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Introduction

Thin Polycrystalline Materials:
Grains, Grain Boundaries, and Grain Boundary Migration

@ Polycrystalline materials: solids composed of maryrains or
crystals, which vary in their size and crystalline latticeemtation.

@ Grain boundaries: interfaces where di erent grains meet.

@ Thin or nano-thin layers: material layers ranging in thickness from
a fraction of ananometer to severalmicrons.

e Typically, grain boundariesmigrate to reduce surface free energy.
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Figure 1: Sketch of grains and grain boundaries.




Introduction

Classical features of interest

Grain boundary migration phenomena which e ect thin Im didity.
@ Thermal grooving.
@ Pitting at quadruple junctions.
@ Wetting/dewetting and hole formation.

Figure 2: (a) Grooving. (b) Jerky motion.



Introduction

Mullins' surface di usion model

In 1957 Mullins proposed the 1-D nonlinear surface di usioodel:

Vo= Bl x(@+y) ¥ =yl yd) T L

He linearized (1), obtaining théullins' linear surface di usion model:
YVt = BYxxx; (2)

by relying on a small slope assumption which is often physicalevant,
then found solutions to (2) satisfying the initial and bouay conditions:

y(x;0)=0; x2][0;1); 3
Yx(0;t) = m=2; y(0;t) =0; limyr  y(x;t)=0; t2(0;1); 3)

in accordance with a simple symmetric thermal grooving nmode

Mullins' solutions are classical, well studied, and use@stimatingB.
Question: Do there exist other physically meaningful smos to (2)?
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Solutions to the Mullins' linear surface di usion model

At to physical solutions, it seems reasonable to require
lim y(x;t)=0: (4)
x!1
Together with H. Kalantarova (2018), we found a 2 parametanfily of
solutions to (2),(4), of the self-similar form already sugged by Mullins:
Y1) = 2 (BOZ (x=(BOY); ©)
where 1 1
Z@ (u) ZuZO(u) + ZZ(U) =0; (6)
whose general solution is
Z(1) = ZO)Go(u)+ ZX0)u+ SZROCo(u)+ 2O G(u; (7)
whereGy, Gy, G; are hypergeometric functions. Condition (4) implies
2 (5=4)2(0) + P 27 90) P 2 7°%0)=0;
P22%0)+2 (3 =4)2%0)+ "2 z%m) = 0:
where () is the Gamma function.

(8)
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Two parameter family of solutions to Mullins' linear model

From (5), (7), (8), we see that xing any two of the initial coditions
fZ(0); 2%0); Z°0); Z°°f0)g yields a unique solution to (2) satisfying (4).
Thus (5), (7), (8) give a two parameter family of solutions t2), (4).

While this may be known, we were uncertain where to nd it ineth
literature. Mullins' solution as prescribed in his 1957 gagan be
obtained from the description above by setti@(0) = 1 ; Z°%0) = 0.

Are any previously unknown solution provides by this degsimm?
At least the above description yields the following: Suppase sets

Z()=0; zY1)=1: (9)
Then (9), (8) yields solutions which decay at and satisfy
y(BH)"t)=0; t>0;

thus explicitly describin@g decaying surface di usion tail
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Arc-length self-similar solutions

Together with V. Derkach (2018), we found it useful to coneid(1),
the 1D nonlinear surface di usion equation, in an arc-lehglescription

X=x(st); y=y(sit); xX+yi=1;
and to seek self-similar solution in terms; (), namely as
X(s;t) = (B)™X(); y(sit)=(B)TY(); = s=%(Bt)"™
see Rabkin, Klinger, Izyumora, Semenov (2000), which yields
(YXO XY9= 4K K= YO0+ X000  2R*:
(X92+(Y9?=1; 2R
X(0)=0; Y%0)= m=2 KY0)=0; (m= g=s);
limy Y()=Ilm, K{)=0; limy =1:

(10)

Mullins (1957) knew a problem for self-similar solutions(tb could be
formulated, Robinson (1971) undertook calculations, andah& Giga
(2014) got partial results; however, their existence hag heen proven.
It seems the formulation in (10) is promising in this direatio
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Arc-length self-similar solution calculations

2 Linear problem of thermal grooving

s Nonlinear problem of thermal grooving

y=B 1)

m=1.95
—m=1.99

0 2 4 6
x=(B )

@) (b)

Figure 3: Solution of the linear and nonlinear BVP
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Arc-length self-similar solution calculations

Problem of thermal grooving
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Figure 4: (@) The normalized value of y at the originyo=(Bt)**. (b) The ratio

of the groove depth to the groove widthd=w. Here tan

=m@d m
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Steady states

Steady states: |

Thin polycrystalline steady states:

spherically capped hexagonal arrays

work with V. Derkach, J. McCuan, & A. Vilenkin (2017)



Steady states

Hexagonal tilings

Figure 5: The triangular systems contained in the grey equilateraliangles, can
be extended by mirror symmetry to yield a hexagonal tiling &?2; see Derkach,
N-C., Vilenkin & Rabkin (2014).
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Truncated square and truncated hexagonal tilings

© L0 (d)

Figure 6: Re ection of the triangular systems in the grey triangles, ith angles

truncated square tilings and truncated hexagonal tilingsespectively, ofR2.
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Geometric Constructs

Grain boundaries.
Exterior surfaces.

