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Thin Polycrystalline Materials:

Grains, Grain Boundaries, and Grain Boundary Migration

Polycrystalline materials: solids composed of many grains or
crystals, which vary in their size and crystalline lattice orientation.

Grain boundaries: interfaces where different grains meet.

Thin or nano-thin layers: material layers ranging in thickness from
a fraction of a nanometer to several microns.

Typically, grain boundaries migrate to reduce surface free energy.

Figure 1: Sketch of grains and grain boundaries.
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Classical features of interest

Grain boundary migration phenomena which effect thin film stability.

Thermal grooving.

Pitting at quadruple junctions.

Wetting/dewetting and hole formation.

(a) (b)

Figure 2: (a) Grooving. (b) Jerky motion.
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Mullins’ surface diffusion model

In 1957 Mullins proposed the 1-D nonlinear surface diffusion model:

yt = −B[κx(1 + y2
x )

−1/2]x , κ = yxx (1 + y2
x )

−3/2. (1)

He linearized (1), obtaining the Mullins’ linear surface diffusion model:

yt = −Byxxxx , (2)

by relying on a small slope assumption which is often physically relevant,
then found solutions to (2) satisfying the initial and boundary conditions:

y(x , 0) = 0, x ∈ [0,∞),
yx(0, t) = m/2, yxx(0, t) = 0, limx→∞ y(x , t) = 0, t ∈ (0,∞),

(3)

in accordance with a simple symmetric thermal grooving model.

Mullins’ solutions are classical, well studied, and used in estimating B.
Question: Do there exist other physically meaningful solutions to (2)?
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Solutions to the Mullins’ linear surface diffusion model

At to physical solutions, it seems reasonable to require

lim
x→∞

y(x , t) = 0. (4)

Together with H. Kalantarova (2018), we found a 2 parameter family of
solutions to (2),(4), of the self-similar form already suggested by Mullins:

y(x , t) =
m

2
(Bt)1/4Z (x/(Bt)1/4), (5)

where

Z (4)(u)− 1

4
uZ ′(u) +

1

4
Z (u) = 0, (6)

whose general solution is

Z (u) = Z (0)G0(u
4)+Z ′(0)u+

1

2
Z ′′(0)u2G2(u

4)+
1

6
Z ′′′(0)u3G3(u

4), (7)

where G0, G2, G3 are hypergeometric functions. Condition (4) implies

2Γ(5/4)Z (0) +
√
2Z ′(0)−

√
2πZ ′′′(0) = 0,

√
2Z ′(0) + 2Γ(3/4)Z ′′(0) +

√
2πZ ′′′(0) = 0,

(8)

where Γ(·) is the Gamma function.
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Two parameter family of solutions to Mullins’ linear model

From (5), (7), (8), we see that fixing any two of the initial conditions
{Z (0),Z ′(0),Z ′′(0),Z ′′′(0)} yields a unique solution to (2) satisfying (4).

Thus (5), (7), (8) give a two parameter family of solutions to (2), (4).

While this may be known, we were uncertain where to find it in the
literature. Mullins’ solution as prescribed in his 1957 paper can be
obtained from the description above by setting Z ′(0) = 1, Z ′′′(0) = 0.

Are any previously unknown solution provides by this description?

At least the above description yields the following: Suppose one sets

Z (1) = 0, Z ′(1) = 1. (9)

Then (9), (8) yields solutions which decay at ∞ and satisfy

y((Bt)1/4, t) = 0, t > 0,

thus explicitly describing a decaying surface diffusion tail.



Introduction Steady states Acknowledgements

Arc-length self-similar solutions

Together with V. Derkach (2018), we found it useful to consider (1),
the 1D nonlinear surface diffusion equation, in an arc-length description

x = x(s, t), y = y(s, t), x2s + y2
s = 1,

and to seek self-similar solution in terms (s, t), namely as

x(s, t) = (Bt)1/4X (ξ), y(s, t) = (Bt)1/4Y (ξ), ξ := s/(Bt)1/4,

see Rabkin, Klinger, Izyumora, Semenov (2000), which yields:

(YX ′ − XY ′) = −4K ′′, K = −Y ′X ′′ + X ′Y ′′, ξ ∈ R+,

(X ′)2 + (Y ′)2 = 1, ξ ∈ R+,

X (0) = 0, Y ′(0) = m/2, K ′(0) = 0, (m = γgb/γs),

limξ→∞ Y (ξ) = limξ→ K ′(ξ) = 0, limξ→∞ = 1.

