma) = \sup(\sigma)$

is 1-to-1 on Z.

• There is **one** set $Z \subset \mathcal{P}_{\kappa}(\lambda)$ which works for **all** U.

Supercompact cardinals and a dichotomy theorem

Theorem

Suppose that δ is an supercompact cardinal, $\kappa > \delta$ is a regular cardinal, and that κ is ω -strongly measurable in HOD.

- Then every regular cardinal λ > 2^κ is ω-strongly measurable in HOD.
- Assuming δ is an extendible cardinal then one obtains a much stronger conclusion.

Supercompact cardinals and the Singular Cardinals Hypothesis

Theorem (Solovay)

Suppose that δ is a supercompact cardinal and that $\gamma > \delta$ is a singular strong limit cardinal.

• Then
$$2^{\gamma} = \gamma^+$$
.

Theorem (Silver)

Suppose that δ is a supercompact cardinal. Then there is a generic extension V[G] of V such that in V[G]:

 \blacktriangleright δ is a supercompact cardinal.

•
$$2^{\delta} > \delta^+$$
.

 Solovay's Theorem is the strongest possible theorem on supercompact cardinals and the Generalized Continuum Hypothesis.

The $\delta\text{-covering}$ and $\delta\text{-approximation}$ properties

Definition (Hamkins)

Suppose N is a transitive class, $N \models \text{ZFC}$, and that δ is an uncountable regular cardinal of V.

1. *N* has the δ -covering property if for all $\sigma \subset N$, if $|\sigma| < \delta$ then there exists $\tau \subset N$ such that:

2. *N* has the δ -approximation property if for all sets $X \subset N$, the following are equivalent.

$$\triangleright$$
 $X \in N$.

• For all $\sigma \in N$ if $|\sigma| < \delta$ then $\sigma \cap X \in N$.

For each (infinite) cardinal γ :

H(γ) denotes the union of all transitive sets M such that |M| < γ.</p>

The Hamkins Uniqueness Theorem

Theorem (Hamkins)

Suppose N_0 and N_1 both have the δ -approximation property and the δ -covering property. Suppose

$$N_0 \cap H(\delta^+) = N_1 \cap H(\delta^+).$$

Then:

►
$$N_0 = N_1$$
.

Corollary

Suppose N has the δ -approximation property and the δ -covering property. Let $A = N \cap H(\delta^+)$.

• Then $N \cap H(\gamma)$ is (uniformly) definable in $H(\gamma)$ from A,

• for all strong limit cardinals $\gamma > \delta^+$.

• N is a Σ_2 -definable class from parameters.

Set Theoretic Geology

Definition (Hamkins)

A transitive class N is a **ground** of V if

- $\blacktriangleright N \models \text{ZFC}.$
- ▶ There is a partial order $\mathbb{P} \in N$ and an *N*-generic filter $G \subseteq \mathbb{P}$ such that V = N[G].
 - G is allowed to be trivial in which case N = V.

Lemma (Hamkins)

Suppose N is a ground of V. Then for all sufficiently large regular cardinals δ :

- N has the δ -approximation property.
- N has the δ -covering property.

Simply take δ be any regular cardinal of N such that $|\mathbb{P}|^N < \delta$.

Corollary

The grounds of V are Σ_2 -definable classes from parameters.

By the Hamkins Uniqueness Theorem.

Set Theoretic Geology (Hamkins)

What is the possible structure of the grounds of V?

- This is part of the first order theory of V.
- Suppose N ⊆ M ⊆ V, N is a ground of V, and M ⊨ ZFC.
 Then M is a ground of V and N is a ground of M.

Definition (Hamkins)

The **mantle** of V is the intersection of all the grounds of V.

Let \mathbb{M} be the mantle of V.

- (Hamkins) If M is a ground of V then M has no nontrivial grounds.
- (Hamkins) $\mathbb{M} \models \mathbb{ZF}$ but must $\mathbb{M} \models \mathbb{ZFC}$?

The Directed Grounds Problem

For each uncountable regular cardinal λ, there is a canonical forcing notion for adding a *fast club* at λ.

Theorem (after Hamkins et al)

Fix an ordinal α . Suppose V[G] is an Easton extension of V where for each strong limit cardinal γ , if $\gamma > \alpha$ then G adds a fast club at γ^+ . Then:

- The grounds of V[G] are downward set-directed.
- V is not a ground of V[G] and $V_{\alpha} = (V[G])_{\alpha}$.
- V is the mantle of V[G] and $HOD^V = HOD^{V[G]}$.
- The same example but with Backward Easton forcing yields V[G] for which there are no non-trivial grounds:
 V[G] is the mantle of V[G].