Triple junctions:

e Thermal grooves.

o Groove roots.

o Interior triple
junctions.

Quadruple junctions.
Corner points.

The mid-plane.
Bounding planes.

©

e ©

Figure 7: A typical 3 grain triangular system.
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Steady states

Problem Formulation Assumptions

@ Grain boundaries evolve by (isotropicmean curvature motion :
Vn = A H:
o Exterior surfaces evolve by (isotropickurface di usion :
Vh= B 4H:

@ Conditions along thermal grooves: .

Persistence.

Balance of mechanical forces.
Continuity of the chemical potential.
Balance of mass ux.

@ Similar conditions along interior triple junction and at corners.
@ Symmetry with respect to the bounding planes and the mid-plan

¢ ¢ ¢ ¢

D

Neglected: elasticity, anisotropy, evaporation/condensation, defg, : : :
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Equations of Evolution

Motion by mean curvature

Vo= A H: (11)

Motion by surface di usion

Vh= B 4H: (12)

@ V, - normal velocity of evolving surface.

@ H - mean curvature of evolving surface.

@ 4 ¢ - the Laplace - Beltrami operator (the surface Laplacian).
@ A - reduced mobility - the grain boundary kinetic coe cient.
@ B - the surface di usion \Mullins" coe cient.
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1. Conditions along Thermal Grooves

X1, X2: exterior surfacesX3: grain boundaryX?, X2, X2 couple along
thermal groove.

exterior surface exterior surface

Balance of mechanical forces

Young's law (isotropic Herring's law):

& triple junction at some point
along a “groove raot”

bounding plane —|

| | ™
& l+ L 2+ gb 320: (13) -

~— bounding planes

|

— grain boundary

® 5, ¢o: exterior surface and
grain boundary free energies.
o ii=1 :2;3: unit tangent Figure 8: (?roove cross-section.
vectors along thermal groove. o : the dihedral angle,
. m
= 2 arcsin > ;o (14)

m= g=s m2][0;2]: (15)
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Boundary Conditions at the Quadruple Junction

Assumptions

@ Limiting regularity at the quadruple junction: in a limiting neighborhood
of the quadruple junction, triple junction lines become stight.

@ Young's law holds up to the quadruple junction, on all triplgunction lines.

i

Figure 9: Sketch of a quadruple junction.
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A Tetrahedron Construction and Quadruple Junction Wetting

Figure 10: A tetrahedral construction
at quadruple junctions, based on the
tangent vectors A, s; c.

From trigonometry, ' ,  satisfy
_ 2 m?
cos() = i (16)
1 m
cos() = = p—=: (17)
3 4 m?
.2 )
0 53 ;g

require that m 2 [0; P 3] [0;2].
Breakdown of the construction:

m = P 3 as a quadruple junction
wetting condition, Derkach, 2010.
See also Smith 1948, Taylor 1976,
Straumal et.al. 2007.
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Hexagonal Tilings with Spherical Caps

cross section

7,

5 3
Nyau

Figure 11: The triangular system within the grey equilateral trianglextends by
mirror symmetry to yield a hexagonal tiling. The exterior staces above the
hexagons are spherical caps of radils intersected by grain boundaries which
are planar and normally intersect thexy plane. All dihedral angles equal. See
also Srolovitz & Safran (1986).
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A Tetrahedron Construction and Quadruple Junction Wetting

The spherical caps intersect the at vertical grain boungs along
circular secticips, with maximal height relative to the thpteres' centers
Zmax = (Lcaciy 4 m2):(6m); and with minimal height

Zmin = (Leacr 3 m2)=(" 3m); attgined at the quadgple junctions.
The construction requires @ m< = 3; implyingm 3 as a quadruple
junction wetting criterion. Thenonexistence result below implies this
restriction is sharp.

Theorem. Given a domain with a corner with interior angle If
+ < there exist no constant mean curvature surfaces de ned over
which are bounded from below and mee® with contact angle
= %( ). Proof. See Finn [Corollary 5.5] and de nitions there.

For the equilateral triangular system, = % =2cos }(m=2), and the
restriction +, < implies non-existence of solutions bounded from
below ifm > " 3. If non-boundedness occurs, it occurs at the vertex of
the interior corner. So for spherical capped hexagons, amghssteady

states necessarily penetrate the Im at the quadruple juiect
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A Tetrahedron Construction and Quadruple Junction Wetting , 2.