(10)

Mullins (1957) knew a problem for self-similar solutions to (1) could be
formulated, Robinson (1971) undertook calculations, and Asai & Giga
(2014) got partial results; however, their existence has not been proven.
It seems the formulation in (10) is promising in this direction.
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Arc-length self-similar solution calculations

0 2 4 6 8 10

x/(B t)1/4

-8

-6

-4

-2

0

2

y
/(
B
t)

1/
4

Linear problem of thermal grooving

m=1
m=1.25
m=1.5
m=1.75
m=1.9
m=1.95
m=1.99

(a)

0 2 4 6 8 10

x/(B t)1/4

-1.5

-1

-0.5

0

0.5

y
/
(B

t)
1
/
4

Nonlinear problem of thermal grooving

m=1
m=1.25
m=1.5
m=1.75
m=1.9
m=1.95
m=1.99

(b)

Figure 3: Solution of the linear and nonlinear BVP.
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Arc-length self-similar solution calculations
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Figure 4: (a) The normalized value of y at the origin, y0/(Bt)
1/4. (b) The ratio

of the groove depth to the groove width, d/w . Here tanβ = m(4−m2)−1/2.
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Steady states: I

Thin polycrystalline steady states:

spherically capped hexagonal arrays

work with V. Derkach, J. McCuan, & A. Vilenkin (2017)



Introduction Steady states Acknowledgements

Hexagonal tilings

(a) (b)

(c) (d)

Figure 5: The triangular systems contained in the grey equilateral triangles, can
be extended by mirror symmetry to yield a hexagonal tiling of R2, see Derkach,
N-C., Vilenkin & Rabkin (2014).
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Truncated square and truncated hexagonal tilings

(a) (b)

(c) (d)

Figure 6: Reflection of the triangular systems in the grey triangles, with angles
π/4, π/2, π/4 in (a),(b), and with angles π/6, 2/3 π, π/6 in (c),(d), yields
truncated square tilings and truncated hexagonal tilings, respectively, of R2.
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Geometric Constructs

Grain boundaries.

Exterior surfaces.

Triple junctions:

Thermal grooves.
Groove roots.
Interior triple
junctions.

Quadruple junctions.

Corner points.

The mid-plane.

Bounding planes.
Figure 7: A typical 3 grain triangular system.
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Problem Formulation Assumptions

Grain boundaries evolve by (isotropic) mean curvature motion:

Vn = A H .

Exterior surfaces evolve by (isotropic) surface diffusion:

Vn = −B △sH .

Conditions along thermal grooves:.

Persistence.
Balance of mechanical forces.
Continuity of the chemical potential.
Balance of mass flux.

Similar conditions along interior triple junction and at corners.

Symmetry with respect to the bounding planes and the mid-plane.

Neglected: elasticity, anisotropy, evaporation/condensation, defects, . . .
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Equations of Evolution

Motion by mean curvature

Vn = A H . (11)

Motion by surface diffusion

Vn = −B △sH . (12)

Vn - normal velocity of evolving surface.

H - mean curvature of evolving surface.

△s - the Laplace - Beltrami operator (the surface Laplacian).

A - reduced mobility - the grain boundary kinetic coefficient.

B - the surface diffusion “Mullins” coefficient.
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1. Conditions along Thermal Grooves

X 1, X 2: exterior surfaces, X 3: grain boundary; X 1, X 2, X 3 couple along
thermal groove.

Balance of mechanical forces

Young’s law (isotropic Herring’s law):

σs
−→τ 1 + σs

−→τ 2 + σgb
−→τ 3 = 0. (13)

σs , σgb: exterior surface and
grain boundary free energies.
−→τ i i = 1, 2, 3: unit tangent
vectors along thermal groove.

Figure 8: Groove cross-section.

θ: the dihedral angle,

θ = π − 2 arcsin
(m

2

)

, (14)

m = σgb/σs , m ∈ [0, 2]. (15)
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Boundary Conditions at the Quadruple Junction

Assumptions:

Limiting regularity at the quadruple junction: in a limiting neighborhood
of the quadruple junction, triple junction lines become straight.

Young’s law holds up to the quadruple junction, on all triple junction lines.