Question (Hamkins)

Are the grounds of V downward set-directed under inclusion?

When the grounds of V are downwards set-directed

Claim

Suppose that grounds of V are downwards set-directed. Then the following are equivalent.

- 1. The mantle of V is a ground of V.
- 2. There are only set-many grounds of V.
- 3. This is a minimum ground of V.

Claim

Suppose that grounds of V are downwards set-directed and let $\mathbb M$ be the mantle of V. Then

$$\mathbb{M} \models \mathbb{ZFC}.$$

Bukovsky's Theorem and Usuba's Solution

Theorem (Bukovsky)

Suppose that κ is a regular cardinal and $N \subset V$ is a transitive inner model of ZFC. Then the following are equivalent.

1. For each $\theta \in \text{Ord}$ and for each function $F : \theta \to N$ there exists a function

 $H: \theta \to \mathcal{P}_{\kappa}(N)$

such that $H \in N$ and such that $F(\alpha) \in H(\alpha)$ for all $\alpha < \theta$.

2. V is a κ -cc generic extension of N.

Theorem (Usuba)

The grounds of V are downward set-directed under inclusion.

Corollary (Usuba)

Let \mathbb{M} be the mantle of V.

• Then $\mathbb{M} \models$ The Axiom of Choice.

Usuba's Mantle Theorem

Theorem (Usuba)

Suppose that there is an extendible cardinal. Let \mathbb{M} be the mantle of V.

```
• Then \mathbb{M} is a ground of V.
```

Corollary

Suppose that there is an extendible cardinal. Let \mathbb{M} be the mantle of V and suppose that $\mathbb{M} \subseteq HOD$.

- ▶ Then HOD is a ground of V.
- In this case, the far option in the HOD Dichotomy Theorem cannot hold.

A natural conjecture

Assuming sufficient large cardinals exist, then **provably** the far option in the HOD Dichotomy Theorem cannot hold.

The HOD Hypothesis

Definition (The HOD Hypothesis)

There exists a proper class of regular cardinals λ which are **not** ω -strongly measurable in HOD.

- It is not known if there can exist 4 regular cardinals which are ω-strongly measurable in HOD.
- It is not known if there can exist 2 regular cardinals above 2^{ℵ0} where are ω-strongly measurable in HOD.
- Suppose γ is a singular cardinal of uncountable cofinality.
 - lt is not known if γ^+ can ever be ω -strongly measurable in HOD.

Conjecture

Suppose $\gamma > 2^{\aleph_0}$ and that γ^+ is ω -strongly measurable in HOD.

• Then γ^{++} is not ω -strongly measurable in HOD.

The HOD Conjecture

Definition (HOD Conjecture)

```
The theory {\rm ZFC} + \mbox{``There is a supercompact cardinal''} \label{eq:FC} proves the {\rm HOD} Hypothesis.
```

- Assume the HOD Conjecture and that there is an extendible cardinal. Then:
 - The far option in the HOD Dichotomy Theorem is **vacuous**:
 - HOD **must** be close to V.
- ► The HOD Conjecture is a **number theoretic statement**.

The Weak HOD Conjecture and the Ultimate-*L* Conjecture

Definition (Weak HOD Conjecture)

The theory

```
\rm ZFC+ "There is a extendible cardinal"
```

proves the HOD Hypothesis.

Ultimate-*L* Conjecture

(ZFC) Suppose that δ is an extendible cardinal. Then (provably) there is a transitive class N such that:

- 1. N is a weak extender model of δ is supercompact.
- 2. $N \models "V = \text{Ultimate-}L"$.

Theorem

The Ultimate-L Conjecture implies the Weak HOD Conjecture.

An equivalence

Theorem

Suppose there is a proper class of extendible cardinals. Then following are equivalent.

- (1) The HOD Hypothesis holds.
- (2) For some δ , there is a weak extender model N of δ is supercompact such that

 $N \models$ "The HOD Hypothesis".

Defining large cardinals in $\ensuremath{\mathrm{ZF}}$

Definition

Suppose λ is a cardinal. Then

$$V_{\lambda} \prec_{\Sigma_1^*} V$$

if for all $a \in V_{\lambda}$, for all $\alpha < \lambda$, and all Σ_1 -formulas, $\varphi(x_0)$;

▶ if there exists transitive set *M* such that

$$M \models \varphi[a], \\ M^{V_{\alpha}} \subset M;$$

Then there exists such a transitive set $M \in V_{\lambda}$.

Lemma

Assume the Axiom of Choice. Then the following are equivalent.