For thin Ims, the Im thickness required to guarantee Im stbility is a
technologically critical issue. This leads us to considelume restrictions
for the realization of these con gurations. The volume ofelspherical
cap over the hexagon and above height, is given by

h p

3 m?!
ver =13, F(m)

2m
Zih Pz 4 g2 mo
+ arcsin p—p——

2m? 34 m2 2

where

3
F(m)_i 0 3m

Letting L, denote the height of a at con guratli]on with equivalent

volume, namely the height, such thatV “ = 7§LZ L2,.:; we obtain
that realization of the capped hexagon con guration reqesrthat

Note in particular that ifm = 0:3, thenL, 0:02948 csc:.
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Are spherically capped hexagons energetically preferable, when realizable?

For the capped hexagons

p_
ESP = L2,c:G(m)+  3ml,Lesci;  G(m) known, (19)
and for the equivalent volume at con guration with at gram boundaries
- P 3 p_
gnital = 7Légcl + 3ml,Leact: (20)

-0.25
0 02040608 1 12 14 16 18 2

m

Figure 12: We see clearly thateg®  EIMa
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A Tetrahedron Construction and Quadruple Junction Wetting , 4.

Above, energies were compared for con gurations with thensavolume,
and the length,Lcsc1; of side of the bounding triangle was xed.

From the geometryLnexagon = pl—thriangb = pl—chscl.

Let us now compare the energies for spherically capped haxag

con gurations with the same volume, allowing the length dfe triangle
(hexagon) side to vary. Fixet implies that the height of the equivalent
volume at triangular system satis e4; = p%Vchcl: So by (19)

2mV
EfP = Lsc:G(M) + ; (21)
LC301
which attains a minimum at
h i1
i mV "3
O (22)

We conjecture that (22) is indicative of an energeticallyeferred length
scale for grains with prescribed volume in a bamboo struetlusystem.
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A Tetrahedron Construction and Quadruple Junction Wetting , 5.

Should coarsening be expected to ensue in the sphericafipad
system? It follows from (19) that the weighted energy per uaiea of
the capped hexagon system is given by

2 ES® 2mL,
— = p=G(m) + : 23
9—3 Lésm 9—3 G(m) . (23)

Since (23) decreases &s:c: increases, there is an energetic preference
for coarsening. However coarsening may be hindered by di;mam
considerations such as local energy barriers.
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Figure 13:Here c1= 2= 3=1=3,Lc1c2=30; L, =3 and m=0:3.
The exterior surfaces heights, (a) fot = 50 and (c) for t = 6300. The exterior
surfaces mean curvatures, (b) fot = 50 and (d) for t = 6300. The grains

m— =10 Z asin

the steady state discussed.
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Figure 14:Here c1= 3=0:45, 2=0:1,L, =3 and m=0:3. The
exterior surface heights, (a) fot =50 and (c) for t = 2310. The exterior
surface mean curvatures, (b) fot =50 and (d) for t = 2310. The smaller
grain grows, and the system seems to approach the earlierastg state.
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Figure 15:Here c1= 3=0:485, 2=0:03,L; =3 and m=0:3. The
exterior surface heights, (a) fot =1 and (c) for t = 703. The exterior surface
mean curvatures, (b) fort = 1 and (d) for t = 703. We observe shrinkage and
sinking of the smaller grain. Apparently if initially one @in is much smaller
than the others, the steady state with three fold symmetry inot approach.
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Steady states: I

Axi-symmetric 2 grain systems:

within a nite radius cylinder

joint work with V. Derkach & J. McCuan
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Axi-symmetric equilibria:

We consider rotationally symmetric equilibrium con guiahs consisting
of two grains. The cross-section we have in mind is indicateéig. 16.

z

r

a

Figure 16: Cross-section of an axi-symmetric equilibrium. Heweis the width
of the catenoid neck and is the arclength of the catenoid from its neck to the
triple-junction. The cylinder radius has been normalizedtunity.
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Axi-symmetric equilibria: cont.

We nd for xed m 2 (0; 2), or equivalently for xed = arctan(pﬁ);

that there is a two parameter family of equilibria for a niteylinder of
radius 1 which are composed of

1) a portion of asphere with radiusRy which meets the axis at a right
angle,

2) a portion of aplane which is orthogonal to the axis or aatenoid:
r= coshg=a);

both of which have zero mean curvature,

3) a portion of anodoid, with mean curvature 1=R,, which intersects
the bounding cylinder at a right angle. The inclination aagl along the
nodary median satis es
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Axi-symmetric equilibria: parametrization

The various conditions imply the following constraint:

acos + sin 1

sin  acos 24+ a2’

(24)

which may also be written as:

a’+ =
From (24), we may conclude:
Theorem. For xed 2 (=2; ), there is a smooth functiora= a( )
de ned for 0 cos by (24), with a(0) = pl—z a( cos )=sin :
The graphs =f(a( ); ):0<a< <cos gfor =2< < foliate
R=f(a ):1=2< a+ 2< 1, a > Og; see Fig. 17.
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Axi-symmetric equilibria: parameter domain

a

Figure 17: Parameter domain for equilibrium con gurations for xed .
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