A

B

Q

D

C

surfacesurface

grain boundary

Figure 9: Sketch of a quadruple junction.
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A Tetrahedron Construction and Quadruple Junction Wetting
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Figure 10: A tetrahedral construction
at quadruple junctions, based on the
tangent vectors τA, τB , τC .

From trigonometry, ϕ, ψ satisfy

cos (ϕ) = −2−m2

4−m2
, (16)

cos (ψ) = − 1√
3

m√
4−m2

, (17)

0 ≤ ϕ ≤
2π

3
,

π

2
≤ ψ ≤ π, (18)

require that m ∈ [0,
√
3] ⊂ [0, 2].

Breakdown of the construction:

m =
√
3 as a quadruple junction

wetting condition, Derkach, 2010.

See also Smith 1948, Taylor 1976,
Straumal et.al. 2007.
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Hexagonal Tilings with Spherical Caps

Figure 11: The triangular system within the grey equilateral triangle extends by
mirror symmetry to yield a hexagonal tiling. The exterior surfaces above the
hexagons are spherical caps of radius R, intersected by grain boundaries which
are planar and normally intersect the xy plane. All dihedral angles equal θ. See
also Srolovitz & Safran (1986).
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A Tetrahedron Construction and Quadruple Junction Wetting

The spherical caps intersect the flat vertical grain boundaries along
circular sections, with maximal height relative to the the spheres’ centers
zmax = (LC3C1

√
4−m2)/(2m), and with minimal height

zmin = (LC3C1

√
3−m2)/(

√
3m), attained at the quadruple junctions.

The construction requires 0 < m <
√
3, implying m ≥

√
3 as a quadruple

junction wetting criterion. The nonexistence result below implies this
restriction is sharp.

Theorem. Given a domain Ω with a corner with interior angle α. If
α+ θ < π there exist no constant mean curvature surfaces defined over
Ω which are bounded from below and meet ∂Ω with contact angle
θc = 1

2 (π − θ). Proof. See Finn [Corollary 5.5] and definitions there.

For the equilateral triangular system, α = 2π
3 , θ = 2 cos−1(m/2), and the

restriction α+ θ < π implies non-existence of solutions bounded from
below if m >

√
3. If non-boundedness occurs, it occurs at the vertex of

the interior corner. So for spherical capped hexagons, any such steady
states necessarily penetrate the film at the quadruple junction.
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A Tetrahedron Construction and Quadruple Junction Wetting, 2.

For thin films, the film thickness required to guarantee film stability is a
technologically critical issue. This leads us to consider volume restrictions
for the realization of these configurations. The volume of the spherical
cap over the hexagon and above height zmin is given by

V cap = L3C3C1

[

F(m)−
√
3−m2

2m

]

, where

F(m) =
3

2

∫ 1

0

[ξ
√

3−m2 ξ2

3m
+

4−m2 ξ2

2m2
arcsin

( m ξ√
3
√

4−m2 ξ2

)]

dξ.

Letting L∗z denote the height of a flat configuration with equivalent

volume, namely the height L∗z such that V cap =
√
3
2 L∗zL

2
C3C1 , we obtain

that realization of the capped hexagon configuration requires that

Lz ≥ L∗z =
2√
3

[

F(m) −
√
3−m2

2m

]

LC3C1 .

Note in particular that if m = 0.3, then L∗z ≈ 0.02946LC3C1 .
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Are spherically capped hexagons energetically preferable, when realizable?

For the capped hexagons

E cap
w = L2C3C1G(m) +

√
3mLzLC3C1 , G(m) known, (19)

and for the equivalent volume flat configuration with flat grain boundaries

E initial
w =

√
3

2
L2C3C1 +

√
3mLzLC3C1 . (20)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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-0.05

0

(
√

3, −0.2218)

Ecap
w − Einitial

w

L2
C3C1

Figure 12: We see clearly that E cap
w ≤ E initial

w .



Introduction Steady states Acknowledgements

A Tetrahedron Construction and Quadruple Junction Wetting, 4.

Above, energies were compared for configurations with the same volume,
and the length, LC3C1 , of side of the bounding triangle was fixed.

From the geometry, Lhexagon = 1√
3
Ltriangle =

1√
3
LC3C1 .