1. $|V_{\lambda}| = \lambda$. 2. $V_{\lambda} \prec_{\Sigma_1} V$. 3. $V_{\lambda} \prec_{\Sigma_1^*} V$.

Defining extendible cardinals in $\ensuremath{\mathrm{ZF}}$

Definition

Suppose $\delta > \omega$ is a cardinal. Then δ is **weakly extendible** if for all $\lambda > \delta$, there exists an elementary embedding

 $\pi: V_{\lambda+1} \to V_{\pi(\lambda)+1}$ such that $CRT(\pi) = \delta$ and such that $\pi(\delta) > \lambda$.

Definition

Suppose $\delta>\omega$ is a cardinal. Then δ is ${\bf extendible}$ if for all $\lambda>\delta$ such that

 $V_{\lambda} \prec_{\Sigma_1^*} V,$

there exists an elementary embedding

 $\pi: V_{\lambda+1} \to V_{\pi(\lambda)+1}$ such that $\operatorname{CRT}(\pi) = \delta$, $\pi(\delta) > \lambda$, and such that $V_{\pi(\lambda)} \prec_{\Sigma_1^*} V$.

The Strong HOD Conjecture

Definition (Strong HOD Conjecture)

 $\rm ZFC$ proves the HOD Hypothesis.

Theorem

Assume the Strong HOD Conjecture and that δ is a weakly extendible cardinal.

• Then for all $\lambda > \delta$ the following are equivalent.

• For all $\alpha < \lambda$, there is no surjection $\rho : V_{\alpha} \to \lambda$.

$$V_{\lambda} \prec_{\Sigma_1} V.$$
$$V_{\lambda} \prec_{\Sigma_1^*} V.$$

Corollary (ZF)

Assume the Strong HOD Conjecture and that δ is a weakly extendible cardinal.

• Then δ is an extendible cardinal.

Applications of the HOD Conjecture in ZF

Theorem (ZF)

Assume the HOD Conjecture and that δ is an extendible cardinal.

• Then for every cardinal $\lambda \geq \delta$, λ^+ is a regular cardinal.

Theorem (ZF)

Assume the HOD Conjecture and that δ is an extendible cardinal.

- Then for every regular cardinal λ ≥ δ, the Solovay Splitting Theorem holds at λ.
- Assuming the HOD Conjecture:
 - Large cardinal axioms are trying to prove the Axiom of Choice.

Kunen's Theorem

Theorem (Kunen)

Suppose that λ is a cardinal.

Then there is no non-trivial elementary embedding

 $j: V_{\lambda+2} \to V_{\lambda+2}.$

► Kunen's Theorem is a ZFC theorem.

Theorem (ZF)

Assume the HOD Conjecture and that δ is an extendible cardinal.

Then for every cardinal λ > δ, there is no nontrivial elementary embedding j : V_{λ+2} → V_{λ+2}.

Berkeley cardinals

Definition

A cardinal δ is a **Berkeley cardinal** if:

For all $\alpha < \delta$ and for all transitive sets M with $\delta \subset M$, there exists a nontrivial elementary embedding $i: M \to M$

such that $\alpha < \operatorname{CRT}(j) < \delta$.

Assuming the Axiom of Choice, there are no Berkeley cardinals by Kunen's Theorem:

▶ Just let $M = V_{\delta+2}$.

Theorem (ZF)

Assume the HOD Conjecture. Then:

There are no Berkeley cardinals.

The inner model $L(\mathcal{P}(\text{Ord}))$

Definition

 $L(\mathcal{P}(\text{Ord}))$ is the class of all sets X such that

 $X \in L(\mathcal{P}(\lambda))$

for some ordinal λ .

Lemma (ZF)

The following are equivalent.

- (1) The Axiom of Choice.
- (2) $L(\mathcal{P}(\text{Ord})) \models \text{The Axiom of Choice.}$

HOD Conjecture and the Axiom of Choice

Theorem (ZF)

Assume the HOD Conjecture. Suppose δ is an extendible cardinal. Then:

- δ is an extendible cardinal in $L(\mathcal{P}(Ord))$.
- There exists λ < δ such that for all X ∈ L(P(Ord)), there exists an ordinal η and a surjection</p>

 $\pi: \mathcal{P}(\lambda) \times \eta \to X$

such that $\pi \in L(\mathcal{P}(\text{Ord}))$.

By using symmetric forcing extensions, the conclusion is best possible.

Summary

There is a progression of theorems from large cardinal hypotheses that suggest:

Some version of V = L is true.

Further:

The theorems become much stronger as the large cardinal hypothesis is increased.

Large cardinals amplify structure.

They measure V and force the structure of V into discrete options.

Perhaps this is all evidence that V = Ultimate-L.