Let us now compare the energies for spherically capped hexagon
configurations with the same volume, allowing the length of the triangle
(hexagon) side to vary. Fixed V implies that the height of the equivalent
volume flat triangular system satisfies Lz =

2√
3
VL−2

C3C1 . So by (19)

E cap
w = L2C3C1G(m) +

2mV

LC3C1

, (21)

which attains a minimum at

Lmin
C3C1 =

[ mV

G(m)

]
1
3

. (22)

We conjecture that (22) is indicative of an energetically preferred length
scale for grains with prescribed volume in a bamboo structured system.
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A Tetrahedron Construction and Quadruple Junction Wetting, 5.

Should coarsening be expected to ensue in the spherically capped
system? It follows from (19) that the weighted energy per unit area of
the capped hexagon system is given by

2√
3

E cap
w

L2
C3C1

=
2√
3
G(m) +

2mLz

LC3C1

. (23)

Since (23) decreases as LC3C1 increases, there is an energetic preference
for coarsening. However coarsening may be hindered by dynamic
considerations such as local energy barriers.
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(a) (b)

(c) (d)

Figure 13: Here φC1 = φC2 = φC3 = 1/3, LC1C2 = 30, Lz = 3 and m = 0.3.
The exterior surfaces heights, (a) for t = 50 and (c) for t = 6300. The exterior
surfaces mean curvatures, (b) for t = 50 and (d) for t = 6300. The grains
remain symmetric and the mean curvatures converges ≈ m

L
C1C2

= 10−2, as in

the steady state discussed.
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(a) (b)

(c) (d)

Figure 14: Here φC1 = φC3 = 0.45, φC2 = 0.1, Lz = 3 and m = 0.3. The
exterior surface heights, (a) for t = 50 and (c) for t = 2310. The exterior
surface mean curvatures, (b) for t = 50 and (d) for t = 2310. The smaller
grain grows, and the system seems to approach the earlier steady state.
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(a) (b)

(c) (d)

Figure 15: Here φC1 = φC3 = 0.485, φC2 = 0.03, Lz = 3 and m = 0.3. The
exterior surface heights, (a) for t = 1 and (c) for t = 703. The exterior surface
mean curvatures, (b) for t = 1 and (d) for t = 703. We observe shrinkage and
sinking of the smaller grain. Apparently if initially one grain is much smaller
than the others, the steady state with three fold symmetry is not approach.
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Steady states: II

Axi-symmetric 2 grain systems:

within a finite radius cylinder

joint work with V. Derkach & J. McCuan
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Axi-symmetric equilibria:

We consider rotationally symmetric equilibrium configurations consisting
of two grains. The cross-section we have in mind is indicated in Fig. 16.

0.0 0.2 0.4 0.6 0.8
0.0
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0.3
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0.5

Figure 16: Cross-section of an axi-symmetric equilibrium. Here a is the width
of the catenoid neck and σ is the arclength of the catenoid from its neck to the
triple-junction. The cylinder radius has been normalized to unity.
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Axi-symmetric equilibria: cont.

We find for fixed m ∈ (0, 2), or equivalently for fixed β = arctan( −m√
4−m2

),

that there is a two parameter family of equilibria for a finite cylinder of
radius 1 which are composed of

1) a portion of a sphere with radius R0 which meets the axis at a right
angle,

2) a portion of a plane which is orthogonal to the axis or a catenoid:

r = α cosh(z/a),

both of which have zero mean curvature,

3) a portion of a nodoid, with mean curvature −1/R0, which intersects
the bounding cylinder at a right angle. The inclination angle ψ along the
nodary median satisfies

sinψ = − 1

R0

(

r − 1

r

)

.
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Axi-symmetric equilibria: parametrization

The various conditions imply the following constraint:

a cosβ + σ sin β

σ sinβ − a cos β
= 1− 1

σ2 + a2
, (24)

which may also be written as:

a3 +

(

σ2 − 1

2

)

a+
σ tan β

2
= 0.

From (24), we may conclude:

Theorem. For fixed β ∈ (π/2, π), there is a smooth function a = a(σ)
defined for 0 ≤ σ ≤ − cosβ by (24), with a(0) = 1√

2
, a(− cosβ) = sinβ.

The graphs Γβ = {(a(σ), σ) : 0 < a < − cosβ} for π/2 < β < π foliate
R = {(a, σ) : 1/2 < a2 + σ2 < 1, a, σ > 0}, see Fig. 17.
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Axi-symmetric equilibria: parameter domain
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Figure 17: Parameter domain for equilibrium configurations for fixed β.
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